metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridodimeth­yl(thio­semi­carbazide)tin(IV) chloride

aDepartamento de Quimíca, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
*Correspondence e-mail: kaokio@unal.edu.co

(Received 9 September 2010; accepted 27 September 2010; online 2 October 2010)

In the title salt, [Sn(CH3)2Cl(CH4N3S)]Cl, the SnIV atom is five-coordinated in a distorted trigonal-bipyramidal geometry with two methyl groups and one S atom in the equatorial plane, and one N atom and one Cl atom occupying the apical positions. In the crystal, mol­ecules are linked by inter­molecular N—H⋯S hydrogen bonds with set graph-motif C(4) along [010]. N—H⋯ Cl hydrogen bonds with graph-set motif D(2) and D33(10) link cations and anions.

Related literature

For a related structure, see: Delgado et al. (2009[Delgado, D. J. A., Okio, C. K. Y. A. & Welter, R. (2009). Acta Cryst. E65, m426.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological activity of organotin(IV) complexes, see: Davies & Smith (1982[Davies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E.W. Abel, pp. 519-616. New York: Pergamon Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2Cl(CH4N3S)]Cl

  • Mr = 309.79

  • Monoclinic, P 2/c

  • a = 13.4980 (12) Å

  • b = 6.2470 (5) Å

  • c = 12.7160 (13) Å

  • β = 108.871 (10)°

  • V = 1014.60 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.19 mm−1

  • T = 293 K

  • 0.13 × 0.10 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.613, Tmax = 0.809

  • 4452 measured reflections

  • 2915 independent reflections

  • 2475 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.14

  • 2915 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.86 2.3555 3.147 (4) 153.17
N2—H2⋯Sii 0.86 2.5549 3.327 (3) 149.90
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y+1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organotin(IV) complexes have been extensively studied due to the diversity of structures that such compounds can form and to their potential biological activities as well as their wide industrial and agricultural applications (Davies & Smith, 1982). In the framework of our research for new organotin(IV) compounds (Delgado et al., 2009), we report here the crystal structure of the title compound (I). The asymmetric unit is formed by one cation and one anion. The Sn atom is five-coordinate in a distorted trigonal–bipyramidal geometry. The distorted trigonal-bipyramidal coordination polyhedron has two methyl groups and one S atom in the equatorial plane, the N2 and Cl1 atom occupying the apical positions. In the crystal, molecules are linked by intermolecular N—H···S hydrogen bonds with set graph-motif C(4) along [010]. N—H··· Cl hydrogen bond linking cations and anions with set graph-motif D(2) and D33(10) , Table 1 and Fig.2. The C1-S and C1-N1 bond distances are quite shorter than the ones reported for C-S and C-N single bonds (1.755 (4), 1.366 (6)) (Delgado et al., 2009), suggesting the delocalization of the C=S double bond on the SCN moiety.

Related literature top

For a related structure, see: Delgado et al. (2009). For set-graph-motifs, see: Bernstein, et al. (1995). For the biological activity of organotin(IV) complexes, see: Davies & Smith 1982.

Experimental top

Compound (I) was obtained by reacting dimethyltin (IV) dichloride (220 mg, 1 mmol) with thiosemicarbazide (68 mg, 0.75 mmol) in methanol under reflux for 3 h. Colourless crystals suitable for X-ray analysis were grown by slow solvent evaporation.

Refinement top

H atoms were positioned geometrically, with C—H, N—H distances of 0.96 and 0.86Å respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) and 1.2Ueq(N)

Structure description top

Organotin(IV) complexes have been extensively studied due to the diversity of structures that such compounds can form and to their potential biological activities as well as their wide industrial and agricultural applications (Davies & Smith, 1982). In the framework of our research for new organotin(IV) compounds (Delgado et al., 2009), we report here the crystal structure of the title compound (I). The asymmetric unit is formed by one cation and one anion. The Sn atom is five-coordinate in a distorted trigonal–bipyramidal geometry. The distorted trigonal-bipyramidal coordination polyhedron has two methyl groups and one S atom in the equatorial plane, the N2 and Cl1 atom occupying the apical positions. In the crystal, molecules are linked by intermolecular N—H···S hydrogen bonds with set graph-motif C(4) along [010]. N—H··· Cl hydrogen bond linking cations and anions with set graph-motif D(2) and D33(10) , Table 1 and Fig.2. The C1-S and C1-N1 bond distances are quite shorter than the ones reported for C-S and C-N single bonds (1.755 (4), 1.366 (6)) (Delgado et al., 2009), suggesting the delocalization of the C=S double bond on the SCN moiety.

For a related structure, see: Delgado et al. (2009). For set-graph-motifs, see: Bernstein, et al. (1995). For the biological activity of organotin(IV) complexes, see: Davies & Smith 1982.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Chloridodimethyl(thiosemicarbazide)tin(IV) chloride top
Crystal data top
[Sn(CH3)2Cl(CH4N3S)]ClF(000) = 596
Mr = 309.79Dx = 2.028 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 1915 reflections
a = 13.4980 (12) Åθ = 1.0–30.0°
b = 6.2470 (5) ŵ = 3.19 mm1
c = 12.7160 (13) ÅT = 293 K
β = 108.871 (10)°Prism, colorless
V = 1014.60 (16) Å30.13 × 0.10 × 0.09 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2915 independent reflections
Radiation source: fine-focus sealed tube2475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
π scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1818
Tmin = 0.613, Tmax = 0.809k = 78
4452 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.1794P]
where P = (Fo2 + 2Fc2)/3
2915 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 1.52 e Å3
Crystal data top
[Sn(CH3)2Cl(CH4N3S)]ClV = 1014.60 (16) Å3
Mr = 309.79Z = 4
Monoclinic, P2/cMo Kα radiation
a = 13.4980 (12) ŵ = 3.19 mm1
b = 6.2470 (5) ÅT = 293 K
c = 12.7160 (13) Å0.13 × 0.10 × 0.09 mm
β = 108.871 (10)°
Data collection top
Nonius KappaCCD
diffractometer
2915 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2475 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.809Rint = 0.020
4452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.14Δρmax = 1.04 e Å3
2915 reflectionsΔρmin = 1.52 e Å3
91 parameters
Special details top

Experimental. Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.18008 (2)0.64590 (4)0.54686 (2)0.03327 (10)
Cl10.10951 (9)0.27486 (19)0.52290 (13)0.0570 (3)
Cl20.37205 (8)0.89418 (16)0.34229 (9)0.0384 (2)
S0.34762 (8)0.45496 (15)0.57559 (10)0.0394 (2)
N10.4153 (3)0.8592 (5)0.6156 (3)0.0304 (6)
H10.46470.95080.64200.036*
N20.3105 (2)0.9290 (5)0.5800 (3)0.0348 (7)
H20.29371.06210.57070.042*
N30.5392 (3)0.6073 (5)0.6316 (3)0.0371 (7)
H3AN0.58590.70630.64940.045*
H3BN0.55750.47620.62820.045*
C10.4390 (3)0.6566 (6)0.6093 (3)0.0291 (7)
C20.1509 (4)0.7230 (10)0.6955 (4)0.0548 (12)
H2A0.15480.87530.70600.082*
H2B0.20220.65490.75690.082*
H2C0.08230.67380.69130.082*
C30.1119 (4)0.7551 (9)0.3820 (4)0.0471 (10)
H3A0.06400.86950.38060.071*
H3B0.07490.63960.33620.071*
H3C0.16580.80600.35420.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.03237 (15)0.03147 (15)0.03651 (16)0.00300 (10)0.01187 (11)0.00248 (10)
Cl10.0403 (5)0.0344 (5)0.0951 (9)0.0086 (5)0.0201 (6)0.0063 (6)
Cl20.0369 (5)0.0377 (5)0.0413 (5)0.0039 (4)0.0138 (4)0.0036 (4)
S0.0352 (5)0.0245 (4)0.0595 (6)0.0027 (4)0.0168 (4)0.0017 (4)
N10.0299 (15)0.0266 (14)0.0342 (15)0.0046 (12)0.0097 (12)0.0039 (12)
N20.0285 (15)0.0259 (14)0.0494 (19)0.0002 (13)0.0117 (13)0.0017 (14)
N30.0316 (16)0.0367 (17)0.0444 (19)0.0017 (14)0.0141 (14)0.0064 (14)
C10.0322 (18)0.0308 (17)0.0262 (15)0.0006 (14)0.0121 (13)0.0015 (13)
C20.062 (3)0.067 (3)0.046 (3)0.017 (3)0.031 (2)0.010 (2)
C30.042 (2)0.057 (3)0.038 (2)0.002 (2)0.0072 (17)0.002 (2)
Geometric parameters (Å, º) top
Sn—C22.107 (4)N3—C11.325 (5)
Sn—C32.112 (4)N3—H3AN0.8600
Sn—N22.434 (3)N3—H3BN0.8600
Sn—S2.4771 (11)C2—H2A0.9600
Sn—Cl12.4870 (12)C2—H2B0.9600
S—C11.718 (4)C2—H2C0.9600
N1—C11.315 (5)C3—H3A0.9600
N1—N21.408 (4)C3—H3B0.9600
N1—H10.8600C3—H3C0.9600
N2—H20.8600
C2—Sn—C3132.0 (2)C1—N3—H3BN120.0
C2—Sn—N290.75 (17)H3AN—N3—H3BN120.0
C3—Sn—N289.75 (16)N1—C1—N3117.6 (3)
C2—Sn—S113.85 (17)N1—C1—S123.5 (3)
C3—Sn—S112.70 (14)N3—C1—S118.9 (3)
N2—Sn—S75.51 (8)Sn—C2—H2A109.5
C2—Sn—Cl198.48 (16)Sn—C2—H2B109.5
C3—Sn—Cl198.80 (15)H2A—C2—H2B109.5
N2—Sn—Cl1157.72 (8)Sn—C2—H2C109.5
S—Sn—Cl182.21 (4)H2A—C2—H2C109.5
C1—S—Sn103.38 (13)H2B—C2—H2C109.5
C1—N1—N2121.2 (3)Sn—C3—H3A109.5
C1—N1—H1119.4Sn—C3—H3B109.5
N2—N1—H1119.4H3A—C3—H3B109.5
N1—N2—Sn115.2 (2)Sn—C3—H3C109.5
N1—N2—H2122.4H3A—C3—H3C109.5
Sn—N2—H2122.4H3B—C3—H3C109.5
C1—N3—H3AN120.0
C2—Sn—S—C179.8 (2)S—Sn—N2—N19.3 (2)
C3—Sn—S—C188.0 (2)Cl1—Sn—N2—N19.7 (4)
N2—Sn—S—C14.48 (15)N2—N1—C1—N3172.0 (3)
Cl1—Sn—S—C1175.69 (14)N2—N1—C1—S8.9 (5)
C1—N1—N2—Sn13.1 (4)Sn—S—C1—N10.0 (4)
C2—Sn—N2—N1105.2 (3)Sn—S—C1—N3179.2 (3)
C3—Sn—N2—N1122.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.862.35553.147 (4)153.17
N2—H2···Sii0.862.55493.327 (3)149.90
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2Cl(CH4N3S)]Cl
Mr309.79
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)13.4980 (12), 6.2470 (5), 12.7160 (13)
β (°) 108.871 (10)
V3)1014.60 (16)
Z4
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.13 × 0.10 × 0.09
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.613, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
4452, 2915, 2475
Rint0.020
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.14
No. of reflections2915
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 1.52

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.862.35553.147 (4)153.17
N2—H2···Sii0.862.55493.327 (3)149.90
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z.
 

Acknowledgements

The authors are grateful to Richard Welter for the X-ray analysis.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDavies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E.W. Abel, pp. 519–616. New York: Pergamon Press.  Google Scholar
First citationDelgado, D. J. A., Okio, C. K. Y. A. & Welter, R. (2009). Acta Cryst. E65, m426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds