metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1230-m1231

catena-Poly[(μ2-3-carb­­oxy-5-nitro­benzoato)(μ3-5-nitro­benzene-1,3-di­carboxyl­ato)(1,10-phenanthroline)gadolinium(III)]

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China, and bSchool of Basic Science, East China Jiaotong University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 19 August 2010; accepted 2 September 2010; online 8 September 2010)

The crystal structure of the title complex, [Gd(C8H3NO6)(C8H4NO6)(C12H8N2)]n, contains polymeric chains made up of GdIII atoms, 1,10-phenanthroline and fully or half-deproton­ated 5-nitro­benzene-1,3-dicarb­oxy­lic acid (H2L) ligands. The GdIII atom is coordinated in a distorted bicapped trigonal-prismatic fashion by six O atoms from two HL and three L2− ligands, and by two N atoms from the 1,10-phenanthroline ligand. The L2− ligands bridge the Gd–phenanthroline units, forming chains running parallel to [100]. O—H⋯O hydrogen bonding as well as ππ stacking inter­actions with an inter­planar distance of 3.599 (2) Å assemble neighboring polymeric chains.

Related literature

For background to ππ stacking in biological systems, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]). For some crystal structures of metal complexes exhibiting ππ stacking, see: Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]); Pan & Xu (2004[Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.]); Wu et al. (2003[Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809-m811.]); Qiu et al. (2009[Qiu, Y.-C., Deng, H., Yang, S.-H., Mou, J.-X., Daiguebonne, C., Kerbellec, N., Guillou, O. & Batten, S. R. (2009). Inorg. Chem. 48, 3976-3981.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd(C8H3NO6)(C8H4NO6)(C12H8N2)]

  • Mr = 756.69

  • Triclinic, [P \overline 1]

  • a = 10.300 (3) Å

  • b = 12.030 (3) Å

  • c = 12.150 (3) Å

  • α = 70.581 (4)°

  • β = 85.925 (4)°

  • γ = 76.512 (2)°

  • V = 1380.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 298 K

  • 0.28 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.544, Tmax = 0.612

  • 6876 measured reflections

  • 4837 independent reflections

  • 4259 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.04

  • 4837 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 2.51 e Å−3

  • Δρmin = −2.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O7i 0.82 2.03 2.737 (7) 145
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we became interested in the nature of ππ stacking as it plays an important role in some biological processes (Deisenhofer & Michel, 1989). A series of metal complexes incorporating different aromatic ligands has been prepared and their crystal structures provide useful information about ππ stacking (Wu et al., 2003; Pan & Xu, 2004; Li et al., 2005 Qiu et al., 2009). As part of our ongoing investigations, the title complex, (I), incorporating 1,10-phenanthroline, has been prepared.

As depicted in Fig. 1, the GdIII atom has a distorted bicapped trigonal-prismatic coordination, defined by six O atoms from two 1-carboxy-5-nitro-3-benzoate (HL-, where L is 5-nitro-1,3-benzenedicarboxyic acid) and three 5-nitro-1,3-benzenedicarboxylate ligands (L2-), and two N atoms from the 1,10-phenanthroline ligand. The L2- ligands link Gd-phenanthroline moieties, forming an infinite polymeric chain running along [100]. The HL- and L2- ligands in this complex have two different coordination modes: the first ligand uses one of its carboxylate groups to link one GdIII ions in a chelating coordination mode, the other carboxylate group links two GdIII ions in a bis-monodentate coordination mode, whereas the other ligand uses its carboxylate groups to link two GdIII ions in a bridging coordination mode. In the chain, the closest Gd···Gd separation is 4.333 (3) Å. These chains interact with each other by ππ stacking of adjacent phenanthroline groups (interplanar distance of 3.599 (2) Å). O—H···O hydrogen bonding interactions between carboxyl and carboxylate groups of neighbouring ligands help to consolidate the structure (Table 1; Fig. 2).

Related literature top

For background to ππ stacking in biological systems, see: Deisenhofer & Michel (1989). For some crystal structures of metal complexes exhibiting ππ stacking, see: Li et al. (2005); Pan & Xu (2004); Wu et al. (2003); Qiu et al. (2009).

Experimental top

A sample of Gd2O3 (0.0732 g, 0.20 mmol), 5-nitro-1,3-benzenedicarboxylic acid (0.1015 g, 0.50 mmol), 1,10-phenanthroline (0.0991 g, 0.50 mmol) and distilled water (8 ml) were mixed in a Teflon-lined stainless steel vessel with 15 ml capacity. The mixture was heated under autogenous pressure at 393 K for 48 h and cooled slowly to room temperature.

Refinement top

The C— and O—bound H atoms were included in the riding-model approximation, with C—H = 0.97 Å and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq (O). The highest and the deepest hole the final difference Fourier map are located 1.03 and 1.05 Å, respectively, from the Gd1 atom.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of (I), showing the coordination of the Gd atom with the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids, H atoms as spheres of arbitrary radius. [Symmetry codes: (i) 2 - x, -y, 1 - z; (ii) 1 - x, y, 1 - z; (iii) 1 + x, y, z.]
[Figure 2] Fig. 2. View of ππ interactions consolidating the three-dimensional network of (I).
catena-Poly[(µ2-3-carboxy-5-nitrobenzoato)(µ3-5-nitrobenzene- 1,3-dicarboxylato)(1,10-phenanthroline)gadolinium(III)] top
Crystal data top
[Gd(C8H3NO6)(C8H4NO6)(C12H8N2)]Z = 2
Mr = 756.69F(000) = 742
Triclinic, P1Dx = 1.820 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.300 (3) ÅCell parameters from 5111 reflections
b = 12.030 (3) Åθ = 2.6–27.7°
c = 12.150 (3) ŵ = 2.48 mm1
α = 70.581 (4)°T = 298 K
β = 85.925 (4)°Prism, colorless
γ = 76.512 (2)°0.28 × 0.26 × 0.22 mm
V = 1380.6 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4860 independent reflections
Radiation source: fine-focus sealed tube4259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scanθmax = 25.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.544, Tmax = 0.612k = 1314
6896 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0811P)2]
where P = (Fo2 + 2Fc2)/3
4837 reflections(Δ/σ)max < 0.001
407 parametersΔρmax = 2.51 e Å3
0 restraintsΔρmin = 2.59 e Å3
Crystal data top
[Gd(C8H3NO6)(C8H4NO6)(C12H8N2)]γ = 76.512 (2)°
Mr = 756.69V = 1380.6 (7) Å3
Triclinic, P1Z = 2
a = 10.300 (3) ÅMo Kα radiation
b = 12.030 (3) ŵ = 2.48 mm1
c = 12.150 (3) ÅT = 298 K
α = 70.581 (4)°0.28 × 0.26 × 0.22 mm
β = 85.925 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4860 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4259 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.612Rint = 0.030
6896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 2.51 e Å3
4837 reflectionsΔρmin = 2.59 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0366 (7)0.0929 (6)0.6625 (5)0.0330 (14)
C21.0511 (6)0.1117 (6)0.7766 (5)0.0308 (13)
C31.1673 (7)0.0513 (6)0.8416 (6)0.0407 (16)
H31.23710.00400.81320.049*
C41.1762 (8)0.0635 (7)0.9504 (6)0.0465 (18)
C51.0753 (7)0.1320 (6)0.9960 (6)0.0423 (16)
H51.08410.13781.06940.051*
C60.9615 (7)0.1914 (7)0.9309 (6)0.0419 (16)
C70.9488 (7)0.1835 (6)0.8200 (6)0.0374 (15)
H70.87230.22610.77550.045*
C80.8451 (9)0.2616 (8)0.9788 (7)0.057 (2)
C90.5970 (6)0.1875 (6)0.3097 (5)0.0292 (13)
C100.4627 (6)0.2185 (5)0.2498 (5)0.0270 (12)
C110.4353 (6)0.3072 (6)0.1421 (5)0.0321 (13)
H110.50130.34400.09950.039*
C120.3063 (6)0.3388 (6)0.1007 (5)0.0328 (14)
C130.2038 (6)0.2870 (6)0.1622 (5)0.0314 (13)
H130.11690.31280.13310.038*
C140.2355 (6)0.1959 (5)0.2679 (5)0.0256 (12)
C150.3643 (6)0.1606 (5)0.3105 (5)0.0279 (12)
H150.38580.09760.38040.033*
C170.5715 (9)0.1824 (8)0.6347 (8)0.061 (2)
H170.56630.10880.62800.073*
C180.4954 (10)0.2208 (11)0.7209 (9)0.085 (4)
H180.44240.17270.77040.103*
C190.4993 (10)0.3254 (11)0.7313 (9)0.081 (3)
H190.44840.35190.78780.097*
C200.5823 (9)0.3984 (9)0.6552 (8)0.064 (3)
C210.5923 (12)0.5114 (12)0.6605 (11)0.091 (4)
H210.54190.54200.71480.109*
C220.6719 (14)0.5746 (11)0.5897 (12)0.096 (4)
H220.67810.64760.59730.115*
C230.7507 (11)0.5337 (9)0.4998 (10)0.074 (3)
C240.8317 (13)0.5984 (10)0.4198 (12)0.095 (4)
H240.84090.67220.42340.114*
C250.8966 (12)0.5558 (9)0.3378 (11)0.088 (3)
H250.95080.59910.28430.106*
C260.8809 (9)0.4432 (7)0.3339 (8)0.057 (2)
H260.92400.41510.27530.068*
C270.7400 (8)0.4227 (7)0.4915 (7)0.0451 (18)
C280.6557 (7)0.3526 (7)0.5716 (6)0.0447 (18)
Gd10.82752 (3)0.14792 (3)0.44144 (2)0.02604 (13)
N11.2997 (8)0.0016 (8)1.0209 (7)0.072 (2)
N20.2724 (6)0.4320 (6)0.0147 (5)0.0500 (16)
N30.6506 (6)0.2452 (5)0.5622 (5)0.0448 (15)
N40.8089 (6)0.3768 (5)0.4088 (5)0.0414 (14)
O10.9505 (5)0.1690 (4)0.5913 (4)0.0412 (11)
O21.1124 (5)0.0033 (5)0.6459 (4)0.0466 (12)
O31.3864 (8)0.0642 (9)0.9807 (8)0.118 (4)
O41.3055 (9)0.0089 (8)1.1154 (7)0.113 (3)
O50.8641 (6)0.2486 (6)1.0881 (5)0.0647 (16)
H5A0.79310.27351.11640.097*
O60.7481 (8)0.3226 (11)0.9241 (7)0.140 (5)
O70.6825 (4)0.2498 (4)0.2637 (4)0.0335 (10)
O80.6158 (4)0.1067 (4)0.4063 (4)0.0413 (11)
O90.3605 (6)0.4789 (5)0.0694 (5)0.0593 (15)
O100.1591 (7)0.4607 (8)0.0498 (6)0.103 (3)
C160.1297 (6)0.1363 (6)0.3374 (5)0.0300 (13)
O110.0114 (4)0.1968 (4)0.3252 (4)0.0421 (11)
O120.1665 (5)0.0297 (4)0.4038 (4)0.0448 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (4)0.044 (4)0.022 (3)0.013 (3)0.002 (3)0.014 (3)
C20.039 (4)0.037 (3)0.020 (3)0.010 (3)0.004 (3)0.012 (3)
C30.039 (4)0.048 (4)0.032 (4)0.001 (3)0.007 (3)0.013 (3)
C40.047 (4)0.059 (5)0.030 (4)0.007 (3)0.014 (3)0.010 (3)
C50.055 (4)0.052 (4)0.023 (3)0.011 (3)0.004 (3)0.016 (3)
C60.049 (4)0.053 (4)0.025 (4)0.010 (3)0.001 (3)0.016 (3)
C70.043 (4)0.052 (4)0.020 (3)0.010 (3)0.002 (3)0.014 (3)
C80.055 (5)0.080 (6)0.041 (5)0.001 (4)0.000 (4)0.038 (4)
C90.019 (3)0.044 (4)0.024 (3)0.006 (2)0.001 (2)0.012 (3)
C100.020 (3)0.039 (3)0.021 (3)0.005 (2)0.000 (2)0.009 (3)
C110.025 (3)0.045 (4)0.024 (3)0.011 (3)0.004 (2)0.006 (3)
C120.038 (4)0.041 (3)0.017 (3)0.015 (3)0.000 (3)0.002 (3)
C130.024 (3)0.046 (4)0.024 (3)0.007 (3)0.001 (2)0.011 (3)
C140.023 (3)0.035 (3)0.019 (3)0.008 (2)0.001 (2)0.008 (2)
C150.027 (3)0.036 (3)0.019 (3)0.006 (2)0.002 (2)0.006 (3)
C170.054 (5)0.060 (5)0.057 (6)0.004 (4)0.025 (4)0.014 (4)
C180.073 (7)0.093 (8)0.062 (7)0.011 (6)0.037 (5)0.014 (6)
C190.070 (7)0.101 (8)0.052 (6)0.010 (6)0.029 (5)0.024 (6)
C200.065 (6)0.072 (6)0.053 (5)0.019 (4)0.007 (4)0.039 (5)
C210.084 (8)0.117 (10)0.088 (9)0.001 (7)0.008 (7)0.071 (8)
C220.113 (10)0.080 (7)0.116 (10)0.008 (7)0.021 (8)0.075 (8)
C230.089 (7)0.057 (5)0.079 (7)0.002 (5)0.022 (6)0.033 (5)
C240.114 (10)0.056 (6)0.128 (11)0.026 (6)0.008 (8)0.039 (7)
C250.106 (9)0.049 (5)0.099 (9)0.029 (5)0.006 (7)0.004 (6)
C260.072 (6)0.041 (4)0.050 (5)0.014 (4)0.002 (4)0.006 (4)
C270.047 (4)0.041 (4)0.047 (5)0.002 (3)0.015 (4)0.019 (3)
C280.038 (4)0.054 (5)0.036 (4)0.004 (3)0.005 (3)0.017 (4)
Gd10.02026 (18)0.0381 (2)0.01841 (18)0.00571 (12)0.00062 (11)0.00808 (13)
N10.068 (5)0.094 (6)0.053 (5)0.011 (4)0.035 (4)0.034 (4)
N20.049 (4)0.065 (4)0.023 (3)0.016 (3)0.006 (3)0.006 (3)
N30.041 (3)0.051 (4)0.036 (3)0.003 (3)0.011 (3)0.017 (3)
N40.046 (3)0.042 (3)0.030 (3)0.004 (3)0.002 (3)0.007 (3)
O10.052 (3)0.048 (3)0.026 (2)0.009 (2)0.013 (2)0.014 (2)
O20.043 (3)0.059 (3)0.046 (3)0.004 (2)0.002 (2)0.031 (3)
O30.082 (5)0.163 (8)0.098 (6)0.055 (6)0.056 (5)0.072 (6)
O40.113 (6)0.153 (8)0.066 (5)0.039 (6)0.060 (5)0.058 (5)
O50.060 (4)0.104 (5)0.033 (3)0.009 (3)0.009 (3)0.035 (3)
O60.092 (6)0.236 (11)0.086 (6)0.077 (7)0.041 (5)0.112 (7)
O70.027 (2)0.044 (2)0.024 (2)0.0110 (18)0.0016 (18)0.0002 (19)
O80.026 (2)0.056 (3)0.030 (3)0.014 (2)0.0062 (19)0.006 (2)
O90.060 (4)0.069 (4)0.031 (3)0.023 (3)0.008 (3)0.012 (3)
O100.065 (5)0.137 (7)0.063 (5)0.040 (4)0.032 (4)0.044 (4)
C160.032 (3)0.045 (4)0.014 (3)0.013 (3)0.001 (2)0.009 (3)
O110.026 (2)0.056 (3)0.040 (3)0.012 (2)0.008 (2)0.010 (2)
O120.040 (3)0.054 (3)0.032 (3)0.021 (2)0.005 (2)0.004 (2)
Geometric parameters (Å, º) top
C1—O21.242 (8)C19—H190.9300
C1—O11.256 (8)C20—C281.405 (10)
C1—C21.500 (8)C20—C211.411 (16)
C2—C31.390 (9)C21—C221.322 (18)
C2—C71.391 (9)C21—H210.9300
C3—C41.390 (10)C22—C231.463 (16)
C3—H30.9300C22—H220.9300
C4—C51.374 (10)C23—C241.391 (16)
C4—N11.487 (10)C23—C271.402 (12)
C5—C61.370 (10)C24—C251.338 (16)
C5—H50.9300C24—H240.9300
C6—C71.399 (9)C25—C261.417 (13)
C6—C81.498 (10)C25—H250.9300
C7—H70.9300C26—N41.309 (10)
C8—O61.187 (10)C26—H260.9300
C8—O51.308 (9)C27—N41.380 (9)
C9—O81.243 (8)C27—C281.445 (11)
C9—O71.268 (7)C28—N31.348 (9)
C9—C101.519 (8)Gd1—O12i2.322 (5)
C10—C111.383 (9)Gd1—O2ii2.342 (4)
C10—C151.392 (8)Gd1—O11iii2.349 (4)
C11—C121.376 (9)Gd1—O12.403 (4)
C11—H110.9300Gd1—O82.442 (4)
C12—C131.396 (9)Gd1—O72.499 (4)
C12—N21.479 (8)Gd1—N32.571 (5)
C13—C141.383 (9)Gd1—N42.611 (6)
C13—H130.9300N1—O41.204 (9)
C14—C151.378 (8)N1—O31.214 (10)
C14—C161.498 (8)N2—O101.204 (9)
C15—H150.9300N2—O91.220 (8)
C17—N31.324 (11)O2—Gd1ii2.342 (4)
C17—C181.401 (12)O5—H5A0.8200
C17—H170.9300C16—O121.252 (8)
C18—C191.316 (16)C16—O111.257 (7)
C18—H180.9300O11—Gd1iv2.349 (4)
C19—C201.434 (15)O12—Gd1i2.322 (5)
O2—C1—O1125.4 (6)C25—C24—C23120.8 (10)
O2—C1—C2116.8 (6)C25—C24—H24119.6
O1—C1—C2117.8 (6)C23—C24—H24119.6
C3—C2—C7120.1 (6)C24—C25—C26118.6 (10)
C3—C2—C1118.6 (6)C24—C25—H25120.7
C7—C2—C1121.3 (6)C26—C25—H25120.7
C4—C3—C2118.1 (6)N4—C26—C25123.3 (9)
C4—C3—H3121.0N4—C26—H26118.3
C2—C3—H3121.0C25—C26—H26118.3
C5—C4—C3122.9 (7)N4—C27—C23121.9 (9)
C5—C4—N1118.7 (6)N4—C27—C28118.2 (6)
C3—C4—N1118.4 (7)C23—C27—C28119.9 (8)
C6—C5—C4118.5 (6)N3—C28—C20122.7 (8)
C6—C5—H5120.8N3—C28—C27118.0 (6)
C4—C5—H5120.8C20—C28—C27119.4 (8)
C5—C6—C7120.7 (7)O12i—Gd1—O2ii76.27 (19)
C5—C6—C8120.9 (6)O12i—Gd1—O11iii124.82 (17)
C7—C6—C8118.3 (7)O2ii—Gd1—O11iii76.07 (18)
C2—C7—C6119.7 (6)O12i—Gd1—O175.73 (17)
C2—C7—H7120.1O2ii—Gd1—O1126.15 (17)
C6—C7—H7120.1O11iii—Gd1—O183.73 (17)
O6—C8—O5124.0 (7)O12i—Gd1—O880.85 (15)
O6—C8—C6124.2 (7)O2ii—Gd1—O875.42 (17)
O5—C8—C6111.8 (7)O11iii—Gd1—O8134.60 (16)
O8—C9—O7122.3 (5)O1—Gd1—O8141.63 (17)
O8—C9—C10118.4 (5)O12i—Gd1—O7132.49 (15)
O7—C9—C10119.1 (5)O2ii—Gd1—O781.73 (16)
C11—C10—C15120.8 (5)O11iii—Gd1—O788.64 (15)
C11—C10—C9121.4 (5)O1—Gd1—O7147.63 (16)
C15—C10—C9117.6 (5)O8—Gd1—O752.84 (14)
C12—C11—C10117.3 (6)O12i—Gd1—N384.99 (19)
C12—C11—H11121.4O2ii—Gd1—N3145.6 (2)
C10—C11—H11121.4O11iii—Gd1—N3137.47 (19)
C11—C12—C13123.4 (6)O1—Gd1—N374.72 (18)
C11—C12—N2119.3 (6)O8—Gd1—N373.32 (19)
C13—C12—N2117.3 (6)O7—Gd1—N390.53 (17)
C14—C13—C12117.9 (6)O12i—Gd1—N4138.41 (18)
C14—C13—H13121.1O2ii—Gd1—N4144.26 (19)
C12—C13—H13121.1O11iii—Gd1—N474.83 (18)
C15—C14—C13120.1 (5)O1—Gd1—N470.35 (17)
C15—C14—C16119.7 (5)O8—Gd1—N4112.27 (17)
C13—C14—C16120.2 (5)O7—Gd1—N477.29 (16)
C14—C15—C10120.5 (6)N3—Gd1—N463.6 (2)
C14—C15—H15119.8O4—N1—O3124.4 (8)
C10—C15—H15119.8O4—N1—C4117.7 (8)
N3—C17—C18123.5 (10)O3—N1—C4117.9 (7)
N3—C17—H17118.2O10—N2—O9122.6 (6)
C18—C17—H17118.2O10—N2—C12119.1 (6)
C19—C18—C17119.6 (10)O9—N2—C12118.3 (6)
C19—C18—H18120.2C17—N3—C28117.6 (6)
C17—C18—H18120.2C17—N3—Gd1121.2 (5)
C18—C19—C20119.8 (8)C28—N3—Gd1119.7 (5)
C18—C19—H19120.1C26—N4—C27117.6 (7)
C20—C19—H19120.1C26—N4—Gd1124.1 (5)
C28—C20—C21119.8 (10)C27—N4—Gd1116.9 (5)
C28—C20—C19116.8 (9)C1—O1—Gd1130.5 (4)
C21—C20—C19123.4 (9)C1—O2—Gd1ii153.7 (4)
C22—C21—C20121.3 (10)C8—O5—H5A109.5
C22—C21—H21119.4C9—O7—Gd190.7 (3)
C20—C21—H21119.4C9—O8—Gd194.0 (4)
C21—C22—C23122.2 (10)O12—C16—O11124.9 (6)
C21—C22—H22118.9O12—C16—C14117.3 (5)
C23—C22—H22118.9O11—C16—C14117.8 (6)
C24—C23—C27117.7 (10)C16—O11—Gd1iv127.2 (4)
C24—C23—C22124.9 (10)C16—O12—Gd1i161.3 (4)
C27—C23—C22117.4 (11)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O7v0.822.032.737 (7)145
Symmetry code: (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Gd(C8H3NO6)(C8H4NO6)(C12H8N2)]
Mr756.69
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.300 (3), 12.030 (3), 12.150 (3)
α, β, γ (°)70.581 (4), 85.925 (4), 76.512 (2)
V3)1380.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.28 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.544, 0.612
No. of measured, independent and
observed [I > 2σ(I)] reflections
6896, 4860, 4259
Rint0.030
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.04
No. of reflections4837
No. of parameters407
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.51, 2.59

Computer programs: SMART (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O7i0.822.032.737 (7)144.7
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported financially by Zhongshan Polytechnic.

References

First citationBruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.  CSD CrossRef IUCr Journals Google Scholar
First citationQiu, Y.-C., Deng, H., Yang, S.-H., Mou, J.-X., Daiguebonne, C., Kerbellec, N., Guillou, O. & Batten, S. R. (2009). Inorg. Chem. 48, 3976–3981.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1230-m1231
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds