organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[Phen­yl(pyridin-2-yl­amino)­meth­yl]-2-naphthol

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 13 October 2010; accepted 19 October 2010; online 23 October 2010)

The title compound, C22H18N2O, was synthesized from naphthalen-2-ol, benzaldehyde and pyridin-2-amine. In the crystal, mol­ecules are linked into centrosymmetric R22(16) dimers by pairs of O—H⋯N hydrogen bonds. The mol­ecular conformation is stabilized by an N—H⋯O hydrogen bond. The dihedral angle between the naphthylene ring system and the phenyl ring is 72.86 (12)°.

Related literature

For the application of compounds derived from naphthalen-2-ol in catalytic asymmetric synthesis, see: Szatmari & Fulop (2004[Szatmari, I. & Fulop, F. (2004). Curr. Org. Synth. 1, 155-165.]). For related structures, see: Wang & Zhao (2009[Wang, W. X. & Zhao, H. (2009). Acta Cryst. E65, o1277.]); Zhao & Sun (2005[Zhao, B. & Sun, Y.-X. (2005). Acta Cryst. E61, m652-m653.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O

  • Mr = 326.38

  • Triclinic, [P \overline 1]

  • a = 7.5841 (10) Å

  • b = 10.1890 (15) Å

  • c = 11.9745 (15) Å

  • α = 111.00 (3)°

  • β = 98.64 (5)°

  • γ = 90.83 (3)°

  • V = 851.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.18 × 0.15 × 0.12 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.990

  • 8701 measured reflections

  • 3841 independent reflections

  • 1655 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.097

  • wR(F2) = 0.218

  • S = 1.10

  • 3841 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2i 0.82 1.87 2.677 (4) 170
N1—H1B⋯O1 0.86 2.35 2.767 (4) 110
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Compounds derived from naphthalen-2-ol have been of great interest in organic chemistry due to their application in catalytic asymmetric synthesis (Szatmari & Fulop, 2004; Zhao & Sun, 2005). As an extension of our work on the structural characterization of naphthol compounds (Wang & Zhao, 2009), we report here the structure of the title compound. In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the naphthylene ring system and the benzene ring is 72.86 (12)°, and the pyridine ring is 72.61 (11)° respectively. The dihedral angle between benzene ring and the pyridine ring is 74.80 (13)°. In the solid state the molecules are linked into centrosymmetric R22 (16) dimers by a simple O—H···N interaction, (Bernstein et al., 1995), (Fig. 2). The molecular conformation is stabilized by one N—H···O hydrogen bonding, Table 1.

Related literature top

For the application of compounds derived from naphthalen-2-ol in catalytic asymmetric synthesis, see: Szatmari & Fulop (2004). For related structures, see: Wang & Zhao (2009); Zhao & Sun (2005). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

A dry 50 ml flask was charged with benzaldehyde (10 mmol), naphthalen-2-ol (10 mmol) and pyridin-2-amine (10 mmol). The mixture was stirred at 100°C for 12 h and then added ethanol (15 ml), after heated under reflux for 1 h, the precipitate was filtrated out and washed with ethanol for 3 times to give the title compound. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution.

Refinement top

All H atoms were detected in a difference map, the H-atom bonded to C1 was refined freely, but all other H-atoms were placed in calculated positions and refined using a riding motion approxmation, with C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C); O—H = 0.82 Å, with Uiso(H) = 1.5Ueq(O); N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(N).

Structure description top

Compounds derived from naphthalen-2-ol have been of great interest in organic chemistry due to their application in catalytic asymmetric synthesis (Szatmari & Fulop, 2004; Zhao & Sun, 2005). As an extension of our work on the structural characterization of naphthol compounds (Wang & Zhao, 2009), we report here the structure of the title compound. In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the naphthylene ring system and the benzene ring is 72.86 (12)°, and the pyridine ring is 72.61 (11)° respectively. The dihedral angle between benzene ring and the pyridine ring is 74.80 (13)°. In the solid state the molecules are linked into centrosymmetric R22 (16) dimers by a simple O—H···N interaction, (Bernstein et al., 1995), (Fig. 2). The molecular conformation is stabilized by one N—H···O hydrogen bonding, Table 1.

For the application of compounds derived from naphthalen-2-ol in catalytic asymmetric synthesis, see: Szatmari & Fulop (2004). For related structures, see: Wang & Zhao (2009); Zhao & Sun (2005). For graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: SHELXS97 (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Diagram of the molecules linked into centrosymmetric R22 (16) dimers by a simple O—H···N interaction .The H atoms not involved in hydrogen bonding have been omitted. The atoms no-labelled are related with labelled atoms by symmetry code: (a) -x+2, -y+1, -z+2.
1-[Phenyl(pyridin-2-ylamino)methyl]-2-naphthol top
Crystal data top
C22H18N2OZ = 2
Mr = 326.38F(000) = 344
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5841 (10) ÅCell parameters from 1326 reflections
b = 10.1890 (15) Åθ = 2.7–27.4°
c = 11.9745 (15) ŵ = 0.08 mm1
α = 111.00 (3)°T = 295 K
β = 98.64 (5)°Prism, colourless
γ = 90.83 (3)°0.18 × 0.15 × 0.12 mm
V = 851.7 (2) Å3
Data collection top
Rigaku SCXmini
diffractometer
3841 independent reflections
Radiation source: fine-focus sealed tube1655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.982, Tmax = 0.990l = 1515
8701 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.097Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0643P)2]
where P = (Fo2 + 2Fc2)/3
3841 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H18N2Oγ = 90.83 (3)°
Mr = 326.38V = 851.7 (2) Å3
Triclinic, P1Z = 2
a = 7.5841 (10) ÅMo Kα radiation
b = 10.1890 (15) ŵ = 0.08 mm1
c = 11.9745 (15) ÅT = 295 K
α = 111.00 (3)°0.18 × 0.15 × 0.12 mm
β = 98.64 (5)°
Data collection top
Rigaku SCXmini
diffractometer
3841 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1655 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.990Rint = 0.078
8701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0970 restraints
wR(F2) = 0.218H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.23 e Å3
3841 reflectionsΔρmin = 0.22 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0666 (3)0.3873 (3)0.8523 (2)0.0617 (8)
H1A1.14140.45230.86580.093*
N10.7935 (4)0.2729 (3)0.9263 (3)0.0566 (9)
H1B0.89640.30930.96820.068*
N20.6664 (4)0.4120 (3)1.0857 (3)0.0530 (8)
C10.7861 (5)0.1892 (4)0.7972 (3)0.0485 (9)
C20.7985 (5)0.2805 (4)0.7231 (3)0.0470 (9)
C30.9439 (5)0.3761 (4)0.7531 (3)0.0520 (10)
C40.9660 (6)0.4595 (4)0.6832 (4)0.0642 (11)
H41.06590.52280.70410.077*
C50.8400 (6)0.4467 (5)0.5847 (4)0.0700 (12)
H50.85590.50090.53840.084*
C60.6862 (6)0.3526 (4)0.5520 (3)0.0604 (11)
C70.6633 (5)0.2706 (4)0.6231 (3)0.0545 (10)
C80.5032 (6)0.1824 (4)0.5882 (4)0.0720 (13)
H80.48220.12760.63310.086*
C90.3793 (7)0.1749 (5)0.4913 (5)0.0960 (17)
H90.27510.11650.47180.115*
C100.4070 (8)0.2538 (6)0.4213 (5)0.0990 (19)
H100.32220.24670.35420.119*
C110.5562 (7)0.3408 (5)0.4499 (4)0.0817 (14)
H110.57400.39320.40240.098*
C120.9204 (5)0.0761 (4)0.7796 (3)0.0488 (9)
C130.9214 (6)0.0125 (4)0.8453 (3)0.0650 (11)
H130.84390.00070.90100.078*
C141.0357 (7)0.1196 (5)0.8290 (4)0.0769 (13)
H141.03420.17830.87320.092*
C151.1510 (6)0.1395 (5)0.7479 (4)0.0793 (13)
H151.23110.20940.73880.095*
C161.1481 (6)0.0558 (4)0.6801 (4)0.0739 (13)
H161.22310.07180.62260.089*
C171.0346 (5)0.0526 (4)0.6962 (3)0.0607 (11)
H171.03550.10960.65060.073*
C180.6481 (5)0.2977 (4)0.9857 (3)0.0476 (9)
C190.4937 (5)0.2068 (4)0.9475 (4)0.0648 (12)
H190.48290.12540.87840.078*
C200.3584 (6)0.2405 (5)1.0143 (4)0.0775 (13)
H200.25350.18200.98900.093*
C210.3736 (6)0.3571 (5)1.1164 (4)0.0780 (13)
H210.28240.38021.16250.094*
C220.5309 (6)0.4390 (5)1.1480 (4)0.0689 (12)
H220.54430.51951.21810.083*
H660.668 (4)0.142 (3)0.776 (3)0.041 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0546 (17)0.0668 (18)0.0604 (17)0.0142 (13)0.0016 (13)0.0244 (15)
N10.0449 (19)0.068 (2)0.0469 (18)0.0050 (15)0.0048 (14)0.0102 (17)
N20.054 (2)0.053 (2)0.0499 (18)0.0025 (15)0.0178 (15)0.0124 (17)
C10.043 (2)0.050 (2)0.046 (2)0.0056 (18)0.0043 (17)0.0101 (19)
C20.054 (2)0.042 (2)0.043 (2)0.0036 (18)0.0096 (17)0.0126 (18)
C30.050 (2)0.056 (2)0.050 (2)0.0035 (19)0.0076 (19)0.019 (2)
C40.068 (3)0.061 (3)0.070 (3)0.006 (2)0.021 (2)0.028 (2)
C50.087 (3)0.074 (3)0.063 (3)0.027 (3)0.021 (2)0.038 (3)
C60.066 (3)0.054 (3)0.052 (2)0.018 (2)0.007 (2)0.010 (2)
C70.062 (3)0.047 (2)0.048 (2)0.0171 (19)0.0106 (19)0.009 (2)
C80.062 (3)0.061 (3)0.077 (3)0.000 (2)0.012 (2)0.016 (2)
C90.085 (4)0.076 (3)0.102 (4)0.002 (3)0.030 (3)0.020 (3)
C100.110 (5)0.081 (4)0.072 (3)0.024 (3)0.030 (3)0.005 (3)
C110.102 (4)0.080 (3)0.058 (3)0.037 (3)0.003 (3)0.022 (3)
C120.050 (2)0.050 (2)0.041 (2)0.0084 (17)0.0033 (17)0.0112 (19)
C130.078 (3)0.060 (3)0.058 (3)0.003 (2)0.012 (2)0.023 (2)
C140.106 (4)0.056 (3)0.075 (3)0.015 (3)0.015 (3)0.032 (3)
C150.085 (4)0.064 (3)0.089 (3)0.017 (2)0.022 (3)0.024 (3)
C160.086 (3)0.053 (3)0.085 (3)0.011 (2)0.033 (3)0.019 (3)
C170.070 (3)0.054 (3)0.060 (2)0.006 (2)0.019 (2)0.020 (2)
C180.046 (2)0.051 (2)0.048 (2)0.0019 (17)0.0073 (17)0.020 (2)
C190.060 (3)0.064 (3)0.057 (2)0.010 (2)0.013 (2)0.006 (2)
C200.054 (3)0.096 (4)0.083 (3)0.010 (2)0.017 (2)0.032 (3)
C210.063 (3)0.096 (4)0.078 (3)0.009 (3)0.033 (2)0.027 (3)
C220.072 (3)0.066 (3)0.064 (3)0.009 (2)0.024 (2)0.013 (2)
Geometric parameters (Å, º) top
O1—C31.363 (4)C9—H90.9300
O1—H1A0.8194C10—C111.349 (7)
N1—C181.378 (4)C10—H100.9300
N1—C11.466 (4)C11—H110.9300
N1—H1B0.8596C12—C171.378 (5)
N2—C181.325 (4)C12—C131.393 (5)
N2—C221.335 (5)C13—C141.381 (6)
C1—C21.508 (5)C13—H130.9300
C1—C121.528 (5)C14—C151.366 (6)
C1—H660.97 (3)C14—H140.9300
C2—C31.376 (5)C15—C161.371 (6)
C2—C71.427 (5)C15—H150.9300
C3—C41.415 (5)C16—C171.386 (5)
C4—C51.367 (5)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C61.413 (6)C18—C191.394 (5)
C5—H50.9300C19—C201.368 (5)
C6—C71.416 (5)C19—H190.9300
C6—C111.418 (5)C20—C211.354 (6)
C7—C81.415 (5)C20—H200.9300
C8—C91.357 (6)C21—C221.368 (6)
C8—H80.9300C21—H210.9300
C9—C101.388 (7)C22—H220.9300
C3—O1—H1A109.5C9—C10—H10119.8
C18—N1—C1125.0 (3)C10—C11—C6120.3 (5)
C18—N1—H1B117.5C10—C11—H11119.9
C1—N1—H1B117.5C6—C11—H11119.9
C18—N2—C22117.9 (3)C17—C12—C13118.2 (4)
N1—C1—C2112.2 (3)C17—C12—C1122.6 (3)
N1—C1—C12110.8 (3)C13—C12—C1119.0 (3)
C2—C1—C12114.6 (3)C14—C13—C12121.1 (4)
N1—C1—H66102.0 (18)C14—C13—H13119.5
C2—C1—H66109.0 (18)C12—C13—H13119.5
C12—C1—H66107.4 (19)C15—C14—C13120.0 (4)
C3—C2—C7119.2 (3)C15—C14—H14120.0
C3—C2—C1119.0 (3)C13—C14—H14120.0
C7—C2—C1121.7 (3)C14—C15—C16119.6 (4)
O1—C3—C2117.8 (3)C14—C15—H15120.2
O1—C3—C4121.0 (3)C16—C15—H15120.2
C2—C3—C4121.2 (4)C15—C16—C17120.8 (4)
C5—C4—C3119.7 (4)C15—C16—H16119.6
C5—C4—H4120.2C17—C16—H16119.6
C3—C4—H4120.2C12—C17—C16120.2 (4)
C4—C5—C6121.2 (4)C12—C17—H17119.9
C4—C5—H5119.4C16—C17—H17119.9
C6—C5—H5119.4N2—C18—N1115.6 (3)
C5—C6—C7119.0 (4)N2—C18—C19121.3 (3)
C5—C6—C11120.6 (4)N1—C18—C19123.1 (4)
C7—C6—C11120.4 (4)C20—C19—C18118.2 (4)
C8—C7—C6116.1 (4)C20—C19—H19120.9
C8—C7—C2124.3 (4)C18—C19—H19120.9
C6—C7—C2119.6 (4)C21—C20—C19121.5 (4)
C9—C8—C7122.3 (5)C21—C20—H20119.2
C9—C8—H8118.9C19—C20—H20119.2
C7—C8—H8118.9C20—C21—C22116.2 (4)
C8—C9—C10120.5 (5)C20—C21—H21121.9
C8—C9—H9119.8C22—C21—H21121.9
C10—C9—H9119.8N2—C22—C21124.8 (4)
C11—C10—C9120.4 (5)N2—C22—H22117.6
C11—C10—H10119.8C21—C22—H22117.6
C18—N1—C1—C2102.8 (4)C8—C9—C10—C111.1 (8)
C18—N1—C1—C12127.8 (4)C9—C10—C11—C60.1 (8)
N1—C1—C2—C356.8 (4)C5—C6—C11—C10178.0 (5)
C12—C1—C2—C370.6 (4)C7—C6—C11—C101.7 (6)
N1—C1—C2—C7122.9 (4)N1—C1—C12—C17132.7 (4)
C12—C1—C2—C7109.6 (4)C2—C1—C12—C174.6 (5)
C7—C2—C3—O1177.1 (3)N1—C1—C12—C1351.0 (4)
C1—C2—C3—O12.7 (5)C2—C1—C12—C13179.1 (3)
C7—C2—C3—C43.2 (5)C17—C12—C13—C141.1 (6)
C1—C2—C3—C4177.1 (3)C1—C12—C13—C14177.5 (4)
O1—C3—C4—C5179.5 (3)C12—C13—C14—C150.4 (7)
C2—C3—C4—C50.8 (6)C13—C14—C15—C162.3 (7)
C3—C4—C5—C60.8 (6)C14—C15—C16—C172.6 (7)
C4—C5—C6—C70.1 (6)C13—C12—C17—C160.7 (6)
C4—C5—C6—C11179.8 (4)C1—C12—C17—C16177.0 (3)
C5—C6—C7—C8177.7 (4)C15—C16—C17—C121.1 (6)
C11—C6—C7—C82.0 (5)C22—N2—C18—N1178.6 (3)
C5—C6—C7—C22.4 (5)C22—N2—C18—C191.1 (5)
C11—C6—C7—C2177.9 (4)C1—N1—C18—N2156.4 (3)
C3—C2—C7—C8176.2 (4)C1—N1—C18—C1926.2 (6)
C1—C2—C7—C83.6 (6)N2—C18—C19—C201.7 (6)
C3—C2—C7—C64.0 (5)N1—C18—C19—C20179.0 (4)
C1—C2—C7—C6176.3 (3)C18—C19—C20—C211.4 (7)
C6—C7—C8—C90.8 (6)C19—C20—C21—C220.4 (7)
C2—C7—C8—C9179.1 (4)C18—N2—C22—C210.1 (6)
C7—C8—C9—C100.7 (7)C20—C21—C22—N20.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2i0.821.872.677 (4)170
N1—H1B···O10.862.352.767 (4)110
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC22H18N2O
Mr326.38
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.5841 (10), 10.1890 (15), 11.9745 (15)
α, β, γ (°)111.00 (3), 98.64 (5), 90.83 (3)
V3)851.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.15 × 0.12
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.982, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8701, 3841, 1655
Rint0.078
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.097, 0.218, 1.10
No. of reflections3841
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2i0.821.872.677 (4)170.3
N1—H1B···O10.862.352.767 (4)110.2
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

This work was supported financially by Southeast University for Young Researchers (4007041027).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzatmari, I. & Fulop, F. (2004). Curr. Org. Synth. 1, 155–165.  Web of Science CrossRef CAS Google Scholar
First citationWang, W. X. & Zhao, H. (2009). Acta Cryst. E65, o1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B. & Sun, Y.-X. (2005). Acta Cryst. E61, m652–m653.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds