metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­cadmium(II)]-μ-3,3′-[p-phenyl­enebis(oxymethyl­ene)]bis­­(1-pyridinio­acetate)] dinitrate hemihydrate]

aCollege of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China, and bCollege of Chemical Engineering and Foods, Zhongzhou University, Zhengzhou, Henan 450044, People's Republic of China
*Correspondence e-mail: zzulhl@yahoo.com.cn

(Received 11 August 2010; accepted 10 September 2010; online 15 September 2010)

In the title polymeric coordination complex, {[Cd(C22H20N2O6)(H2O)4](NO3)2·0.5H2O}n, obtained from the self-assembly of the flexible double betaine 3,3′-[p-phenyl­enebis(oxymethyl­ene)]bis­(1-pyridinioacetate) with cadmium nitrate, both the octa­hedrally coordinated CdII cation and the substituted betaine ligand lie on inversion centres. The chains constructed through the trans-related acetate groups of the ligand are inter-connected via O—H⋯O hydrogen bonds involving coordinated aqua ligands, the nitrate anions and the partial-occupancy (0.25) water mol­ecule of solvation, forming a three-dimensional structure.

Related literature

For betaine–metal coordination compexes, see: Zhang et al. (2004[Zhang, L.-P., Lam, C.-K., Song, H.-B. & Mak, T. C. W. (2004). Polyhedron, 23, 2413-2425.]); Zhang & Mak (2004[Zhang, L.-P. & Mak, T. C. W. (2004). J. Mol. Struct. 693, 1-10.]). For the structure of the copper(II) complex with the ligand employed here, see: Pan & Lian (2010[Pan, W.-C. & Lian, H.-L. (2010). Acta Cryst. E66, m607.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C22H20N2O6)(H2O)4](NO3)2·0.5H2O

  • Mr = 725.90

  • Monoclinic, P 21 /c

  • a = 6.5627 (17) Å

  • b = 14.612 (2) Å

  • c = 14.9730 (15) Å

  • β = 91.922 (19)°

  • V = 1435.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 153 K

  • 0.48 × 0.36 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.687, Tmax = 0.774

  • 3478 measured reflections

  • 2515 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.081

  • S = 1.02

  • 2515 reflections

  • 205 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O6 0.85 2.11 2.950 (7) 172
O1W—H1WB⋯O2i 0.85 2.07 2.832 (5) 150
O1W—H1WB⋯O3Wii 0.85 2.28 2.835 (16) 123
O2W—H2WA⋯O2iii 0.85 1.93 2.766 (5) 169
O2W—H2WB⋯O5iv 0.85 2.21 3.041 (7) 166
O2W—H2WB⋯O4iv 0.85 2.43 3.122 (6) 139
O3W—H3WA⋯O2v 0.85 2.13 2.886 (14) 149
O3W—H3WA⋯O2Wvi 0.85 2.55 3.211 (15) 136
O3W—H3WB⋯O6vi 0.85 2.15 2.859 (16) 141
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x-1, -y+1, -z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordinative bond approach has been widely used in the construction of supramolecular coordination compounds. As a parallel development, it is possible to use highly directional hydrogen bonds as a means of controlling self-assembly. Double betaines, comprising two betaine moieties and having two terminal anionic carboxylate substituent groups are of great utility for linkage to a broad array of metal ions, generating a variey of supramolecular entities, ranging from discrete complex units, through networks linked by hydrogen bonding, to metallo-supramolecular systems (Zhang et al., 2004); Zhang & Mak, 2004). The double betaine ligand 1,4-bis(3-picolyloxyl)benzene-N,N'-diacetate (L) has provided the structure of a polymeric complex with CuII (Pan & Lian, 2010). Our reaction of L with cadmium nitrate gave the polymeric coordination complex [[Cd2(L)(H2O)4]n 2n(NO3) 0.5n(H2O)], the title compound (I) and the structure is reported here. In (I), the CdII cations have octahedral stereochemistry and lie on crystallographic inversion centres and are coordinated by two trans-related acetato-O donors [Cd–O, 2.219 (3) Å] and four water molecules [Cd–O, 2.321 (3), 2.324 (4) Å] (Fig. 1). The substituted betaine ligand also lies across a crysallographic inversion centre, forming an infinite zigzag chain structure. These chains are further inter-connected by intermolecular hydrogen-bonding interactions involving the nitrate anions, the coordinated aqua ligands and the partial-occupancy (S.O.F = 0.25) water molecule of solvation (Table 1), to form a three-dimensional structure (Fig. 2).

Related literature top

For betaine–metal coordination compexes, see: Zhang et al. (2004); Zhang & Mak (2004). For the structure of the copper(II) complex with the ligand employed here, see: Pan & Lian (2010).

Experimental top

An aqueous solution of 1,4-bis(3-picolyloxyl)benzene-N,N'-diacetate (dehydrated) (5 ml; 0.08 g, 0.2 mmol) and cadmium nitrate (0.093 g, 0.3 mmol) were combined and heated at 70° for 30 minutes and then filtered. Colorless block-shaped crystals were obtained upon slow evaporation of the filtrate at room temperature for several weeks (yield: ca. 46% based on L).

Refinement top

The H atoms of the water molecule were located in a difference map but were constrained in the refinement. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93, 0.97 Å and O–H = 0.85 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the infinite chain of the title compound viewed along the a cell direction, showing atom numbering scheme. Atoms are drawn with 30% probability displacement ellipsoids. For symmetry code a: -x + 1, -y, -z.
[Figure 2] Fig. 2. The three-dimensional structure of (I) formed through intermolecular hydrogen bonds, shown as dashed lines.
catena-Poly[[[tetraaquacadmium(II)]-µ-3,3'- [p-phenylenebis(oxymethylene)]bis(1-pyridinioacetate)] dinitrate hemihydrate] top
Crystal data top
[Cd(C22H20N2O6)(H2O)4](NO3)2·0.5H2OF(000) = 738
Mr = 725.90Dx = 1.680 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 245 reflections
a = 6.5627 (17) Åθ = 2.0–27.5°
b = 14.612 (2) ŵ = 0.85 mm1
c = 14.9730 (15) ÅT = 153 K
β = 91.922 (19)°Block, colorless
V = 1435.0 (5) Å30.48 × 0.36 × 0.32 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2515 independent reflections
Radiation source: fine-focus sealed tube1654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 17
Tmin = 0.687, Tmax = 0.774k = 117
3478 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0152P)2 + 1.4665P]
where P = (Fo2 + 2Fc2)/3
2515 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.34 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cd(C22H20N2O6)(H2O)4](NO3)2·0.5H2OV = 1435.0 (5) Å3
Mr = 725.90Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.5627 (17) ŵ = 0.85 mm1
b = 14.612 (2) ÅT = 153 K
c = 14.9730 (15) Å0.48 × 0.36 × 0.32 mm
β = 91.922 (19)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2515 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1654 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.774Rint = 0.037
3478 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
2515 reflectionsΔρmin = 0.33 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.00000.50000.00000.04421 (19)
N20.0260 (8)0.3049 (4)0.3014 (3)0.0512 (13)
O40.1818 (7)0.2675 (4)0.2799 (3)0.0978 (17)
O50.0681 (8)0.2698 (4)0.3614 (3)0.111 (2)
O60.0265 (9)0.3747 (4)0.2635 (4)0.113 (2)
N10.3871 (6)0.2278 (3)0.0648 (2)0.0288 (9)
O10.2220 (5)0.3883 (2)0.0220 (2)0.0481 (10)
O20.4430 (5)0.4167 (2)0.0904 (2)0.0446 (9)
O30.1499 (5)0.0941 (2)0.0419 (2)0.0441 (9)
O1W0.2047 (5)0.4226 (2)0.1045 (3)0.0592 (11)
H1WA0.13900.41460.15180.071*
H1WB0.29000.46400.11980.071*
O2W0.1374 (5)0.5844 (2)0.1150 (2)0.0579 (11)
H2WA0.26390.58860.10150.069*
H2WB0.10020.63950.12390.069*
C10.3701 (7)0.3696 (3)0.0283 (3)0.0322 (12)
C20.4697 (7)0.2772 (3)0.0141 (3)0.0349 (13)
H2A0.61490.28620.00770.042*
H2B0.45160.23970.06680.042*
C30.2120 (7)0.1805 (3)0.0579 (3)0.0311 (11)
H3A0.14480.18030.00420.037*
C40.1326 (7)0.1328 (3)0.1296 (3)0.0284 (11)
C50.2363 (8)0.1349 (3)0.2090 (3)0.0382 (12)
H5A0.18610.10260.25850.046*
C60.4124 (8)0.1845 (4)0.2142 (3)0.0424 (14)
H6A0.48180.18640.26730.051*
C70.4854 (7)0.2311 (3)0.1412 (3)0.0366 (12)
H7A0.60430.26540.14470.044*
C80.0605 (7)0.0779 (4)0.1255 (3)0.0411 (13)
H8A0.15450.09580.17370.049*
H8B0.03050.01330.13190.049*
C90.3246 (7)0.0448 (3)0.0241 (3)0.0321 (12)
C100.4000 (7)0.0579 (3)0.0602 (3)0.0350 (12)
H10A0.33270.09660.10060.042*
C110.4228 (7)0.0127 (4)0.0841 (3)0.0364 (12)
H11A0.37120.02150.14060.044*
O3W0.424 (2)0.0647 (10)0.2940 (8)0.059 (4)0.25
H3WA0.41850.01330.32040.070*0.25
H3WB0.32840.10400.29330.070*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0345 (3)0.0305 (3)0.0675 (4)0.0037 (4)0.0010 (3)0.0071 (4)
N20.053 (3)0.055 (3)0.046 (3)0.005 (3)0.003 (3)0.017 (3)
O40.076 (3)0.102 (4)0.116 (4)0.035 (3)0.028 (3)0.002 (3)
O50.129 (5)0.139 (5)0.070 (3)0.062 (4)0.055 (3)0.036 (3)
O60.153 (5)0.070 (3)0.114 (4)0.043 (4)0.018 (4)0.003 (3)
N10.026 (2)0.030 (2)0.031 (2)0.0062 (19)0.0017 (19)0.0014 (18)
O10.044 (2)0.045 (2)0.054 (2)0.0203 (19)0.011 (2)0.0134 (19)
O20.047 (2)0.039 (2)0.048 (2)0.0017 (19)0.0003 (19)0.0126 (19)
O30.035 (2)0.049 (2)0.049 (2)0.0190 (18)0.0109 (17)0.0077 (19)
O1W0.053 (2)0.049 (2)0.075 (3)0.006 (2)0.014 (2)0.000 (2)
O2W0.046 (2)0.052 (2)0.075 (3)0.000 (2)0.007 (2)0.010 (2)
C10.028 (3)0.036 (3)0.033 (3)0.002 (2)0.006 (2)0.003 (2)
C20.031 (3)0.034 (2)0.040 (3)0.001 (3)0.003 (3)0.005 (3)
C30.026 (3)0.032 (3)0.035 (3)0.003 (2)0.005 (2)0.004 (2)
C40.024 (2)0.026 (2)0.036 (3)0.006 (2)0.003 (2)0.004 (2)
C50.039 (3)0.039 (3)0.036 (3)0.000 (3)0.003 (3)0.003 (3)
C60.045 (3)0.053 (3)0.030 (3)0.000 (3)0.009 (3)0.002 (3)
C70.032 (3)0.037 (3)0.042 (3)0.002 (2)0.013 (3)0.005 (3)
C80.032 (3)0.044 (3)0.048 (3)0.003 (3)0.007 (3)0.005 (3)
C90.023 (3)0.029 (2)0.045 (3)0.005 (2)0.001 (2)0.007 (2)
C100.036 (3)0.029 (3)0.040 (3)0.000 (2)0.006 (3)0.000 (2)
C110.031 (2)0.039 (3)0.039 (3)0.001 (3)0.004 (2)0.001 (3)
O3W0.089 (12)0.050 (9)0.037 (8)0.006 (9)0.000 (9)0.016 (8)
Geometric parameters (Å, º) top
Cd1—O1i2.219 (3)C2—H2A0.9700
Cd1—O12.219 (3)C2—H2B0.9700
Cd1—O1W2.321 (3)C3—C41.369 (6)
Cd1—O1Wi2.321 (3)C3—H3A0.9300
Cd1—O2Wi2.324 (4)C4—C51.390 (6)
Cd1—O2W2.324 (4)C4—C81.503 (6)
N2—O61.212 (6)C5—C61.369 (6)
N2—O41.213 (6)C5—H5A0.9300
N2—O51.220 (6)C6—C71.360 (7)
N1—C71.334 (5)C6—H6A0.9300
N1—C31.348 (5)C7—H7A0.9300
N1—C21.472 (6)C8—H8A0.9700
O1—C11.240 (5)C8—H8B0.9700
O2—C11.240 (5)C9—C111.375 (6)
O3—C91.387 (5)C9—C101.384 (6)
O3—C81.420 (5)C10—C11ii1.394 (6)
O1W—H1WA0.8501C10—H10A0.9300
O1W—H1WB0.8501C11—C10ii1.394 (6)
O2W—H2WA0.8500C11—H11A0.9300
O2W—H2WB0.8500O3W—H3WA0.8499
C1—C21.518 (6)O3W—H3WB0.8500
O1i—Cd1—O1180.00 (18)N1—C2—H2B108.9
O1i—Cd1—O1W95.17 (13)C1—C2—H2B108.9
O1—Cd1—O1W84.83 (13)H2A—C2—H2B107.7
O1i—Cd1—O1Wi84.83 (13)N1—C3—C4120.3 (4)
O1—Cd1—O1Wi95.17 (13)N1—C3—H3A119.9
O1W—Cd1—O1Wi180.0C4—C3—H3A119.9
O1i—Cd1—O2Wi90.43 (13)C3—C4—C5118.4 (4)
O1—Cd1—O2Wi89.57 (13)C3—C4—C8122.6 (4)
O1W—Cd1—O2Wi90.61 (13)C5—C4—C8119.0 (4)
O1Wi—Cd1—O2Wi89.39 (13)C6—C5—C4119.9 (5)
O1i—Cd1—O2W89.57 (13)C6—C5—H5A120.1
O1—Cd1—O2W90.43 (13)C4—C5—H5A120.1
O1W—Cd1—O2W89.39 (13)C7—C6—C5119.7 (5)
O1Wi—Cd1—O2W90.61 (13)C7—C6—H6A120.2
O2Wi—Cd1—O2W180.00 (15)C5—C6—H6A120.2
O6—N2—O4119.0 (6)N1—C7—C6120.3 (5)
O6—N2—O5123.8 (6)N1—C7—H7A119.9
O4—N2—O5117.2 (6)C6—C7—H7A119.9
C7—N1—C3121.5 (4)O3—C8—C4108.7 (4)
C7—N1—C2119.7 (4)O3—C8—H8A109.9
C3—N1—C2118.8 (4)C4—C8—H8A109.9
C1—O1—Cd1125.2 (3)O3—C8—H8B109.9
C9—O3—C8116.8 (4)C4—C8—H8B109.9
Cd1—O1W—H1WA109.3H8A—C8—H8B108.3
Cd1—O1W—H1WB101.3C11—C9—C10120.4 (4)
H1WA—O1W—H1WB102.8C11—C9—O3124.4 (4)
Cd1—O2W—H2WA105.3C10—C9—O3115.2 (4)
Cd1—O2W—H2WB120.1C9—C10—C11ii119.7 (4)
H2WA—O2W—H2WB103.9C9—C10—H10A120.1
O1—C1—O2127.4 (5)C11ii—C10—H10A120.1
O1—C1—C2116.3 (5)C9—C11—C10ii119.9 (4)
O2—C1—C2116.2 (4)C9—C11—H11A120.1
N1—C2—C1113.5 (4)C10ii—C11—H11A120.1
N1—C2—H2A108.9H3WA—O3W—H3WB124.1
C1—C2—H2A108.9
O1W—Cd1—O1—C1163.1 (4)C8—C4—C5—C6179.9 (5)
O1Wi—Cd1—O1—C116.9 (4)C4—C5—C6—C70.4 (8)
O2Wi—Cd1—O1—C172.4 (4)C3—N1—C7—C61.5 (7)
O2W—Cd1—O1—C1107.6 (4)C2—N1—C7—C6178.9 (4)
Cd1—O1—C1—O213.1 (7)C5—C6—C7—N10.6 (8)
Cd1—O1—C1—C2164.9 (3)C9—O3—C8—C4176.5 (4)
C7—N1—C2—C198.2 (5)C3—C4—C8—O36.8 (6)
C3—N1—C2—C181.5 (5)C5—C4—C8—O3173.7 (4)
O1—C1—C2—N16.3 (6)C8—O3—C9—C114.8 (7)
O2—C1—C2—N1175.4 (4)C8—O3—C9—C10176.0 (4)
C7—N1—C3—C41.3 (7)C11—C9—C10—C11ii0.3 (8)
C2—N1—C3—C4179.0 (4)O3—C9—C10—C11ii178.9 (4)
N1—C3—C4—C50.3 (7)C10—C9—C11—C10ii0.3 (8)
N1—C3—C4—C8179.2 (4)O3—C9—C11—C10ii178.8 (4)
C3—C4—C5—C60.6 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O60.852.112.950 (7)172
O1W—H1WB···O2i0.852.072.832 (5)150
O1W—H1WB···O3Wiii0.852.282.835 (16)123
O2W—H2WA···O2iv0.851.932.766 (5)169
O2W—H2WB···O5v0.852.213.041 (7)166
O2W—H2WB···O4v0.852.433.122 (6)139
O3W—H3WA···O2vi0.852.132.886 (14)149
O3W—H3WA···O2Wvii0.852.553.211 (15)136
O3W—H3WB···O6vii0.852.152.859 (16)141
Symmetry codes: (i) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x1, y+1, z; (v) x, y+1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C22H20N2O6)(H2O)4](NO3)2·0.5H2O
Mr725.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)6.5627 (17), 14.612 (2), 14.9730 (15)
β (°) 91.922 (19)
V3)1435.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.48 × 0.36 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.687, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
3478, 2515, 1654
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.081, 1.02
No. of reflections2515
No. of parameters205
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.33

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O60.852.112.950 (7)171.8
O1W—H1WB···O2i0.852.072.832 (5)149.6
O1W—H1WB···O3Wii0.852.282.835 (16)123.0
O2W—H2WA···O2iii0.851.932.766 (5)169.1
O2W—H2WB···O5iv0.852.213.041 (7)166.3
O2W—H2WB···O4iv0.852.433.122 (6)138.9
O3W—H3WA···O2v0.852.132.886 (14)148.7
O3W—H3WA···O2Wvi0.852.553.211 (15)135.5
O3W—H3WB···O6vi0.852.152.859 (16)140.5
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y1/2, z+1/2.
 

Acknowledgements

Financial support from Zhengzhou University is greatly appreciated.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPan, W.-C. & Lian, H.-L. (2010). Acta Cryst. E66, m607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-P., Lam, C.-K., Song, H.-B. & Mak, T. C. W. (2004). Polyhedron, 23, 2413–2425.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L.-P. & Mak, T. C. W. (2004). J. Mol. Struct. 693, 1–10.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds