organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Chloro-2-meth­­oxy­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 12 October 2010; accepted 13 October 2010; online 20 October 2010)

In the title compound, C13H12ClNO3S, the dihedral angle between the two aromatic rings is 73.94 (9)°. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, inter­molecular N—H⋯O hydrogen bonds connect the mol­ecules to centrosymmetric dimers, forming an R22(8) ring motif. The packing is consolidated by C—H⋯O hydrogen bonds and weak ππ inter­actions [centroid–centroid distances = 3.81 (3) and 3.81 (3) Å].

Related literature

For the biological properties of sulfonamide derivatives, see: Berredjem et al. (2000[Berredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249-264.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]); Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]); Xiao & Timberlake (2000[Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773-777.]). For related structures, see: Aziz-ur-Rehman et al. (2010a[Aziz-ur-Rehman, Rafique, H., Akkurt, M., Dilber, N., Abbasi, M. A. & Khan, I. U. (2010a). Acta Cryst. E66, o1728.],b[Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010b). Acta Cryst. E66, o1769.]); Khan et al. (2010[Khan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.]); Akkurt et al. (2010[Akkurt, M., Çelik, Í., Cihan, G., Çapan, G. & Büyükgüngör, O. (2010). Acta Cryst. E66, o974-o975.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12ClNO3S

  • Mr = 297.76

  • Triclinic, [P \overline 1]

  • a = 8.2201 (2) Å

  • b = 8.9395 (2) Å

  • c = 10.5544 (2) Å

  • α = 77.206 (1)°

  • β = 76.366 (1)°

  • γ = 66.408 (1)°

  • V = 683.65 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.24 × 0.16 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 12007 measured reflections

  • 3333 independent reflections

  • 2906 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.02

  • 3333 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.828 (16) 2.217 (16) 3.0096 (15) 160.2 (16)
C4—H4⋯O2ii 0.93 2.55 3.368 (3) 147
C8—H8⋯O2 0.93 2.34 2.9491 (17) 123
C13—H13B⋯O2iii 0.96 2.48 3.362 (3) 153
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x+1, y, z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamide is found in a number of synthetic as well as natural compounds. These molecules posses many biological activities e.g., herbicidal, anti-malarial, anti-convulsant and anti- hypertensive (Soledade et al., 2006; Xiao & Timberlake, 2000; Berredjem et al., 2000; Lee & Lee, 2002). In the present paper, the structure of N-(5-chloro-2-methoxyphenyl) benzenesulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing compounds.

In the title molecule (I), (Fig. 1), both sulfonamido-O atoms lie on the opposite side of the S-bound phenyl ring to the sulfonamido-N1 atom [the O1–S1–C1–C6, O2–S1–C1–C2 and N1–S1–C1–C2 torsion angles are -34.32 (13), 14.43 (13) and -101.83 (12) °, respectively]. The dihedral angle formed between the phenyl (C1–C6) and benzene (C7–C12) rings in (I) is 73.94 (9) °.

The molecules of (I) are dimerized due to the intermolecular N—H···O hydrogen bonding (Table 1, Fig. 2) producing a R22(8) ring motif.

In addition, there are C—H···O hydrogen bonds, as well as π-π interactions [Cg1···Cg1(1 - x, -y, 2 - z) = 3.8163 (11) Å and cg2···Cg2(-x, 1 - y, 1 - z) = 3.9472 (12) Å; where Cg1 and Cg2 are centroids of the phenyl and benzene rings (C1–C6 and C7–C12), respectively], between the aromatic rings of each dimer.

Related literature top

For the biological properties of sulfonamide derivatives, see: Berredjem et al. (2000); Lee & Lee (2002); Soledade et al. (2006); Xiao & Timberlake (2000). For related structures, see: Aziz-ur-Rehman et al. (2010a,b); Khan et al. (2010); Akkurt et al. (2010).

Experimental top

A mixture benzenesulfonyl chloride (10.0 mmol; 1.45 ml), 5-chloro-2-methoxy aniline (10.0 mmol; 1.47 g), aqueous sodium carbonate (10%; 20.0 ml) and water (25 ml) was stirred for one and half hour at room temperature. The crude mixture was washed with water and dried. The product was dissolved in methanol and recrystallized by slow evaporation of the solvent, to generate colourless crystal of N-(5-chloro-2-methoxyphenyl)benzenesulfonamide in 71% yield.

Refinement top

The amino H atom is located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Sulfonamide is found in a number of synthetic as well as natural compounds. These molecules posses many biological activities e.g., herbicidal, anti-malarial, anti-convulsant and anti- hypertensive (Soledade et al., 2006; Xiao & Timberlake, 2000; Berredjem et al., 2000; Lee & Lee, 2002). In the present paper, the structure of N-(5-chloro-2-methoxyphenyl) benzenesulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing compounds.

In the title molecule (I), (Fig. 1), both sulfonamido-O atoms lie on the opposite side of the S-bound phenyl ring to the sulfonamido-N1 atom [the O1–S1–C1–C6, O2–S1–C1–C2 and N1–S1–C1–C2 torsion angles are -34.32 (13), 14.43 (13) and -101.83 (12) °, respectively]. The dihedral angle formed between the phenyl (C1–C6) and benzene (C7–C12) rings in (I) is 73.94 (9) °.

The molecules of (I) are dimerized due to the intermolecular N—H···O hydrogen bonding (Table 1, Fig. 2) producing a R22(8) ring motif.

In addition, there are C—H···O hydrogen bonds, as well as π-π interactions [Cg1···Cg1(1 - x, -y, 2 - z) = 3.8163 (11) Å and cg2···Cg2(-x, 1 - y, 1 - z) = 3.9472 (12) Å; where Cg1 and Cg2 are centroids of the phenyl and benzene rings (C1–C6 and C7–C12), respectively], between the aromatic rings of each dimer.

For the biological properties of sulfonamide derivatives, see: Berredjem et al. (2000); Lee & Lee (2002); Soledade et al. (2006); Xiao & Timberlake (2000). For related structures, see: Aziz-ur-Rehman et al. (2010a,b); Khan et al. (2010); Akkurt et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule drawn with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the dimeric N—H···O interactions between two moleculs in the unit cell.
N-(5-chloro-2-methoxyphenyl)benzenesulfonamide top
Crystal data top
C13H12ClNO3SZ = 2
Mr = 297.76F(000) = 308
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2201 (2) ÅCell parameters from 6946 reflections
b = 8.9395 (2) Åθ = 2.5–28.2°
c = 10.5544 (2) ŵ = 0.43 mm1
α = 77.206 (1)°T = 296 K
β = 76.366 (1)°Prism, colourless
γ = 66.408 (1)°0.24 × 0.16 × 0.08 mm
V = 683.65 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2906 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.023
Graphite monochromatorθmax = 28.3°, θmin = 4.0°
φ and ω scansh = 1010
12007 measured reflectionsk = 1111
3333 independent reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.1401P]
where P = (Fo2 + 2Fc2)/3
3333 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C13H12ClNO3Sγ = 66.408 (1)°
Mr = 297.76V = 683.65 (3) Å3
Triclinic, P1Z = 2
a = 8.2201 (2) ÅMo Kα radiation
b = 8.9395 (2) ŵ = 0.43 mm1
c = 10.5544 (2) ÅT = 296 K
α = 77.206 (1)°0.24 × 0.16 × 0.08 mm
β = 76.366 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2906 reflections with I > 2σ(I)
12007 measured reflectionsRint = 0.023
3333 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.35 e Å3
3333 reflectionsΔρmin = 0.27 e Å3
177 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29733 (8)0.24190 (8)0.34117 (5)0.0934 (2)
S10.14406 (4)0.27960 (4)0.88801 (3)0.0380 (1)
O10.03295 (14)0.31471 (13)1.01239 (9)0.0510 (3)
O20.13974 (14)0.15335 (13)0.82861 (10)0.0506 (3)
O30.1709 (2)0.71184 (16)0.69335 (12)0.0734 (5)
N10.08081 (16)0.45288 (14)0.78854 (10)0.0429 (3)
C10.36916 (18)0.23297 (16)0.90100 (12)0.0398 (4)
C20.5039 (2)0.11582 (19)0.83059 (15)0.0521 (5)
C30.6805 (2)0.0782 (2)0.8436 (2)0.0696 (6)
C40.7178 (3)0.1563 (3)0.9253 (2)0.0767 (7)
C50.5824 (3)0.2731 (3)0.9938 (2)0.0731 (7)
C60.4049 (2)0.3136 (2)0.98279 (16)0.0557 (5)
C70.16189 (18)0.47011 (17)0.65422 (12)0.0422 (4)
C80.1896 (2)0.35789 (19)0.57270 (13)0.0505 (4)
C90.2635 (2)0.3861 (2)0.44138 (15)0.0616 (5)
C100.3044 (3)0.5227 (3)0.39090 (16)0.0756 (7)
C110.2737 (3)0.6360 (3)0.47153 (17)0.0739 (7)
C120.2046 (2)0.6098 (2)0.60401 (14)0.0541 (5)
C130.1961 (3)0.8625 (3)0.6504 (3)0.0875 (9)
H10.058 (2)0.5318 (19)0.8273 (16)0.052 (4)*
H20.476900.063500.775800.0630*
H30.773800.000000.797000.0830*
H40.836500.129600.934100.0920*
H50.610100.325401.048100.0880*
H60.312200.392701.029000.0670*
H80.159400.265200.605200.0600*
H100.352900.539400.302400.0910*
H110.299400.730700.437000.0890*
H13A0.320500.841900.614400.1310*
H13B0.161500.922500.723600.1310*
H13C0.123400.926200.583900.1310*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1058 (4)0.0954 (4)0.0594 (3)0.0032 (3)0.0179 (2)0.0448 (3)
S10.0403 (2)0.0368 (2)0.0370 (2)0.0163 (1)0.0011 (1)0.0095 (1)
O10.0538 (6)0.0510 (6)0.0416 (5)0.0206 (5)0.0098 (4)0.0100 (4)
O20.0566 (6)0.0459 (5)0.0577 (6)0.0253 (5)0.0063 (5)0.0146 (4)
O30.1093 (11)0.0642 (8)0.0596 (7)0.0505 (8)0.0026 (7)0.0160 (6)
N10.0491 (6)0.0385 (6)0.0360 (5)0.0107 (5)0.0019 (4)0.0111 (4)
C10.0435 (7)0.0381 (6)0.0381 (6)0.0193 (5)0.0049 (5)0.0003 (5)
C20.0465 (8)0.0504 (8)0.0515 (8)0.0145 (6)0.0008 (6)0.0058 (6)
C30.0437 (8)0.0664 (11)0.0793 (11)0.0144 (8)0.0003 (8)0.0052 (9)
C40.0524 (10)0.0787 (13)0.0975 (14)0.0378 (10)0.0255 (10)0.0310 (11)
C50.0829 (13)0.0731 (12)0.0857 (13)0.0494 (11)0.0375 (11)0.0098 (10)
C60.0643 (9)0.0529 (8)0.0591 (9)0.0286 (7)0.0153 (7)0.0068 (7)
C70.0419 (7)0.0437 (7)0.0351 (6)0.0092 (5)0.0058 (5)0.0073 (5)
C80.0535 (8)0.0491 (8)0.0420 (7)0.0073 (6)0.0100 (6)0.0131 (6)
C90.0611 (9)0.0675 (10)0.0397 (7)0.0007 (8)0.0109 (6)0.0189 (7)
C100.0797 (12)0.0875 (14)0.0370 (7)0.0161 (10)0.0030 (7)0.0062 (8)
C110.0871 (13)0.0748 (12)0.0503 (9)0.0341 (10)0.0042 (8)0.0014 (8)
C120.0602 (9)0.0554 (9)0.0442 (7)0.0219 (7)0.0022 (6)0.0080 (6)
C130.1028 (17)0.0654 (12)0.1064 (17)0.0453 (12)0.0112 (13)0.0149 (11)
Geometric parameters (Å, º) top
Cl1—C91.7424 (17)C7—C81.380 (2)
S1—O11.4296 (10)C8—C91.387 (2)
S1—O21.4227 (12)C9—C101.358 (3)
S1—N11.6323 (12)C10—C111.375 (3)
S1—C11.7588 (16)C11—C121.386 (2)
O3—C121.361 (2)C2—H20.9300
O3—C131.404 (3)C3—H30.9300
N1—C71.4205 (16)C4—H40.9300
N1—H10.828 (16)C5—H50.9300
C1—C21.380 (2)C6—H60.9300
C1—C61.384 (2)C8—H80.9300
C2—C31.386 (3)C10—H100.9300
C3—C41.374 (3)C11—H110.9300
C4—C51.370 (3)C13—H13A0.9600
C5—C61.383 (3)C13—H13B0.9600
C7—C121.391 (2)C13—H13C0.9600
Cl1···C6i3.6473 (17)C7···Cl1iii3.6152 (17)
Cl1···C2ii3.6292 (17)C7···C9iii3.520 (2)
Cl1···C7iii3.6152 (17)C8···C8iii3.566 (2)
Cl1···H2ii2.9600C8···O22.9491 (17)
Cl1···H13Aiv3.0500C8···C9iii3.524 (2)
S1···H82.9900C9···C8iii3.524 (2)
O1···N1v3.0096 (15)C9···C7iii3.520 (2)
O1···O1v3.0957 (15)C13···O2xi3.362 (3)
O1···O3v3.1699 (16)C3···H11iv3.0800
O2···C13vi3.362 (3)C11···H13A2.8100
O2···C4vii3.368 (3)C11···H13C2.7900
O2···C82.9491 (17)C13···H112.5800
O2···C4viii3.382 (2)H1···O32.241 (17)
O3···O1v3.1699 (16)H1···O1v2.217 (16)
O3···N12.6284 (19)H2···O22.5100
O1···H62.7000H2···Cl1ii2.9600
O1···H1v2.217 (16)H4···O2ix2.5500
O2···H13Bvi2.4800H6···O12.7000
O2···H4vii2.5500H8···S12.9900
O2···H82.3400H8···O22.3400
O2···H22.5100H11···C132.5800
O3···H12.241 (17)H11···H13A2.3700
N1···O32.6284 (19)H11···H13C2.3800
N1···O1v3.0096 (15)H11···C3iv3.0800
C1···C3viii3.499 (2)H13A···C112.8100
C2···Cl1ii3.6292 (17)H13A···H112.3700
C3···C1viii3.499 (2)H13A···Cl1iv3.0500
C4···O2ix3.368 (3)H13B···O2xi2.4800
C4···O2viii3.382 (2)H13C···C112.7900
C6···Cl1x3.6473 (17)H13C···H112.3800
O1—S1—O2118.95 (7)C10—C11—C12120.3 (2)
O1—S1—N1105.06 (6)C7—C12—C11119.51 (16)
O1—S1—C1109.15 (7)O3—C12—C7114.94 (13)
O2—S1—N1108.21 (6)O3—C12—C11125.55 (17)
O2—S1—C1107.73 (7)C1—C2—H2121.00
N1—S1—C1107.19 (7)C3—C2—H2121.00
C12—O3—C13119.30 (17)C2—C3—H3120.00
S1—N1—C7122.57 (10)C4—C3—H3120.00
C7—N1—H1115.2 (11)C3—C4—H4120.00
S1—N1—H1110.4 (11)C5—C4—H4120.00
S1—C1—C6118.85 (11)C4—C5—H5120.00
S1—C1—C2118.88 (12)C6—C5—H5120.00
C2—C1—C6122.27 (16)C1—C6—H6121.00
C1—C2—C3118.25 (15)C5—C6—H6121.00
C2—C3—C4120.09 (18)C7—C8—H8121.00
C3—C4—C5120.9 (2)C9—C8—H8121.00
C4—C5—C6120.5 (2)C9—C10—H10120.00
C1—C6—C5118.07 (17)C11—C10—H10120.00
N1—C7—C12117.82 (12)C10—C11—H11120.00
N1—C7—C8121.96 (13)C12—C11—H11120.00
C8—C7—C12120.14 (12)O3—C13—H13A109.00
C7—C8—C9118.69 (15)O3—C13—H13B109.00
Cl1—C9—C8117.57 (13)O3—C13—H13C109.00
C8—C9—C10121.73 (16)H13A—C13—H13B109.00
Cl1—C9—C10120.68 (13)H13A—C13—H13C109.00
C9—C10—C11119.57 (17)H13B—C13—H13C109.00
O1—S1—N1—C7179.00 (12)C1—C2—C3—C40.2 (3)
O2—S1—N1—C752.96 (14)C2—C3—C4—C50.7 (3)
C1—S1—N1—C762.98 (14)C3—C4—C5—C60.6 (3)
O1—S1—C1—C2144.89 (11)C4—C5—C6—C10.0 (3)
O2—S1—C1—C214.43 (13)C12—C7—C8—C91.2 (2)
N1—S1—C1—C2101.83 (12)N1—C7—C12—O33.1 (2)
O1—S1—C1—C634.32 (13)C8—C7—C12—O3179.75 (16)
O2—S1—C1—C6164.78 (11)C8—C7—C12—C110.5 (3)
N1—S1—C1—C678.96 (12)N1—C7—C12—C11176.09 (18)
C13—O3—C12—C7175.04 (19)N1—C7—C8—C9177.65 (15)
C13—O3—C12—C114.1 (3)C7—C8—C9—C101.8 (3)
S1—N1—C7—C12135.26 (14)C7—C8—C9—Cl1179.83 (13)
S1—N1—C7—C848.2 (2)C8—C9—C10—C110.6 (3)
C2—C1—C6—C50.4 (2)Cl1—C9—C10—C11178.93 (19)
C6—C1—C2—C30.3 (2)C9—C10—C11—C121.2 (4)
S1—C1—C2—C3178.87 (12)C10—C11—C12—C71.7 (3)
S1—C1—C6—C5178.76 (14)C10—C11—C12—O3179.1 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z+2; (vi) x, y1, z; (vii) x1, y, z; (viii) x+1, y, z+2; (ix) x+1, y, z; (x) x, y, z+1; (xi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1v0.828 (16)2.217 (16)3.0096 (15)160.2 (16)
C4—H4···O2ix0.932.553.368 (3)147
C8—H8···O20.932.342.9491 (17)123
C13—H13B···O2xi0.962.483.362 (3)153
Symmetry codes: (v) x, y+1, z+2; (ix) x+1, y, z; (xi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H12ClNO3S
Mr297.76
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2201 (2), 8.9395 (2), 10.5544 (2)
α, β, γ (°)77.206 (1), 76.366 (1), 66.408 (1)
V3)683.65 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.24 × 0.16 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12007, 3333, 2906
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.02
No. of reflections3333
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.828 (16)2.217 (16)3.0096 (15)160.2 (16)
C4—H4···O2ii0.932.553.368 (3)147
C8—H8···O20.932.342.9491 (17)123
C13—H13B···O2iii0.962.483.362 (3)153
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y, z; (iii) x, y+1, z.
 

Footnotes

Additional corresponding author, e-mail: azizryk@hotmail.com.

Acknowledgements

The authors are grateful to the Higher Education Commission for providing financial support.

References

First citationAkkurt, M., Çelik, Í., Cihan, G., Çapan, G. & Büyükgüngör, O. (2010). Acta Cryst. E66, o974–o975.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Rafique, H., Akkurt, M., Dilber, N., Abbasi, M. A. & Khan, I. U. (2010a). Acta Cryst. E66, o1728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010b). Acta Cryst. E66, o1769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249–264.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds