organic compounds
3,3′-Dimethyl-4,4′-(hexane-1,6-diyl)bis[1H-1,2,4-triazol-5(4H)-one]
aDepartment of Middle Education, Educational Faculty, Ondokuz Mayıs University, 55200 Atakum, Samsun, Turkey, bDepartment of Computer Education and Instructional Technology, Educational Faculty, Ondokuz Mayıs University, 55200 Atakum, Samsun, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, 61080 Trabzon, Turkey, dDepartment of Physics, Hacettepe University, Beytepe 06800, Ankara, Turkey, and eAnadolu University, Faculty of Science, Department of Chemistry, 26470 Yenibaĝlar, Eskişehir, Turkey
*Correspondence e-mail: ucoruh@omu.edu.tr
The title compound, C12H20N6O2, has a centre of symmetry. The molecule consists of two triazole rings joined by an aliphatic –(CH2)6– chain. The is stabilized by intermolecular N—H⋯O hydrogen bonds and by π–π stacking interactions between the triazole rings of inversion-related molecules [centroid–centroid distance = 3.277 (8) Å].
Related literature
For background information including pharmacological studies, see: Chiu & Huskey (1998); Clemons et al. (2004); Dalloul & Boyle (2006); Eliott et al. (1986); Griffin & Mannion (1986); Santen (2003); Tanaka (1974); Zamani et al. (2003). Related structures have been reported by Ustabaş et al. (2006, 2007, 2009); Ünver et al. (2008, 2009); Çoruh et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810037311/pk2267sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810037311/pk2267Isup2.hkl
The synthesis of 4,4'-(hexane-1,6-diyl)bis (5-ethyl-2H-1,2,4-triazol-3(4H)-one) to a solution of ethyl 2 (1-ethoxyethylidene)hydrazinecarboxylate (0.02 mol) in 50 ml water hexane-1,6-diamine (0.01 mol) was added. Having refluxed this mixture for 4 h the precipitate formed was filtered off. The solid product was washed with water and crystallized from ethanol/water (1/3)(yield 73.25%) to afford the desired compound.
All H atoms were located in a difference synthesis and refined [N—H = 0.902 (19) Å; ethylene C—H = 0.945 (18) Å-1.017 (18) Å; and methylene C—H= 0.952 Å-1.00 (2) Å].
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H20N6O2 | Z = 1 |
Mr = 280.34 | F(000) = 150 |
Triclinic, P1 | Dx = 1.377 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3641 (2) Å | Cell parameters from 1309 reflections |
b = 7.3034 (2) Å | θ = 2.8–28.3° |
c = 7.7774 (2) Å | µ = 0.10 mm−1 |
α = 93.299 (2)° | T = 101 K |
β = 109.578 (2)° | Rod-shaped, colorless |
γ = 94.707 (2)° | 0.40 × 0.16 × 0.12 mm |
V = 338.05 (2) Å3 |
Bruker Kappa APEXII CCD area-detector diffractometer | 1673 independent reflections |
Radiation source: fine-focus sealed tube | 1309 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −8→8 |
Tmin = 0.962, Tmax = 0.988 | k = −9→9 |
6074 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.062P)2 + 0.0594P] where P = (Fo2 + 2Fc2)/3 |
1673 reflections | (Δ/σ)max < 0.001 |
131 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C12H20N6O2 | γ = 94.707 (2)° |
Mr = 280.34 | V = 338.05 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.3641 (2) Å | Mo Kα radiation |
b = 7.3034 (2) Å | µ = 0.10 mm−1 |
c = 7.7774 (2) Å | T = 101 K |
α = 93.299 (2)° | 0.40 × 0.16 × 0.12 mm |
β = 109.578 (2)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 1673 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1309 reflections with I > 2σ(I) |
Tmin = 0.962, Tmax = 0.988 | Rint = 0.033 |
6074 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.112 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.32 e Å−3 |
1673 reflections | Δρmin = −0.28 e Å−3 |
131 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.49741 (15) | 0.02539 (13) | 0.76514 (13) | 0.0199 (3) | |
N1 | 0.84928 (18) | 0.18555 (15) | 0.81036 (15) | 0.0159 (3) | |
N2 | 0.98018 (18) | 0.22436 (15) | 1.11442 (15) | 0.0183 (3) | |
N3 | 0.76344 (18) | 0.13460 (15) | 1.04956 (15) | 0.0173 (3) | |
C1 | 0.6815 (2) | 0.10507 (17) | 0.86549 (18) | 0.0162 (3) | |
C2 | 0.8354 (2) | 0.1878 (2) | 0.61861 (18) | 0.0189 (3) | |
C3 | 0.7642 (2) | 0.36813 (19) | 0.54057 (19) | 0.0202 (3) | |
C4 | 0.5280 (2) | 0.40487 (19) | 0.53108 (19) | 0.0193 (3) | |
C5 | 1.0248 (2) | 0.25341 (17) | 0.96590 (18) | 0.0166 (3) | |
C6 | 1.2408 (2) | 0.3456 (2) | 0.9639 (2) | 0.0207 (3) | |
H21 | 0.981 (3) | 0.163 (2) | 0.609 (2) | 0.019 (4)* | |
H61 | 1.220 (3) | 0.461 (3) | 0.914 (2) | 0.030 (4)* | |
H32 | 0.772 (3) | 0.361 (2) | 0.415 (2) | 0.025 (4)* | |
H41 | 0.512 (3) | 0.397 (2) | 0.655 (2) | 0.018 (4)* | |
H31 | 0.876 (3) | 0.476 (2) | 0.614 (2) | 0.028 (4)* | |
H42 | 0.414 (3) | 0.309 (2) | 0.446 (2) | 0.022 (4)* | |
H22 | 0.732 (3) | 0.087 (2) | 0.551 (2) | 0.025 (4)* | |
H3 | 0.696 (3) | 0.089 (2) | 1.125 (3) | 0.036 (5)* | |
H62 | 1.310 (3) | 0.273 (3) | 0.887 (3) | 0.035 (5)* | |
H63 | 1.348 (3) | 0.368 (3) | 1.093 (3) | 0.041 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0140 (5) | 0.0240 (5) | 0.0184 (5) | −0.0042 (4) | 0.0030 (4) | 0.0004 (4) |
N1 | 0.0126 (6) | 0.0162 (6) | 0.0181 (6) | 0.0005 (4) | 0.0043 (5) | 0.0024 (4) |
N2 | 0.0123 (6) | 0.0186 (6) | 0.0213 (6) | −0.0005 (4) | 0.0028 (5) | 0.0012 (4) |
N3 | 0.0127 (6) | 0.0192 (6) | 0.0183 (6) | −0.0006 (4) | 0.0035 (5) | 0.0026 (4) |
C1 | 0.0134 (6) | 0.0150 (6) | 0.0197 (7) | 0.0028 (5) | 0.0047 (5) | 0.0025 (5) |
C2 | 0.0156 (7) | 0.0230 (7) | 0.0169 (7) | −0.0009 (6) | 0.0049 (5) | −0.0001 (5) |
C3 | 0.0163 (7) | 0.0237 (7) | 0.0202 (7) | −0.0017 (6) | 0.0065 (6) | 0.0039 (6) |
C4 | 0.0160 (7) | 0.0213 (7) | 0.0184 (7) | −0.0029 (5) | 0.0039 (6) | 0.0035 (5) |
C5 | 0.0130 (6) | 0.0153 (6) | 0.0198 (7) | 0.0033 (5) | 0.0028 (5) | 0.0018 (5) |
C6 | 0.0131 (7) | 0.0208 (7) | 0.0261 (8) | −0.0005 (5) | 0.0045 (6) | 0.0021 (6) |
O1—C1 | 1.2421 (16) | C3—C4 | 1.5271 (19) |
N1—C5 | 1.3751 (17) | C3—H32 | 0.991 (16) |
N1—C1 | 1.3794 (16) | C3—H31 | 1.017 (18) |
N1—C2 | 1.4653 (16) | C4—C4i | 1.528 (3) |
N2—C5 | 1.3031 (17) | C4—H41 | 1.007 (15) |
N2—N3 | 1.3907 (15) | C4—H42 | 1.000 (17) |
N3—C1 | 1.3467 (18) | C5—C6 | 1.4856 (19) |
N3—H3 | 0.902 (19) | C6—H61 | 0.952 (18) |
C2—C3 | 1.521 (2) | C6—H62 | 1.006 (18) |
C2—H21 | 0.985 (15) | C6—H63 | 1.00 (2) |
C2—H22 | 0.945 (18) | ||
C5—N1—C1 | 107.39 (11) | C2—C3—H31 | 110.3 (10) |
C5—N1—C2 | 128.60 (11) | C4—C3—H31 | 109.3 (9) |
C1—N1—C2 | 123.98 (11) | H32—C3—H31 | 107.2 (13) |
C5—N2—N3 | 103.79 (11) | C3—C4—C4i | 112.27 (14) |
C1—N3—N2 | 112.63 (11) | C3—C4—H41 | 110.2 (9) |
C1—N3—H3 | 124.9 (12) | C4i—C4—H41 | 108.2 (8) |
N2—N3—H3 | 122.0 (12) | C3—C4—H42 | 110.5 (9) |
O1—C1—N3 | 128.98 (12) | C4i—C4—H42 | 109.0 (9) |
O1—C1—N1 | 126.86 (12) | H41—C4—H42 | 106.5 (13) |
N3—C1—N1 | 104.16 (11) | N2—C5—N1 | 111.99 (11) |
N1—C2—C3 | 112.31 (11) | N2—C5—C6 | 124.26 (13) |
N1—C2—H21 | 108.9 (9) | N1—C5—C6 | 123.74 (12) |
C3—C2—H21 | 111.3 (9) | C5—C6—H61 | 110.6 (10) |
N1—C2—H22 | 107.6 (10) | C5—C6—H62 | 113.5 (10) |
C3—C2—H22 | 110.7 (10) | H61—C6—H62 | 105.9 (14) |
H21—C2—H22 | 105.8 (13) | C5—C6—H63 | 108.9 (11) |
C2—C3—C4 | 114.14 (11) | H61—C6—H63 | 108.3 (15) |
C2—C3—H32 | 106.5 (9) | H62—C6—H63 | 109.6 (14) |
C4—C3—H32 | 109.1 (9) | ||
C5—N2—N3—C1 | 1.87 (14) | N1—C2—C3—C4 | −64.04 (15) |
N2—N3—C1—O1 | 178.11 (12) | C2—C3—C4—C4i | 174.64 (14) |
N2—N3—C1—N1 | −2.33 (14) | N3—N2—C5—N1 | −0.58 (14) |
C5—N1—C1—O1 | −178.57 (12) | N3—N2—C5—C6 | −179.47 (12) |
C2—N1—C1—O1 | −0.5 (2) | C1—N1—C5—N2 | −0.81 (15) |
C5—N1—C1—N3 | 1.86 (13) | C2—N1—C5—N2 | −178.77 (12) |
C2—N1—C1—N3 | 179.93 (11) | C1—N1—C5—C6 | 178.09 (12) |
C5—N1—C2—C3 | −84.62 (16) | C2—N1—C5—C6 | 0.1 (2) |
C1—N1—C2—C3 | 97.73 (14) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1ii | 0.90 (2) | 1.89 (2) | 2.7707 (15) | 167 (2) |
Symmetry code: (ii) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C12H20N6O2 |
Mr | 280.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 101 |
a, b, c (Å) | 6.3641 (2), 7.3034 (2), 7.7774 (2) |
α, β, γ (°) | 93.299 (2), 109.578 (2), 94.707 (2) |
V (Å3) | 338.05 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.40 × 0.16 × 0.12 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.962, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6074, 1673, 1309 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.112, 1.03 |
No. of reflections | 1673 |
No. of parameters | 131 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.32, −0.28 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.90 (2) | 1.89 (2) | 2.7707 (15) | 167 (2) |
Symmetry code: (i) −x+1, −y, −z+2. |
References
Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chiu, S.-H. L. & Huskey, S. E. W. (1998). Drug Metabol. Dispos. 26, 838–847. CAS Google Scholar
Clemons, M., Colemon, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332. Web of Science CrossRef PubMed CAS Google Scholar
Çoruh, U., Ustabaş, R., Sancak, K., Şaşmaz, S., Ağar, E. & Kim, Y. (2003). Acta Cryst. E59, o1277–o1279. CSD CrossRef IUCr Journals Google Scholar
Dalloul, H. & Boyle, P. (2006). Turk. J. Chem. 30, 119–124. CAS Google Scholar
Eliott, R., Sunley, R. L. & Griffin, D. A. (1986). UK Patent Appl. GB 2, 175. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Griffin, D. A. & Mannion, S. K. (1986). Eur. Patent Appl. EP 199, 474. Google Scholar
Santen, J. R. (2003). Steroids, 68, 559–567. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanaka, G. (1974). Japan Kokai, 973, 7495. Google Scholar
Ünver, Y., Düğdu, E., Sancak, K., Er, M. & Karaoğlu, Ş. A. (2008). Turk. J. Chem. 32, 441–455. Google Scholar
Ünver, Y., Düğdu, E., Sancak, K., Er, M. & Karaoğlu, Ş. A. (2009). Turk. J. Chem. 33, 135–147. Google Scholar
Ustabaş, R., Çoruh, U., Sancak, K. & Demirkan, E. (2007). Acta Cryst. E63, o3443. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ustabaş, R., Çoruh, U., Sancak, K., Düg~dü, E. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o4265–o4267. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ustabaş, R., Ünver, Y., Suleymanoğlu, N., Çoruh, U. & Sancak, K. (2009). Acta Cryst. E65, o1006–o1007. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zamani, K., Faghihi, K., Reza Sangi, M. & Zolgharnein, J. (2003). Turk. J. Chem. 27, 119–126. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 1,2,4-triazole compounds possess important pharmacological activities that include antifungal and antiviral properties. Examples of compounds bearing the 1,2,4-triazole group are fluconazole, the powerful azole antifungal agent as well as the potent antiviral N– nucleoside ribavirin (Ünver et al., 2008; Ünver et al., 2009). Furthermore, various 1,2,4-triazole derivatives have been reported as fungicidal (Zamani et al., 2003), insecticidal (Tanaka, 1974), antimicrobial (Griffin & Mannion, 1986), and some showed antitumor activity as well as having anticonvulsant (Dalloul & Boyle, 2006), antidepressant (Chiu & Huskey, 1998) and plant growth regulator anticoagulant activity (Eliott et al., 1986). It was reported that compounds having triazole moieties, such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatase inhibitors and can be useful for preventing breast cancer (Santen, 2003; Clemons et al., 2004).
The molecular structure of the compound is shown in Fig.1. The molecule consists of two triazole rings, joined by an aliphatic —(CH2)6— chain connected to nitrogen atoms of the rings. The molecule has an inversion center in the middle of the chain, that connects the triazole rings. The length of the N═C [N2═C5= 1.3031 (17) Å] bond in the triazole ring is close to the those similar structures in the literature [1.296 (3)Å in C14H16N6O2S (Ustabaş et al., 2007); 1.288 (2)Å in C16H28N6O2 (Çoruh et al., 2003)]. The bond length of O═C [O1═C1= 1.2421 (16) Å] is in conformity with the values mentioned before[1.218 (3)Å in C16H20N6O2S (Ustabaş et al., 2006); 1.220 (2)Å in C24H20N4O2S (Ustabaş et al., 2009)]. The triazole ring is very close to planarity, with a maximum deviation from the least-squares plane of -0.014 (13)Å for atom C1.
In the crystal structure of the compound, there is a strong intermolecular N3—H3···O1 hydrogen-bonding interaction (Table 1). The compound also exhibits π-π stacking interactions between triazole rings (Cg1···Cg1= 3.277 (8) Å; symmetry code: –X, 2-Y, –Z).