organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{5-[4-(Hex­yl­oxy)phen­yl]-3-phenyl-4,5-di­hydro-1H-pyrazol-1-yl}ethanone

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Forensic Medicine & Toxicology, National University of Sciences & Technology, Islamabad, Pakistan, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: profazmi@hotmail.com

(Received 13 August 2010; accepted 23 August 2010; online 4 September 2010)

The crystal structure of the title compound, C23H28N2O2, is composed of discrete mol­ecules with bond lengths and angles quite typical for pyrazoline derivatives of this class. The plane containing the pyrazoline unit is nearly planar with the mean plane of the phenyl ring at the 3-position, making a dihedral angle of 1.96 (3)°. The crystal packing is stabilized by weak C—H⋯π inter­actions involving both of the aromatic rings.

Related literature

For the biological activity and pharmacological properties of 2-pyrazoline derivatives, see: Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. Lett. 12, 2105-2108.]); Dhal et al. (1975[Dhal, P. N., Acharya, T. E. & Nayak, A. (1975). J. Indian Chem. Soc. 52, 1196-1200.]); Regaila et al. (1979[Regaila, H. A., El-Bayonk, A. K. & Hammad, M. (1979). Egypt. J. Chem. 20, 197-202.]); Rathish et al. (2009[Rathish, I. G., Kalim, J., Shamim, A., Sameena, B., Alam, M. S., Pillai, K. K., Surender, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255-258.]); Subbaramaiah et al. (2002[Subbaramaiah, K., Norton, L., Gerald, W. & Dannenberg, A. J. (2002). J. Biol. Chem. 277, 18649-18659.]); Manna et al. (2002[Manna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B., Alcaro, S. & Tafi, A. (2002). Bioorg. Med. Chem. Lett. 12, 3629-3635.]). For the syntheses and crystal structures of 2-pyrazoline derivatives, see: Bai et al. (2009[Bai, X., Chen, H., Zhang, K., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o2873.]); Lu et al. (2008[Lu, Z.-K., Li, S. & Feng, Y. (2008). Acta Cryst. E64, o1827.]); Fahrni et al. (2003[Fahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799-3812.]); Jian et al. (2008[Jian, F., Zhao, P., Guo, H. & Li, Y. (2008). Spectrochim. Acta Part A, 69, 647-653.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28N2O2

  • Mr = 364.47

  • Monoclinic, P 21 /c

  • a = 5.3937 (8) Å

  • b = 20.237 (3) Å

  • c = 18.163 (3) Å

  • β = 95.144 (2)°

  • V = 1974.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.3 × 0.2 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.675, Tmax = 0.746

  • 18731 measured reflections

  • 4517 independent reflections

  • 3430 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.03

  • 4517 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C7–C12 and C16–C21 aromatic rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cg2i 0.93 2.95 3.6252 (15) 131
C14—H14ACg2ii 0.97 2.63 3.5024 (14) 151
C19—H19⋯Cg1iii 0.93 2.71 3.4299 (15) 135
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) x+1, y, z; (iii) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazoline systems are well known nitrogen-containing heterocyclic compounds which exhibit a wide range of biological activities and pharmacological properties such as anti-hyperglycemic (Cottineau et al., 2002), antifungal (Dhal et al., 1975), anti-diabetic, anaesthetic and analgesic properties (Regaila et al., 1979), anti-inflammation (Rathish et al., 2009), anticancer (Subbaramaiah et al., 2002), and monoamine oxidases inhibitors (Manna et al., 2002).

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit consists of discrete [PhCOCH3C6H4C3H3N2O(CH2)5CH3] entities, devoid of any classical hydrogen bonds. All bond lengths and angles are in the normal range (Bai et al., 2009; Lu et al., 2008). In the pyrazolinyl ring, the C—N and C=N bond lengths of 1.4753 (17) and 1.2856 (17) are comparable with those in similar structures [C—N 1.482 (2)–1.515 (9) Å, C=N 1.291 (2)–1.300 (10) Å] (Fahrni et al., 2003). The N—N bond length of 1.3853 (15) is longer than in the structure of Jian et al. [N–N 1.373 (2)–1.380 (8) Å]. The plane containing the pyrazoline moiety is nearly planar with the mean plane of the phenyl ring C16–C21 making a dihedral angle of 1.96 (3)°.

The crystal packing is stabilized by weak C-H···π interactions involving both of the phenyl rings.

Related literature top

For the biological activity and pharmacological properties of 2-pyrazoline derivatives, see: Cottineau et al. (2002); Dhal et al. (1975); Regaila et al. (1979); Rathish et al. (2009); Subbaramaiah et al. (2002); Manna et al. (2002). For the syntheses and crystal structures of 2-pyrazoline derivatives, see: Bai et al. (2009); Lu et al. (2008); Fahrni et al. (2003); Jian et al. (2008).

Experimental top

A mixture of (E)-3-(4-(hexyloxy)phenyl)-1-phenylprop-2-en-1-one (3.08 g, 10 mmol) and hydrazine hydrate (1.0 g, 20 mmol) was taken in acetic acid (25 ml), and two drops of concentrated hydrochloric acid were added. The mixture was refluxed for 6 h. The precipitated solids were filtered, dried and recrystallized from ethanol. The single crystals were obtained from a mixture of ethyl acetate and dichloromethane by slow evaporation.

Refinement top

All hydrogen atoms were placed in calculated positions as riding on their parent carbon atoms with C–H = 0.93 to 0.97 Å and with Uiso(H) set to 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-{5-[4-(Hexyloxy)phenyl]-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl}ethanone top
Crystal data top
C23H28N2O2F(000) = 784
Mr = 364.47Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3895 reflections
a = 5.3937 (8) Åθ = 2.3–28.1°
b = 20.237 (3) ŵ = 0.08 mm1
c = 18.163 (3) ÅT = 100 K
β = 95.144 (2)°Block, white
V = 1974.6 (5) Å30.3 × 0.2 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4517 independent reflections
Radiation source: fine-focus sealed tube3430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 76
Tmin = 0.675, Tmax = 0.746k = 2526
18731 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.4272P]
where P = (Fo2 + 2Fc2)/3
4517 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C23H28N2O2V = 1974.6 (5) Å3
Mr = 364.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3937 (8) ŵ = 0.08 mm1
b = 20.237 (3) ÅT = 100 K
c = 18.163 (3) Å0.3 × 0.2 × 0.18 mm
β = 95.144 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4517 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3430 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.746Rint = 0.042
18731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
4517 reflectionsΔρmin = 0.21 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18742 (16)0.45980 (5)0.05993 (5)0.0179 (2)
O20.32678 (19)0.17097 (5)0.05044 (5)0.0271 (2)
N10.1119 (2)0.20218 (6)0.14456 (6)0.0191 (3)
N20.0638 (2)0.18796 (6)0.19341 (6)0.0179 (2)
C10.5550 (4)0.54544 (9)0.39381 (9)0.0418 (4)
H1A0.40640.55620.42450.063*
H1B0.67000.52340.42290.063*
H1C0.62970.58520.37340.063*
C20.4902 (3)0.50039 (7)0.33153 (7)0.0249 (3)
H2A0.64190.48910.30140.030*
H2B0.41950.45980.35260.030*
C30.3071 (3)0.53097 (7)0.28225 (7)0.0249 (3)
H3A0.37740.57160.26130.030*
H3B0.15510.54210.31230.030*
C40.2433 (3)0.48570 (7)0.21971 (7)0.0225 (3)
H4A0.39430.47690.18810.027*
H4B0.18450.44390.24080.027*
C50.0473 (3)0.51279 (7)0.17220 (7)0.0209 (3)
H5A0.11000.55290.14800.025*
H5B0.10100.52410.20390.025*
C60.0217 (2)0.46428 (7)0.11418 (7)0.0187 (3)
H6A0.16750.47960.09160.022*
H6B0.05840.42140.13630.022*
C70.1846 (2)0.41158 (6)0.00717 (6)0.0151 (3)
C80.0066 (2)0.36643 (7)0.00220 (7)0.0165 (3)
H80.14870.36850.03510.020*
C90.0156 (2)0.31812 (7)0.05236 (7)0.0167 (3)
H90.11320.28800.05580.020*
C100.2267 (2)0.31401 (6)0.10170 (6)0.0152 (3)
C110.4149 (2)0.36037 (7)0.09649 (7)0.0168 (3)
H110.55620.35860.12980.020*
C120.3957 (2)0.40882 (7)0.04292 (7)0.0165 (3)
H120.52300.43950.04020.020*
C130.2542 (2)0.26318 (7)0.16271 (7)0.0173 (3)
H130.43060.25240.17420.021*
C140.1407 (2)0.28567 (7)0.23384 (7)0.0174 (3)
H14A0.26580.28710.27560.021*
H14B0.06340.32880.22740.021*
C150.0501 (2)0.23286 (7)0.24369 (7)0.0160 (3)
C160.2154 (2)0.23144 (7)0.30378 (7)0.0163 (3)
C170.3931 (2)0.18129 (7)0.30687 (7)0.0177 (3)
H170.40520.14820.27120.021*
C180.5505 (2)0.18075 (7)0.36271 (7)0.0194 (3)
H180.66790.14730.36440.023*
C190.5348 (2)0.22987 (7)0.41648 (7)0.0193 (3)
H190.64200.22950.45380.023*
C210.1990 (2)0.28018 (7)0.35816 (7)0.0193 (3)
H210.08060.31350.35710.023*
C200.3591 (3)0.27924 (7)0.41409 (7)0.0199 (3)
H200.34780.31210.45010.024*
C220.1542 (3)0.16031 (7)0.08809 (7)0.0209 (3)
C230.0247 (3)0.10362 (7)0.07542 (8)0.0259 (3)
H23A0.01720.07840.03350.039*
H23B0.19110.12040.06620.039*
H23C0.01450.07580.11840.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (5)0.0165 (5)0.0177 (4)0.0025 (4)0.0017 (3)0.0030 (4)
O20.0332 (6)0.0255 (6)0.0248 (5)0.0035 (5)0.0155 (4)0.0011 (4)
N10.0223 (6)0.0178 (6)0.0185 (5)0.0017 (5)0.0093 (4)0.0004 (4)
N20.0189 (6)0.0197 (6)0.0160 (5)0.0009 (5)0.0067 (4)0.0018 (4)
C10.0560 (12)0.0388 (11)0.0334 (8)0.0093 (9)0.0187 (8)0.0104 (8)
C20.0299 (8)0.0235 (8)0.0209 (7)0.0010 (6)0.0005 (6)0.0014 (6)
C30.0329 (8)0.0212 (8)0.0205 (6)0.0001 (6)0.0010 (6)0.0028 (6)
C40.0271 (8)0.0209 (8)0.0194 (6)0.0007 (6)0.0005 (5)0.0018 (5)
C50.0247 (7)0.0179 (7)0.0191 (6)0.0021 (6)0.0026 (5)0.0009 (5)
C60.0179 (7)0.0187 (7)0.0187 (6)0.0010 (5)0.0024 (5)0.0003 (5)
C70.0168 (6)0.0146 (7)0.0145 (6)0.0021 (5)0.0038 (5)0.0007 (5)
C80.0138 (6)0.0193 (7)0.0163 (6)0.0009 (5)0.0021 (5)0.0024 (5)
C90.0147 (6)0.0187 (7)0.0175 (6)0.0023 (5)0.0060 (5)0.0016 (5)
C100.0163 (6)0.0156 (7)0.0145 (6)0.0012 (5)0.0061 (5)0.0005 (5)
C110.0145 (6)0.0217 (7)0.0144 (6)0.0013 (5)0.0023 (5)0.0015 (5)
C120.0142 (6)0.0179 (7)0.0179 (6)0.0027 (5)0.0041 (5)0.0012 (5)
C130.0167 (7)0.0189 (7)0.0168 (6)0.0010 (5)0.0040 (5)0.0015 (5)
C140.0186 (7)0.0184 (7)0.0156 (6)0.0004 (5)0.0041 (5)0.0017 (5)
C150.0155 (6)0.0169 (7)0.0159 (6)0.0022 (5)0.0017 (5)0.0028 (5)
C160.0158 (6)0.0190 (7)0.0144 (6)0.0026 (5)0.0022 (5)0.0031 (5)
C170.0188 (7)0.0178 (7)0.0165 (6)0.0014 (5)0.0012 (5)0.0006 (5)
C180.0190 (7)0.0207 (7)0.0190 (6)0.0014 (6)0.0036 (5)0.0035 (5)
C190.0185 (7)0.0240 (8)0.0160 (6)0.0039 (6)0.0057 (5)0.0042 (5)
C210.0191 (7)0.0188 (7)0.0201 (6)0.0018 (6)0.0026 (5)0.0013 (5)
C200.0241 (7)0.0205 (7)0.0154 (6)0.0021 (6)0.0038 (5)0.0006 (5)
C220.0270 (8)0.0194 (8)0.0172 (6)0.0053 (6)0.0066 (5)0.0024 (5)
C230.0345 (8)0.0225 (8)0.0214 (7)0.0005 (6)0.0066 (6)0.0027 (6)
Geometric parameters (Å, º) top
O1—C71.3688 (15)C9—C101.3867 (17)
O1—C61.4325 (14)C9—H90.9300
O2—C221.2226 (17)C10—C111.3918 (18)
N1—C221.3652 (17)C10—C131.5094 (17)
N1—N21.3853 (15)C11—C121.3786 (18)
N1—C131.4753 (17)C11—H110.9300
N2—C151.2856 (17)C12—H120.9300
C1—C21.518 (2)C13—C141.5471 (17)
C1—H1A0.9600C13—H130.9800
C1—H1B0.9600C14—C151.5054 (18)
C1—H1C0.9600C14—H14A0.9700
C2—C31.523 (2)C14—H14B0.9700
C2—H2A0.9700C15—C161.4701 (17)
C2—H2B0.9700C16—C211.3932 (18)
C3—C41.5225 (19)C16—C171.4008 (19)
C3—H3A0.9700C17—C181.3795 (18)
C3—H3B0.9700C17—H170.9300
C4—C51.525 (2)C18—C191.3906 (19)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C19—C201.380 (2)
C5—C61.5109 (19)C19—H190.9300
C5—H5A0.9700C21—C201.3912 (18)
C5—H5B0.9700C21—H210.9300
C6—H6A0.9700C20—H200.9300
C6—H6B0.9700C22—C231.504 (2)
C7—C81.3868 (18)C23—H23A0.9600
C7—C121.3934 (17)C23—H23B0.9600
C8—C91.3896 (18)C23—H23C0.9600
C8—H80.9300
C7—O1—C6117.98 (10)C9—C10—C13122.44 (12)
C22—N1—N2121.49 (11)C11—C10—C13119.01 (11)
C22—N1—C13124.64 (11)C12—C11—C10121.22 (12)
N2—N1—C13113.75 (10)C12—C11—H11119.4
C15—N2—N1108.01 (11)C10—C11—H11119.4
C2—C1—H1A109.5C11—C12—C7119.64 (12)
C2—C1—H1B109.5C11—C12—H12120.2
H1A—C1—H1B109.5C7—C12—H12120.2
C2—C1—H1C109.5N1—C13—C10113.03 (10)
H1A—C1—H1C109.5N1—C13—C14101.29 (10)
H1B—C1—H1C109.5C10—C13—C14113.09 (11)
C1—C2—C3113.51 (13)N1—C13—H13109.7
C1—C2—H2A108.9C10—C13—H13109.7
C3—C2—H2A108.9C14—C13—H13109.7
C1—C2—H2B108.9C15—C14—C13102.50 (10)
C3—C2—H2B108.9C15—C14—H14A111.3
H2A—C2—H2B107.7C13—C14—H14A111.3
C4—C3—C2113.33 (12)C15—C14—H14B111.3
C4—C3—H3A108.9C13—C14—H14B111.3
C2—C3—H3A108.9H14A—C14—H14B109.2
C4—C3—H3B108.9N2—C15—C16120.89 (12)
C2—C3—H3B108.9N2—C15—C14114.44 (11)
H3A—C3—H3B107.7C16—C15—C14124.65 (11)
C3—C4—C5114.86 (12)C21—C16—C17118.99 (12)
C3—C4—H4A108.6C21—C16—C15120.56 (12)
C5—C4—H4A108.6C17—C16—C15120.45 (12)
C3—C4—H4B108.6C18—C17—C16120.23 (12)
C5—C4—H4B108.6C18—C17—H17119.9
H4A—C4—H4B107.5C16—C17—H17119.9
C6—C5—C4112.80 (12)C17—C18—C19120.54 (13)
C6—C5—H5A109.0C17—C18—H18119.7
C4—C5—H5A109.0C19—C18—H18119.7
C6—C5—H5B109.0C20—C19—C18119.61 (12)
C4—C5—H5B109.0C20—C19—H19120.2
H5A—C5—H5B107.8C18—C19—H19120.2
O1—C6—C5107.04 (10)C20—C21—C16120.27 (13)
O1—C6—H6A110.3C20—C21—H21119.9
C5—C6—H6A110.3C16—C21—H21119.9
O1—C6—H6B110.3C19—C20—C21120.37 (13)
C5—C6—H6B110.3C19—C20—H20119.8
H6A—C6—H6B108.6C21—C20—H20119.8
O1—C7—C8124.77 (11)O2—C22—N1119.85 (13)
O1—C7—C12115.21 (11)O2—C22—C23124.01 (12)
C8—C7—C12120.00 (12)N1—C22—C23116.12 (12)
C7—C8—C9119.52 (12)C22—C23—H23A109.5
C7—C8—H8120.2C22—C23—H23B109.5
C9—C8—H8120.2H23A—C23—H23B109.5
C10—C9—C8121.11 (12)C22—C23—H23C109.5
C10—C9—H9119.4H23A—C23—H23C109.5
C8—C9—H9119.4H23B—C23—H23C109.5
C9—C10—C11118.49 (12)
C22—N1—N2—C15175.04 (12)C9—C10—C13—C1486.17 (15)
C13—N1—N2—C151.30 (14)C11—C10—C13—C1491.00 (14)
C1—C2—C3—C4179.80 (13)N1—C13—C14—C150.22 (12)
C2—C3—C4—C5176.14 (12)C10—C13—C14—C15121.03 (11)
C3—C4—C5—C6176.22 (11)N1—N2—C15—C16179.74 (11)
C7—O1—C6—C5170.59 (10)N1—N2—C15—C141.13 (15)
C4—C5—C6—O170.78 (14)C13—C14—C15—N20.55 (14)
C6—O1—C7—C80.01 (18)C13—C14—C15—C16179.10 (11)
C6—O1—C7—C12178.57 (11)N2—C15—C16—C21179.85 (12)
O1—C7—C8—C9177.70 (12)C14—C15—C16—C211.68 (19)
C12—C7—C8—C90.81 (19)N2—C15—C16—C170.64 (18)
C7—C8—C9—C100.41 (19)C14—C15—C16—C17177.82 (12)
C8—C9—C10—C111.34 (19)C21—C16—C17—C180.53 (19)
C8—C9—C10—C13178.52 (12)C15—C16—C17—C18178.98 (12)
C9—C10—C11—C121.08 (19)C16—C17—C18—C190.04 (19)
C13—C10—C11—C12178.36 (12)C17—C18—C19—C200.43 (19)
C10—C11—C12—C70.12 (19)C17—C16—C21—C200.71 (19)
O1—C7—C12—C11177.58 (11)C15—C16—C21—C20178.80 (12)
C8—C7—C12—C111.07 (19)C18—C19—C20—C210.2 (2)
C22—N1—C13—C1063.40 (16)C16—C21—C20—C190.3 (2)
N2—N1—C13—C10120.39 (12)N2—N1—C22—O2172.82 (12)
C22—N1—C13—C14175.30 (12)C13—N1—C22—O23.1 (2)
N2—N1—C13—C140.90 (13)N2—N1—C22—C238.60 (18)
C9—C10—C13—N128.19 (17)C13—N1—C22—C23175.47 (12)
C11—C10—C13—N1154.64 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C16–C21 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg2i0.932.953.6252 (15)131
C14—H14A···Cg2ii0.972.633.5024 (14)151
C19—H19···Cg1iii0.932.713.4299 (15)135
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+1, y, z; (iii) x1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H28N2O2
Mr364.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.3937 (8), 20.237 (3), 18.163 (3)
β (°) 95.144 (2)
V3)1974.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.2 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.675, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
18731, 4517, 3430
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.03
No. of reflections4517
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C16–C21 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg2i0.932.953.6252 (15)131
C14—H14A···Cg2ii0.972.633.5024 (14)151
C19—H19···Cg1iii0.932.713.4299 (15)135
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+1, y, z; (iii) x1, y1/2, z1/2.
 

Acknowledgements

AA is grateful to the HEC-Pakistan for financial support for his PhD program under scholarship No. [IIC–0317109].

References

First citationBai, X., Chen, H., Zhang, K., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o2873.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. Lett. 12, 2105–2108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDhal, P. N., Acharya, T. E. & Nayak, A. (1975). J. Indian Chem. Soc. 52, 1196–1200.  CAS Google Scholar
First citationFahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799–3812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJian, F., Zhao, P., Guo, H. & Li, Y. (2008). Spectrochim. Acta Part A, 69, 647–653.  CrossRef Google Scholar
First citationLu, Z.-K., Li, S. & Feng, Y. (2008). Acta Cryst. E64, o1827.  Web of Science CrossRef IUCr Journals Google Scholar
First citationManna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B., Alcaro, S. & Tafi, A. (2002). Bioorg. Med. Chem. Lett. 12, 3629–3635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRathish, I. G., Kalim, J., Shamim, A., Sameena, B., Alam, M. S., Pillai, K. K., Surender, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255–258.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRegaila, H. A., El-Bayonk, A. K. & Hammad, M. (1979). Egypt. J. Chem. 20, 197–202.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubbaramaiah, K., Norton, L., Gerald, W. & Dannenberg, A. J. (2002). J. Biol. Chem. 277, 18649–18659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds