organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E)-1-(3-Bromo­phen­yl)ethanone 2,4-di­nitro­phenyl­hydrazone

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and, SeQuent Scientific Ltd, Baikampady, New Mangalore 575 011, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 17 August 2010; accepted 22 September 2010; online 20 October 2010)

The title compound, C14H11BrN4O4, contains 3-bromo­phenyl and 2,4-dinitro­phenyl groups on opposite sides of a hydrazone unit and crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the two ring systems in each mol­ecule are 2.0 (1) and 2.5 (4)°. Weak C—H⋯O hydrogen bonds and weak ππ stacking inter­actions [centroid–centroid distance = 3.7269 (14) Å] help to establish the packing. Intra­molecular N—H⋯O hydrogen bonds are also observed. On one of the rings, the Br atom is disordered over two equivalent positions of the phenyl ring [occupancy ratio 0.8734 (10):0.1266 (10).

Related literature

For background to Schiff bases and their complexes, see: Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]); El-Seify et al. (2006[El-Seify, F. A. & El-Dossoki, F. I. (2006). J. Korean Chem. Soc. 50, 99-106.]); Liang et al. (2007[Liang, Z.-P. (2007). Acta Cryst. E63, o2943.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Zare et al. (2005[Zare, H. R., Ardakani, M. M., Nasirizadah, N. & Safari, J. (2005). Bull. Korean Chem. Soc. 26, 51-56.]). For related structures, see: Bolte & Dill, (1998[Bolte, M. & Dill, M. (1998). Acta Cryst. C54, IUC9800065.]); Fan et al. (2004[Fan, Z., Shan, S., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1102-o1104.]); Ji et al. (2010[Ji, N.-N., Shi, Z.-Q., Zhao, R.-G., Zheng, Z.-B. & Li, Z.-F. (2010). Bull. Korean Chem. Soc. 31, 881-886.]); Kia et al. (2009[Kia, R., Fun, H.-K., Etemadi, B. & Kargar, H. (2009). Acta Cryst. E65, o833-o834.]); Motherwell & Ramsay, (2007[Motherwell, W. D. S. & Ramsay, J. (2007). Acta Cryst. E63, o4043.]); Shan et al. (2002[Shan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o1333-o1335.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN4O4

  • Mr = 379.18

  • Triclinic, [P \overline 1]

  • a = 7.7546 (9) Å

  • b = 13.4362 (15) Å

  • c = 14.1884 (16) Å

  • α = 91.894 (2)°

  • β = 90.553 (2)°

  • γ = 97.128 (2)°

  • V = 1466.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 100 K

  • 0.55 × 0.55 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS.]) Tmin = 0.547, Tmax = 0.746

  • 16795 measured reflections

  • 8581 independent reflections

  • 6680 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.04

  • 8581 reflections

  • 428 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B⋯O1B 0.86 1.99 2.615 (2) 129
N1A—H1A⋯O1A 0.86 2.00 2.621 (2) 128
C8B—H7⋯O2Ai 0.98 2.60 3.241 (3) 123
C12B—H12B⋯O3Bi 0.95 2.38 3.332 (3) 175
C8A—H8A⋯O3Bii 0.98 2.61 3.369 (3) 135
C13A—H13A⋯O4Biii 0.95 2.40 3.282 (3) 154
Symmetry codes: (i) x-1, y-1, z; (ii) -x+2, -y+2, -z+1; (iii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their complexes are widely used in the fields of biology and catalysis (Liang, 2007). In particular the dinitrophenyl hydrazones exhibit good nonlinear optical (NLO) and crystalline properties (Baughman et al., 2004) and are found to have versatile coordinating abilities towards different metal ions. In addition, some 2,4-dinitrophenyl hydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). As a result of their significant molecular nonlinearities and remarkable ability to crystallize in non-centrosymmetric crystal systems (Zare et al., 2005; El-Seify et al., 2006) many X-ray structural studies of 2,4-dinitrophenylhydrazones have been reported. Among them, the most closely related structures are (E)-p-methoxy-acetophenone 2,4-dinitrophenylhydrazone (Bolte & Dill, 1998), acetophenone (2,4-dinitrophenyl)hydrazone (Shan et al., 2002), 3-chloroacetophenone 2,4-dintrophenyl-hydrazone (Fan et al., 2004), 2,4-dihydroxyacetophenone 2,4-dinitrophenylhydrazone (Baughman et al., 2004), syn-acetophenone (2,4-dinitrophenyl)hydrazone (Motherwell & Ramsay, 2007), N-(2,4-dinitrophenyl)-N'-(1-p-tolylethylidene)hydrazine (Kia et al., 2009) and N-(2,4-dinitro-phenyl)-N'-(1-phenyl-ethylidene)- hydrazine (Ji et al., 2010). In view of the importance of 2,4-dinitrophenylhydrazones, this paper reports the crystal structure of C14H11N4O4Br.

The title compound, C14H11N4O4Br, contains 3-bromophenyl and 2,4-dinitrophenyl groups on opposite sides of a hydrazone moiety. Two molecules (A & B) are present in the asymmetric unit (Fig. 1). The Br atom in molecule B is disordered across the meta positions of the benzene ring (Br2B and Br2C occupancies of 0.873 (1) and 0.127 (1), respectively). The dihedral angles between the least squares planes of the two benzene rings in each structure are 2.01° (A) and 2.58° (B), respectively. Weak C—H···O hydrogen bonds (Table 1) and weak π···π stacking interactions [Cg1···Cg2i and Cg1···Cg3i = 3.7269 (14)Å and where Cg1, Cg2, Cg3 = centroids for C1B···C6B, C9B—C14B and C9B/C10B/C11C/C12B/C13C/C14B, respectively; i = 1 - x, 1 - y, 1 - x] contribute to the stability of the crystal packing (Fig.2). In addition there are N—H···O hydrogen bonds involving the N-H and adjacent nitro O atoms.

Related literature top

For background to Schiff bases and their complexes, see: Baughman et al. (2004); El-Seify et al. (2006); Liang et al. (2007); Okabe et al. (1993); Zare et al. (2005). For related structures, see: Bolte & Dill, (1998); Fan et al. (2004); Ji et al. (2010); Kia et al. (2009); Motherwell & Ramsay, (2007); Shan et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2,4-dinitrophenylhydrazine (1.98 g) and 1-(3-bromophenyl)ethanone (1.99 g) was dissolved in methanol and refluxed for about 6 h (Fig. 3). The precipitate formed was filtered, dried and recrystallized in ethyl acetate. X-ray quality crystals of the title compound were obtained after three days by the slow evaporation of ethyl acetate solution at room temperature. (mp: 497- 499 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 times (NH), 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. For one of the rings the the Br is disordered over two equivalent positions with occupancies of 0.873 (1) and 0.127 (1).

Structure description top

Schiff bases and their complexes are widely used in the fields of biology and catalysis (Liang, 2007). In particular the dinitrophenyl hydrazones exhibit good nonlinear optical (NLO) and crystalline properties (Baughman et al., 2004) and are found to have versatile coordinating abilities towards different metal ions. In addition, some 2,4-dinitrophenyl hydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). As a result of their significant molecular nonlinearities and remarkable ability to crystallize in non-centrosymmetric crystal systems (Zare et al., 2005; El-Seify et al., 2006) many X-ray structural studies of 2,4-dinitrophenylhydrazones have been reported. Among them, the most closely related structures are (E)-p-methoxy-acetophenone 2,4-dinitrophenylhydrazone (Bolte & Dill, 1998), acetophenone (2,4-dinitrophenyl)hydrazone (Shan et al., 2002), 3-chloroacetophenone 2,4-dintrophenyl-hydrazone (Fan et al., 2004), 2,4-dihydroxyacetophenone 2,4-dinitrophenylhydrazone (Baughman et al., 2004), syn-acetophenone (2,4-dinitrophenyl)hydrazone (Motherwell & Ramsay, 2007), N-(2,4-dinitrophenyl)-N'-(1-p-tolylethylidene)hydrazine (Kia et al., 2009) and N-(2,4-dinitro-phenyl)-N'-(1-phenyl-ethylidene)- hydrazine (Ji et al., 2010). In view of the importance of 2,4-dinitrophenylhydrazones, this paper reports the crystal structure of C14H11N4O4Br.

The title compound, C14H11N4O4Br, contains 3-bromophenyl and 2,4-dinitrophenyl groups on opposite sides of a hydrazone moiety. Two molecules (A & B) are present in the asymmetric unit (Fig. 1). The Br atom in molecule B is disordered across the meta positions of the benzene ring (Br2B and Br2C occupancies of 0.873 (1) and 0.127 (1), respectively). The dihedral angles between the least squares planes of the two benzene rings in each structure are 2.01° (A) and 2.58° (B), respectively. Weak C—H···O hydrogen bonds (Table 1) and weak π···π stacking interactions [Cg1···Cg2i and Cg1···Cg3i = 3.7269 (14)Å and where Cg1, Cg2, Cg3 = centroids for C1B···C6B, C9B—C14B and C9B/C10B/C11C/C12B/C13C/C14B, respectively; i = 1 - x, 1 - y, 1 - x] contribute to the stability of the crystal packing (Fig.2). In addition there are N—H···O hydrogen bonds involving the N-H and adjacent nitro O atoms.

For background to Schiff bases and their complexes, see: Baughman et al. (2004); El-Seify et al. (2006); Liang et al. (2007); Okabe et al. (1993); Zare et al. (2005). For related structures, see: Bolte & Dill, (1998); Fan et al. (2004); Ji et al. (2010); Kia et al. (2009); Motherwell & Ramsay, (2007); Shan et al. (2002). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of C14H11N4O4Br, showing the atom labeling scheme with 50% probability displacement ellipsoids with two molecules in the asymmetric unit. In molecule B only the major component [Br2B (0.873 (1) occupancy]) is depicted.
[Figure 2] Fig. 2. Packing diagram of C14H11N4O4Br viewed down the c axis.
(1E)-1-(3-Bromophenyl)ethanone 2,4-dinitrophenylhydrazone top
Crystal data top
C14H11BrN4O4Z = 4
Mr = 379.18F(000) = 760
Triclinic, P1Dx = 1.718 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7546 (9) ÅCell parameters from 5432 reflections
b = 13.4362 (15) Åθ = 2.7–30.8°
c = 14.1884 (16) ŵ = 2.83 mm1
α = 91.894 (2)°T = 100 K
β = 90.553 (2)°Block, orange
γ = 97.128 (2)°0.55 × 0.55 × 0.24 mm
V = 1466.0 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8581 independent reflections
Radiation source: fine-focus sealed tube6680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 31.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.547, Tmax = 0.746k = 1919
16795 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.049P)2 + 0.9159P]
where P = (Fo2 + 2Fc2)/3
8581 reflections(Δ/σ)max = 0.002
428 parametersΔρmax = 1.44 e Å3
2 restraintsΔρmin = 0.77 e Å3
Crystal data top
C14H11BrN4O4γ = 97.128 (2)°
Mr = 379.18V = 1466.0 (3) Å3
Triclinic, P1Z = 4
a = 7.7546 (9) ÅMo Kα radiation
b = 13.4362 (15) ŵ = 2.83 mm1
c = 14.1884 (16) ÅT = 100 K
α = 91.894 (2)°0.55 × 0.55 × 0.24 mm
β = 90.553 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
8581 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6680 reflections with I > 2σ(I)
Tmin = 0.547, Tmax = 0.746Rint = 0.024
16795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 1.44 e Å3
8581 reflectionsΔρmin = 0.77 e Å3
428 parameters
Special details top

Experimental. 2010-03-28 # Formatted by publCIF

2010-08-17 # Formatted by IUCr publCIF system

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11B0.3320 (3)0.11977 (16)0.42870 (18)0.0279 (5)0.8734 (10)
C13B0.4862 (3)0.17310 (18)0.56961 (15)0.0281 (5)0.8734 (10)
H13B0.52060.15960.63190.034*0.8734 (10)
C11C0.3320 (3)0.11977 (16)0.42870 (18)0.0279 (5)0.1266 (10)
H11C0.23870.06100.38380.034*0.1266 (10)
C13C0.4862 (3)0.17310 (18)0.56961 (15)0.0281 (5)0.1266 (10)
Br2B0.19142 (4)0.02208 (2)0.36023 (3)0.04126 (11)0.8734 (10)
Br2C0.5634 (3)0.13884 (16)0.68483 (14)0.0364 (7)0.1266 (10)
O1B0.7504 (2)0.67942 (12)0.30264 (11)0.0236 (3)
O2B0.9336 (2)0.81206 (12)0.32857 (12)0.0291 (4)
O3B1.2253 (2)0.88614 (12)0.61872 (12)0.0276 (4)
O4B1.2248 (2)0.77225 (13)0.72350 (11)0.0265 (3)
N1B0.7215 (2)0.53546 (13)0.42320 (12)0.0171 (3)
H1B0.69060.55100.36770.021*
N2B0.6603 (2)0.44461 (13)0.45865 (13)0.0178 (3)
N3B0.8600 (2)0.73102 (13)0.35350 (12)0.0196 (4)
N4B1.1765 (2)0.80244 (14)0.64777 (13)0.0198 (4)
C1B0.8319 (3)0.60103 (15)0.47668 (14)0.0159 (4)
C2B0.9025 (3)0.69629 (15)0.44510 (14)0.0161 (4)
C3B1.0139 (3)0.76242 (15)0.50129 (15)0.0172 (4)
H3B1.05910.82630.47930.021*
C4B1.0576 (3)0.73365 (15)0.58945 (15)0.0175 (4)
C5B0.9929 (3)0.64026 (15)0.62373 (15)0.0180 (4)
H5B1.02540.62200.68490.022*
C6B0.8825 (3)0.57554 (15)0.56820 (14)0.0171 (4)
H6B0.83860.51200.59150.021*
C7B0.5594 (3)0.38472 (15)0.40366 (15)0.0176 (4)
C8B0.5111 (3)0.41146 (17)0.30597 (16)0.0245 (5)
H60.45510.47300.30900.037*
H70.43060.35660.27720.037*
H80.61610.42230.26790.037*
C9B0.4959 (3)0.28630 (15)0.44326 (16)0.0189 (4)
C10B0.3893 (3)0.21275 (16)0.39073 (17)0.0225 (4)
H10B0.35540.22480.32950.027*
C12B0.3816 (3)0.10017 (17)0.52082 (19)0.0291 (5)
H12B0.34340.03790.54820.035*
C14B0.5455 (3)0.26506 (16)0.53498 (16)0.0226 (4)
H14B0.61850.31330.57240.027*
Br1A0.46515 (3)0.585783 (17)0.117323 (18)0.02724 (7)
O1A1.1072 (2)1.23013 (12)0.17885 (11)0.0250 (3)
O2A1.2017 (2)1.38349 (12)0.14856 (12)0.0279 (4)
O3A1.1250 (2)1.52151 (13)0.14936 (13)0.0300 (4)
O4A0.9604 (3)1.43670 (13)0.25602 (12)0.0320 (4)
N1A0.9017 (2)1.11916 (13)0.05847 (13)0.0191 (3)
H1A0.94061.12190.11560.023*
N2A0.8042 (2)1.03459 (13)0.02230 (13)0.0199 (4)
N3A1.1202 (2)1.30168 (14)0.12536 (13)0.0200 (4)
N4A1.0306 (3)1.44583 (15)0.17722 (14)0.0241 (4)
C1A0.9364 (3)1.19896 (16)0.00283 (15)0.0185 (4)
C2A1.0392 (3)1.28937 (16)0.03282 (15)0.0179 (4)
C3A1.0704 (3)1.37046 (16)0.02584 (16)0.0201 (4)
H3A1.14011.43040.00470.024*
C4A0.9983 (3)1.36193 (16)0.11485 (16)0.0210 (4)
C5A0.8957 (3)1.27486 (17)0.14749 (16)0.0233 (4)
H5A0.84701.27100.20940.028*
C6A0.8655 (3)1.19486 (17)0.09004 (15)0.0223 (4)
H6A0.79601.13560.11270.027*
C7A0.7589 (3)0.96430 (16)0.08055 (15)0.0204 (4)
C8A0.8080 (5)0.9730 (2)0.18295 (19)0.0453 (8)
H8A0.76731.03320.21140.068*
H8B0.93470.97800.18980.068*
H8C0.75430.91360.21480.068*
C9A0.6534 (3)0.87396 (16)0.03918 (15)0.0183 (4)
C10A0.6164 (3)0.78681 (16)0.09002 (15)0.0200 (4)
H10A0.65830.78450.15300.024*
C11A0.5178 (3)0.70347 (16)0.04771 (16)0.0204 (4)
C12A0.4544 (3)0.70369 (17)0.04363 (16)0.0237 (4)
H12A0.38710.64600.07130.028*
C13A0.4918 (3)0.79094 (17)0.09411 (16)0.0232 (4)
H13A0.44960.79280.15700.028*
C14A0.5887 (3)0.87411 (17)0.05387 (15)0.0212 (4)
H14A0.61270.93280.08940.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C11B0.0214 (11)0.0159 (10)0.0454 (15)0.0015 (8)0.0004 (10)0.0014 (9)
C13B0.0296 (12)0.0218 (11)0.0332 (13)0.0029 (9)0.0039 (10)0.0080 (9)
C11C0.0214 (11)0.0159 (10)0.0454 (15)0.0015 (8)0.0004 (10)0.0014 (9)
C13C0.0296 (12)0.0218 (11)0.0332 (13)0.0029 (9)0.0039 (10)0.0080 (9)
Br2B0.03745 (18)0.01748 (14)0.0650 (2)0.00971 (11)0.01999 (15)0.00010 (13)
Br2C0.0462 (13)0.0301 (11)0.0300 (11)0.0101 (8)0.0098 (9)0.0181 (8)
O1B0.0299 (8)0.0207 (8)0.0189 (7)0.0016 (6)0.0053 (6)0.0013 (6)
O2B0.0428 (10)0.0198 (8)0.0217 (8)0.0101 (7)0.0024 (7)0.0078 (6)
O3B0.0326 (9)0.0194 (8)0.0283 (9)0.0068 (6)0.0036 (7)0.0008 (6)
O4B0.0268 (8)0.0307 (9)0.0207 (8)0.0016 (7)0.0068 (6)0.0010 (7)
N1B0.0200 (8)0.0139 (8)0.0165 (8)0.0017 (6)0.0017 (7)0.0031 (6)
N2B0.0185 (8)0.0137 (8)0.0205 (9)0.0011 (6)0.0012 (7)0.0023 (6)
N3B0.0252 (9)0.0164 (8)0.0167 (8)0.0007 (7)0.0006 (7)0.0010 (7)
N4B0.0167 (8)0.0199 (9)0.0217 (9)0.0012 (6)0.0006 (7)0.0029 (7)
C1B0.0162 (9)0.0152 (9)0.0159 (9)0.0004 (7)0.0021 (7)0.0004 (7)
C2B0.0191 (9)0.0149 (9)0.0140 (9)0.0001 (7)0.0004 (7)0.0025 (7)
C3B0.0174 (9)0.0140 (9)0.0197 (10)0.0005 (7)0.0021 (7)0.0005 (7)
C4B0.0160 (9)0.0167 (9)0.0187 (10)0.0012 (7)0.0006 (7)0.0017 (7)
C5B0.0189 (9)0.0177 (9)0.0173 (9)0.0015 (7)0.0000 (7)0.0023 (7)
C6B0.0188 (9)0.0146 (9)0.0176 (9)0.0004 (7)0.0003 (7)0.0021 (7)
C7B0.0166 (9)0.0153 (9)0.0204 (10)0.0001 (7)0.0007 (7)0.0020 (7)
C8B0.0285 (11)0.0208 (11)0.0221 (11)0.0059 (8)0.0054 (9)0.0047 (8)
C9B0.0160 (9)0.0152 (9)0.0255 (11)0.0012 (7)0.0027 (8)0.0009 (8)
C10B0.0186 (10)0.0168 (10)0.0314 (12)0.0001 (8)0.0006 (8)0.0012 (8)
C12B0.0275 (12)0.0163 (10)0.0437 (15)0.0014 (8)0.0060 (10)0.0070 (10)
C14B0.0231 (10)0.0182 (10)0.0260 (11)0.0001 (8)0.0016 (9)0.0017 (8)
Br1A0.02909 (13)0.01787 (11)0.03320 (13)0.00395 (8)0.00194 (9)0.00412 (9)
O1A0.0301 (9)0.0221 (8)0.0220 (8)0.0007 (6)0.0029 (6)0.0035 (6)
O2A0.0280 (9)0.0207 (8)0.0326 (9)0.0055 (6)0.0078 (7)0.0011 (7)
O3A0.0301 (9)0.0219 (8)0.0375 (10)0.0004 (7)0.0038 (7)0.0078 (7)
O4A0.0447 (11)0.0289 (9)0.0232 (9)0.0065 (8)0.0014 (8)0.0064 (7)
N1A0.0214 (9)0.0170 (8)0.0177 (8)0.0024 (7)0.0026 (7)0.0003 (7)
N2A0.0196 (9)0.0176 (8)0.0213 (9)0.0016 (7)0.0006 (7)0.0016 (7)
N3A0.0177 (8)0.0205 (9)0.0215 (9)0.0016 (7)0.0003 (7)0.0005 (7)
N4A0.0260 (10)0.0228 (9)0.0247 (10)0.0061 (7)0.0072 (8)0.0046 (8)
C1A0.0183 (9)0.0169 (9)0.0201 (10)0.0016 (7)0.0033 (8)0.0003 (8)
C2A0.0174 (9)0.0188 (10)0.0174 (10)0.0020 (7)0.0001 (7)0.0007 (7)
C3A0.0186 (10)0.0174 (10)0.0243 (11)0.0022 (7)0.0037 (8)0.0000 (8)
C4A0.0216 (10)0.0194 (10)0.0227 (11)0.0034 (8)0.0049 (8)0.0052 (8)
C5A0.0254 (11)0.0249 (11)0.0195 (10)0.0026 (8)0.0014 (8)0.0007 (8)
C6A0.0246 (11)0.0208 (10)0.0205 (10)0.0010 (8)0.0005 (8)0.0008 (8)
C7A0.0245 (11)0.0171 (10)0.0194 (10)0.0025 (8)0.0028 (8)0.0003 (8)
C8A0.088 (2)0.0196 (12)0.0236 (13)0.0116 (13)0.0209 (14)0.0033 (10)
C9A0.0182 (9)0.0169 (9)0.0198 (10)0.0025 (7)0.0006 (8)0.0014 (8)
C10A0.0206 (10)0.0194 (10)0.0197 (10)0.0016 (8)0.0021 (8)0.0008 (8)
C11A0.0193 (10)0.0170 (10)0.0245 (11)0.0006 (7)0.0013 (8)0.0006 (8)
C12A0.0203 (10)0.0230 (11)0.0268 (11)0.0001 (8)0.0018 (8)0.0038 (9)
C13A0.0235 (11)0.0279 (11)0.0175 (10)0.0016 (8)0.0040 (8)0.0023 (8)
C14A0.0248 (10)0.0203 (10)0.0185 (10)0.0024 (8)0.0012 (8)0.0016 (8)
Geometric parameters (Å, º) top
C11B—C10B1.400 (3)Br1A—C11A1.896 (2)
C11B—C12B1.401 (4)O1A—N3A1.239 (2)
C11B—Br2B1.843 (2)O2A—N3A1.231 (2)
C11B—H11C1.1703O3A—N4A1.229 (3)
C13B—C12B1.358 (3)O4A—N4A1.234 (3)
C13B—C14B1.372 (3)N1A—C1A1.354 (3)
C13B—H13B0.9500N1A—N2A1.366 (2)
O1B—N3B1.238 (2)N1A—H1A0.8599
O2B—N3B1.229 (2)N2A—C7A1.294 (3)
O3B—N4B1.227 (2)N3A—C2A1.446 (3)
O4B—N4B1.232 (2)N4A—C4A1.455 (3)
N1B—C1B1.357 (3)C1A—C2A1.418 (3)
N1B—N2B1.367 (2)C1A—C6A1.419 (3)
N1B—H1B0.8604C2A—C3A1.392 (3)
N2B—C7B1.288 (3)C3A—C4A1.372 (3)
N3B—C2B1.444 (3)C3A—H3A0.9500
N4B—C4B1.454 (3)C4A—C5A1.394 (3)
C1B—C2B1.417 (3)C5A—C6A1.369 (3)
C1B—C6B1.418 (3)C5A—H5A0.9500
C2B—C3B1.386 (3)C6A—H6A0.9500
C3B—C4B1.373 (3)C7A—C9A1.478 (3)
C3B—H3B0.9500C7A—C8A1.496 (3)
C4B—C5B1.397 (3)C8A—H8A0.9800
C5B—C6B1.366 (3)C8A—H8B0.9800
C5B—H5B0.9500C8A—H8C0.9800
C6B—H6B0.9500C9A—C10A1.396 (3)
C7B—C9B1.483 (3)C9A—C14A1.408 (3)
C7B—C8B1.499 (3)C10A—C11A1.390 (3)
C8B—H60.9800C10A—H10A0.9500
C8B—H70.9800C11A—C12A1.382 (3)
C8B—H80.9800C12A—C13A1.395 (3)
C9B—C10B1.397 (3)C12A—H12A0.9500
C9B—C14B1.402 (3)C13A—C14A1.372 (3)
C10B—H10B0.9299C13A—H13A0.9500
C12B—H12B0.9500C14A—H14A0.9500
C14B—H14B0.9500
C10B—C11B—C12B119.6 (2)C9B—C14B—H14B120.7
C10B—C11B—Br2B121.40 (19)C1A—N1A—N2A118.89 (18)
C12B—C11B—Br2B118.98 (17)C1A—N1A—H1A120.3
C10B—C11B—H11C119.1N2A—N1A—H1A120.8
C12B—C11B—H11C121.2C7A—N2A—N1A116.76 (18)
C12B—C13B—C14B124.4 (2)O2A—N3A—O1A121.74 (19)
C12B—C13B—H13B117.8O2A—N3A—C2A118.64 (18)
C14B—C13B—H13B117.8O1A—N3A—C2A119.62 (18)
C1B—N1B—N2B119.14 (17)O3A—N4A—O4A123.5 (2)
C1B—N1B—H1B120.2O3A—N4A—C4A119.0 (2)
N2B—N1B—H1B120.6O4A—N4A—C4A117.6 (2)
C7B—N2B—N1B116.20 (18)N1A—C1A—C2A123.4 (2)
O2B—N3B—O1B121.78 (18)N1A—C1A—C6A119.72 (19)
O2B—N3B—C2B118.60 (18)C2A—C1A—C6A116.92 (19)
O1B—N3B—C2B119.62 (17)C3A—C2A—C1A121.85 (19)
O3B—N4B—O4B123.68 (18)C3A—C2A—N3A116.29 (19)
O3B—N4B—C4B118.75 (18)C1A—C2A—N3A121.84 (18)
O4B—N4B—C4B117.56 (18)C4A—C3A—C2A118.5 (2)
N1B—C1B—C2B122.79 (18)C4A—C3A—H3A120.8
N1B—C1B—C6B120.28 (18)C2A—C3A—H3A120.8
C2B—C1B—C6B116.93 (18)C3A—C4A—C5A121.8 (2)
C3B—C2B—C1B121.79 (18)C3A—C4A—N4A119.2 (2)
C3B—C2B—N3B116.10 (17)C5A—C4A—N4A119.0 (2)
C1B—C2B—N3B122.10 (18)C6A—C5A—C4A119.8 (2)
C4B—C3B—C2B118.59 (18)C6A—C5A—H5A120.1
C4B—C3B—H3B120.7C4A—C5A—H5A120.1
C2B—C3B—H3B120.7C5A—C6A—C1A121.1 (2)
C3B—C4B—C5B121.95 (19)C5A—C6A—H6A119.4
C3B—C4B—N4B118.55 (18)C1A—C6A—H6A119.4
C5B—C4B—N4B119.49 (19)N2A—C7A—C9A115.38 (19)
C6B—C5B—C4B119.20 (19)N2A—C7A—C8A122.9 (2)
C6B—C5B—H5B120.4C9A—C7A—C8A121.8 (2)
C4B—C5B—H5B120.4C7A—C8A—H8A109.5
C5B—C6B—C1B121.53 (19)C7A—C8A—H8B109.5
C5B—C6B—H6B119.2H8A—C8A—H8B109.5
C1B—C6B—H6B119.2C7A—C8A—H8C109.5
N2B—C7B—C9B115.24 (19)H8A—C8A—H8C109.5
N2B—C7B—C8B122.65 (19)H8B—C8A—H8C109.5
C9B—C7B—C8B122.10 (19)C10A—C9A—C14A118.40 (19)
C7B—C8B—H6109.5C10A—C9A—C7A121.57 (19)
C7B—C8B—H7109.5C14A—C9A—C7A120.02 (19)
H6—C8B—H7109.5C11A—C10A—C9A119.4 (2)
C7B—C8B—H8109.5C11A—C10A—H10A120.3
H6—C8B—H8109.5C9A—C10A—H10A120.3
H7—C8B—H8109.5C12A—C11A—C10A122.2 (2)
C10B—C9B—C14B118.6 (2)C12A—C11A—Br1A118.45 (16)
C10B—C9B—C7B121.6 (2)C10A—C11A—Br1A119.39 (17)
C14B—C9B—C7B119.75 (19)C11A—C12A—C13A118.2 (2)
C9B—C10B—C11B120.9 (2)C11A—C12A—H12A120.9
C9B—C10B—H10B120.3C13A—C12A—H12A120.9
C11B—C10B—H10B118.8C14A—C13A—C12A120.7 (2)
C13B—C12B—C11B117.9 (2)C14A—C13A—H13A119.6
C13B—C12B—H12B121.1C12A—C13A—H13A119.6
C11B—C12B—H12B121.1C13A—C14A—C9A121.1 (2)
C13B—C14B—C9B118.6 (2)C13A—C14A—H14A119.4
C13B—C14B—H14B120.7C9A—C14A—H14A119.4
C1B—N1B—N2B—C7B178.38 (18)C1A—N1A—N2A—C7A172.92 (19)
N2B—N1B—C1B—C2B179.47 (18)N2A—N1A—C1A—C2A178.63 (19)
N2B—N1B—C1B—C6B0.2 (3)N2A—N1A—C1A—C6A2.5 (3)
N1B—C1B—C2B—C3B179.45 (19)N1A—C1A—C2A—C3A179.2 (2)
C6B—C1B—C2B—C3B0.9 (3)C6A—C1A—C2A—C3A0.3 (3)
N1B—C1B—C2B—N3B0.7 (3)N1A—C1A—C2A—N3A2.1 (3)
C6B—C1B—C2B—N3B179.63 (18)C6A—C1A—C2A—N3A179.05 (19)
O2B—N3B—C2B—C3B5.3 (3)O2A—N3A—C2A—C3A4.2 (3)
O1B—N3B—C2B—C3B174.14 (19)O1A—N3A—C2A—C3A175.28 (19)
O2B—N3B—C2B—C1B175.93 (19)O2A—N3A—C2A—C1A176.97 (19)
O1B—N3B—C2B—C1B4.6 (3)O1A—N3A—C2A—C1A3.5 (3)
C1B—C2B—C3B—C4B0.7 (3)C1A—C2A—C3A—C4A0.3 (3)
N3B—C2B—C3B—C4B179.46 (18)N3A—C2A—C3A—C4A179.14 (19)
C2B—C3B—C4B—C5B0.1 (3)C2A—C3A—C4A—C5A0.0 (3)
C2B—C3B—C4B—N4B179.09 (18)C2A—C3A—C4A—N4A179.65 (19)
O3B—N4B—C4B—C3B4.4 (3)O3A—N4A—C4A—C3A1.7 (3)
O4B—N4B—C4B—C3B174.42 (19)O4A—N4A—C4A—C3A178.3 (2)
O3B—N4B—C4B—C5B176.35 (19)O3A—N4A—C4A—C5A178.0 (2)
O4B—N4B—C4B—C5B4.8 (3)O4A—N4A—C4A—C5A2.1 (3)
C3B—C4B—C5B—C6B0.2 (3)C3A—C4A—C5A—C6A0.3 (3)
N4B—C4B—C5B—C6B179.38 (18)N4A—C4A—C5A—C6A179.3 (2)
C4B—C5B—C6B—C1B0.1 (3)C4A—C5A—C6A—C1A0.3 (3)
N1B—C1B—C6B—C5B179.74 (19)N1A—C1A—C6A—C5A178.9 (2)
C2B—C1B—C6B—C5B0.6 (3)C2A—C1A—C6A—C5A0.0 (3)
N1B—N2B—C7B—C9B179.45 (17)N1A—N2A—C7A—C9A179.93 (18)
N1B—N2B—C7B—C8B0.4 (3)N1A—N2A—C7A—C8A0.2 (3)
N2B—C7B—C9B—C10B178.26 (19)N2A—C7A—C9A—C10A170.6 (2)
C8B—C7B—C9B—C10B0.8 (3)C8A—C7A—C9A—C10A9.7 (4)
N2B—C7B—C9B—C14B0.7 (3)N2A—C7A—C9A—C14A8.8 (3)
C8B—C7B—C9B—C14B179.8 (2)C8A—C7A—C9A—C14A170.9 (2)
C14B—C9B—C10B—C11B0.3 (3)C14A—C9A—C10A—C11A0.0 (3)
C7B—C9B—C10B—C11B179.3 (2)C7A—C9A—C10A—C11A179.5 (2)
C12B—C11B—C10B—C9B0.3 (3)C9A—C10A—C11A—C12A0.0 (3)
Br2B—C11B—C10B—C9B179.97 (17)C9A—C10A—C11A—Br1A179.19 (16)
C14B—C13B—C12B—C11B0.5 (4)C10A—C11A—C12A—C13A0.1 (3)
C10B—C11B—C12B—C13B0.6 (4)Br1A—C11A—C12A—C13A179.22 (17)
Br2B—C11B—C12B—C13B179.58 (18)C11A—C12A—C13A—C14A0.1 (3)
C12B—C13B—C14B—C9B0.0 (4)C12A—C13A—C14A—C9A0.1 (3)
C10B—C9B—C14B—C13B0.4 (3)C10A—C9A—C14A—C13A0.0 (3)
C7B—C9B—C14B—C13B179.4 (2)C7A—C9A—C14A—C13A179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1B0.861.992.615 (2)129
N1A—H1A···O1A0.862.002.621 (2)128
C8B—H7···O2Ai0.982.603.241 (3)123
C12B—H12B···O3Bi0.952.383.332 (3)175
C8A—H8A···O3Bii0.982.613.369 (3)135
C13A—H13A···O4Biii0.952.403.282 (3)154
Symmetry codes: (i) x1, y1, z; (ii) x+2, y+2, z+1; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC14H11BrN4O4
Mr379.18
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7546 (9), 13.4362 (15), 14.1884 (16)
α, β, γ (°)91.894 (2), 90.553 (2), 97.128 (2)
V3)1466.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.55 × 0.55 × 0.24
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.547, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16795, 8581, 6680
Rint0.024
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.04
No. of reflections8581
No. of parameters428
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.44, 0.77

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1B0.861.992.615 (2)128.6
N1A—H1A···O1A0.862.002.621 (2)127.9
C8B—H7···O2Ai0.982.603.241 (3)123.2
C12B—H12B···O3Bi0.952.383.332 (3)175.4
C8A—H8A···O3Bii0.982.613.369 (3)134.6
C13A—H13A···O4Biii0.952.403.282 (3)153.5
Symmetry codes: (i) x1, y1, z; (ii) x+2, y+2, z+1; (iii) x1, y, z1.
 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. CSC thanks the University of Mysore for research facilities and HSY thanks the University of Mysore for sabbatical leave.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBaughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBolte, M. & Dill, M. (1998). Acta Cryst. C54, IUC9800065.  CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS.  Google Scholar
First citationEl-Seify, F. A. & El-Dossoki, F. I. (2006). J. Korean Chem. Soc. 50, 99–106.  CAS Google Scholar
First citationFan, Z., Shan, S., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1102–o1104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, N.-N., Shi, Z.-Q., Zhao, R.-G., Zheng, Z.-B. & Li, Z.-F. (2010). Bull. Korean Chem. Soc. 31, 881–886.  CSD CrossRef CAS Google Scholar
First citationKia, R., Fun, H.-K., Etemadi, B. & Kargar, H. (2009). Acta Cryst. E65, o833–o834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2007). Acta Cryst. E63, o2943.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMotherwell, W. D. S. & Ramsay, J. (2007). Acta Cryst. E63, o4043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o1333–o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZare, H. R., Ardakani, M. M., Nasirizadah, N. & Safari, J. (2005). Bull. Korean Chem. Soc. 26, 51–56.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds