organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­methyl 1,1,2-tri­phenyl-2H-1λ5-phosphole-2,3,4,5-tetra­carboxyl­ate

aFaculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland, bNational Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland, and cInstitute of Atomic Energy, 05-400 Otwock-Świerk, Poland
*Correspondence e-mail: czarnoz@chem.uw.edu.pl

(Received 16 August 2010; accepted 21 September 2010; online 9 October 2010)

The title compound, C30H27O8P (1), was formed as one of two products {(1) and (2) [Krawczyk et al. (2010[Krawczyk, K. K., Wojtasiewicz, K., Maurin, J. K., Gronowska, E. & Czarnocki, Z. (2010). Acta Cryst. E66, o2792.]). Acta Cryst. E66 (cv2753)]} in the reaction of dimethyl acetyl­enedicarboxyl­ate with triphenyl­phosphine. The mol­ecule of (1) consists of a five-membered ring, in which the P atom is incorporated. One of the phenyl groups of the triphenyl­phosphine migrated to a vicinal C atom during the reaction. The five-membered ring of (1) is corrugated [r.m.s. deviation = 0.0719 (8) Å], whereas that in compound (2) is planar, the r.m.s. deviation being only 0.009 (2) Å.

Related literature

For general background to derivatives of dimethyl­enesuccinic anhydride (fulgides), see: Hadjoudis & Mavridis (2004[Hadjoudis, E. & Mavridis, M. (2004). Chem. Soc. Rev. 33, 579-588.]); Gordaliza et al. (1996[Gordaliza, M., del Corral, J. M. M., Castro, M. A., Salinero, M. A., San Feliciano, A., Dorado, J. M. & Valle, F. (1996). Synlett, pp. 1201-1202.]); Datta et al. (2001[Datta, P. K., Yau, C., Hooper, T. S., Yvon, B. L. & Charlton, J. L. (2001). J. Org. Chem. 66, 8606-8611.]); Stobbe (1893[Stobbe, H. (1893). Ber. Dtsch. Chem. Ges. 26, 2312-2319.]); Maercker (1965[Maercker, A. (1965). Org. React. 14, 270-490.]); Shaw et al. (1967[Shaw, M. A., Tebby, J. C., Ward, R. S. & Williams, D. H. (1967). J. Chem. Soc. C, pp. 2442-2446.]). For a detailed study of adduct formation from triaryl­phosphines and acetyl­ene­dicarboxyl­ate, see: Waite et al. (1971[Waite, N. E., Tebby, J. C., Ward, R. S., Shaw, M. A. & Williams, D. H. (1971). J. Chem. Soc. C, pp. 1620-1622.]). For related structures, see: Spek (1987[Spek, A. L. (1987). Acta Cryst. C43, 1233-1235.]); Thomas & Hamor (1993[Thomas, J. A. & Hamor, T. A. (1993). Acta Cryst. C49, 355-357.]); Krawczyk et al. (2010[Krawczyk, K. K., Wojtasiewicz, K., Maurin, J. K., Gronowska, E. & Czarnocki, Z. (2010). Acta Cryst. E66, o2792.]).

[Scheme 1]

Experimental

Crystal data
  • C30H27O8P

  • Mr = 546.49

  • Triclinic, [P \overline 1]

  • a = 10.445 (6) Å

  • b = 10.897 (4) Å

  • c = 13.778 (4) Å

  • α = 73.93 (3)°

  • β = 72.54 (4)°

  • γ = 69.24 (4)°

  • V = 1373.0 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.32 mm−1

  • T = 293 K

  • 0.20 × 0.12 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Ruby CCD

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD andCrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.714, Tmax = 0.885

  • 20877 measured reflections

  • 5207 independent reflections

  • 4503 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.128

  • S = 1.10

  • 5207 reflections

  • 352 parameters

  • H-atom parameters not refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD andCrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD andCrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several derivatives of dimethylenesuccinic anhydride (fulgides) have been the subject of intensive studies due to their photochromic properties (Hadjoudis & Mavridis, 2004). As early as in 1893 Stobbe (Stobbe, 1893) discovered a very effective synthetic procedure leading to E,E-diarylfulgides. The double Stobbe condensation, after some minor modifications (Gordaliza et al., 1996) still remains the method of choice in the construction of fulgide-type compounds (Datta et al., 2001). However, considering some disadvantages of this procedure, e.g. a need for the use of strong bases, which may cause resinification of some aldehydes, there have been continuous efforts towards development of alternative approaches. Especially the Wittig reaction (Maercker, 1965) between dialkyl bis[triphenylphosphoranylidene]succinates and the appropriate benzaldehydes appeared to be of particular value. The ylide component of the Wittig reaction seemed to be easily accessible by the condensation between triphenylphosphine and dialkyl acetylenedicarboxylate. However, this reaction, performed in diethyl ether, gave tetramethyl 1,1,2-triphenyl-2H-1λ5-phosphole-2,3,4,5-tetracarboxylate (1) and another adduct - trimethyl-3-methoxy-4-oxo-5-triphenylphosphoranylidenecyclopent-1-ene- 1,2,3-tricarboxylate in 42% and 21% yield respectively (Shaw et al., 1967). We found, that when dry toluene was used as a solvent, and the reaction was performed at -78°C, (1) was formed in 63% yield, and the other adduct in 28% yield. In the present comunication we report on the crystal structure of compound (1). This structure was already proposed in 1971 (Waite et al., 1971) on the basis of spectral data. The crystal structure of the other adduct could also be determined via single-crystal diffraction (Krawczyk et al., 2010).

In compound (1) (Fig. 1) two acetyl groups at C2 and C4, respectively, are almost co-planar with the five-membered ring with the dihedral angle of 11.6 (1) and 8.47 (9)°, respectively, whereas the two remaining acetyl groups at C1 and C3 are strongly rotated from the ring plane (the dihedral angles of 67.(1) and 80.51 (8)°, respectively). The phenyl rings bonded to the phosphorous atoms in (1) have similar conformations to that observed at room temperature for the parent triphenylphosphine in both polymorphic structures (Spek, 1987; Thomas & Hamor, 1993) assuring the lowest repulsion of the neighboring fragments.

Related literature top

For general background to derivatives of dimethylenesuccinic anhydride (fulgides), see: Hadjoudis & Mavridis (2004); Gordaliza et al. (1996); Datta et al. (2001); Stobbe (1893); Maercker (1965); Shaw et al. (1967). For a detailed study of adduct formation from triarylphosphines and acetylenedicarboxylate, see: Waite et al. (1971). For related structures, see: Spek (1987); Thomas & Hamor (1993); Krawczyk et al. (2010).

Experimental top

A mixture of acetylenedicarboxylate (0.5 g, 3,52 mmol) in 3 ml of dry toluene was placed in a two-neck round bottom flask, and cooled to -78°C (solid CO2/acetone bath) with stirring. The solution of triphenylphosphine (0.47 g, 1.80 mmol) in 3 ml of dry toluene was then added dropwise under argon during 20 min. The reaction was then left to reach slowly room temperature overnight. After evaporation of the solvent under reduced pressure, the remaining oil was dissolved in ethyl acetate and purified by column chromatography (Merck silica gel, 230 - 400 mesh, ethyl acetate, and then ethyl acetate/methanol 19:1 as eluent) to obtain tetramethyl-1,1,2- triphenyl-2H-1λ5-phosphole-2,3,4,5-tetracarboxylate (1) and trimethyl-3-methoxy-4-oxo-5-triphenylphosphoranylidenecyclopent-1- ene-1,2,3-tricarboxylate (2). Both products could be easily recrystallized from ethyl acetate/diethyl ether. The 2H-phosphole (1) (0.61 g, 63%) had Rf = 0.46 (ethyl acetate) and a melting point of 253–255°C (Waite, et al.1971). The second eluted product - (2) (0.27 g, 28%) - showed a green fluorescence in UV light (λ = 365 nm), had Rf = 0.18 (ethyl acetate) and melted at 243–244°C [(Waite et al., 1971), m.p. 222–224°C]. The single-crystal of (1) was obtained by slow evaporation of its ethyl acetate/hexane solution.

Refinement top

H atoms were placed in calcluated positions and were included in the refinement with Uiso(H) = 1.2Ueq(C) [1.5 in the case of methyl groups H atoms]. Isotropic displacement parameters for hydrogen atoms bonded to either oxygen or nitrogen atoms were refined independently.

Structure description top

Several derivatives of dimethylenesuccinic anhydride (fulgides) have been the subject of intensive studies due to their photochromic properties (Hadjoudis & Mavridis, 2004). As early as in 1893 Stobbe (Stobbe, 1893) discovered a very effective synthetic procedure leading to E,E-diarylfulgides. The double Stobbe condensation, after some minor modifications (Gordaliza et al., 1996) still remains the method of choice in the construction of fulgide-type compounds (Datta et al., 2001). However, considering some disadvantages of this procedure, e.g. a need for the use of strong bases, which may cause resinification of some aldehydes, there have been continuous efforts towards development of alternative approaches. Especially the Wittig reaction (Maercker, 1965) between dialkyl bis[triphenylphosphoranylidene]succinates and the appropriate benzaldehydes appeared to be of particular value. The ylide component of the Wittig reaction seemed to be easily accessible by the condensation between triphenylphosphine and dialkyl acetylenedicarboxylate. However, this reaction, performed in diethyl ether, gave tetramethyl 1,1,2-triphenyl-2H-1λ5-phosphole-2,3,4,5-tetracarboxylate (1) and another adduct - trimethyl-3-methoxy-4-oxo-5-triphenylphosphoranylidenecyclopent-1-ene- 1,2,3-tricarboxylate in 42% and 21% yield respectively (Shaw et al., 1967). We found, that when dry toluene was used as a solvent, and the reaction was performed at -78°C, (1) was formed in 63% yield, and the other adduct in 28% yield. In the present comunication we report on the crystal structure of compound (1). This structure was already proposed in 1971 (Waite et al., 1971) on the basis of spectral data. The crystal structure of the other adduct could also be determined via single-crystal diffraction (Krawczyk et al., 2010).

In compound (1) (Fig. 1) two acetyl groups at C2 and C4, respectively, are almost co-planar with the five-membered ring with the dihedral angle of 11.6 (1) and 8.47 (9)°, respectively, whereas the two remaining acetyl groups at C1 and C3 are strongly rotated from the ring plane (the dihedral angles of 67.(1) and 80.51 (8)°, respectively). The phenyl rings bonded to the phosphorous atoms in (1) have similar conformations to that observed at room temperature for the parent triphenylphosphine in both polymorphic structures (Spek, 1987; Thomas & Hamor, 1993) assuring the lowest repulsion of the neighboring fragments.

For general background to derivatives of dimethylenesuccinic anhydride (fulgides), see: Hadjoudis & Mavridis (2004); Gordaliza et al. (1996); Datta et al. (2001); Stobbe (1893); Maercker (1965); Shaw et al. (1967). For a detailed study of adduct formation from triarylphosphines and acetylenedicarboxylate, see: Waite et al. (1971). For related structures, see: Spek (1987); Thomas & Hamor (1993); Krawczyk et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (1) showing the atomic labelling and 30% probability displacement ellipsoids.
Tetramethyl 1,1,2-triphenyl-2H-1λ5-phosphole-2,3,4,5-tetracarboxylate top
Crystal data top
C30H27O8PF(000) = 572
Mr = 546.49Dx = 1.322 Mg m3
Triclinic, P1Melting point: 527 K
a = 10.445 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.897 (4) ÅCell parameters from 13436 reflections
c = 13.778 (4) Åθ = 3.4–70.3°
α = 73.93 (3)°µ = 1.32 mm1
β = 72.54 (4)°T = 293 K
γ = 69.24 (4)°Parallelepiped, colourless
V = 1373.0 (10) Å30.20 × 0.12 × 0.04 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby CCD
5207 independent reflections
Radiation source: Enhance (Cu) X-ray Source4503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.4922 pixels mm-1θmax = 70.9°, θmin = 3.4°
ο and φ scansh = 1212
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1313
Tmin = 0.714, Tmax = 0.885l = 1616
20877 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters not refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0892P)2 + 0.105P]
where P = (Fo2 + 2Fc2)/3
5207 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C30H27O8Pγ = 69.24 (4)°
Mr = 546.49V = 1373.0 (10) Å3
Triclinic, P1Z = 2
a = 10.445 (6) ÅCu Kα radiation
b = 10.897 (4) ŵ = 1.32 mm1
c = 13.778 (4) ÅT = 293 K
α = 73.93 (3)°0.20 × 0.12 × 0.04 mm
β = 72.54 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby CCD
5207 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
4503 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.885Rint = 0.032
20877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.128H-atom parameters not refined
S = 1.10Δρmax = 0.33 e Å3
5207 reflectionsΔρmin = 0.24 e Å3
352 parameters
Special details top

Experimental. Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.87807 (4)0.28700 (3)0.28773 (3)0.03454 (13)
O10.74905 (14)0.07868 (13)0.47544 (10)0.0626 (4)
O20.56979 (14)0.26500 (16)0.47158 (9)0.0707 (4)
O30.38795 (12)0.44323 (14)0.23622 (10)0.0600 (3)
O40.45565 (13)0.23001 (13)0.31754 (11)0.0608 (3)
O50.52801 (15)0.67511 (12)0.19216 (10)0.0620 (4)
O60.58094 (12)0.56597 (11)0.06301 (8)0.0463 (3)
O70.85225 (13)0.62633 (11)0.08444 (10)0.0549 (3)
O81.01365 (12)0.49540 (11)0.17693 (9)0.0489 (3)
C10.72232 (15)0.22390 (14)0.31095 (11)0.0364 (3)
C20.61807 (15)0.34781 (15)0.26462 (11)0.0383 (3)
C30.67344 (15)0.44912 (14)0.20778 (11)0.0368 (3)
C40.81626 (15)0.43265 (14)0.20266 (11)0.0381 (3)
C50.68130 (17)0.17803 (17)0.42808 (12)0.0458 (4)
C60.5292 (3)0.2358 (4)0.58405 (17)0.1184 (13)
H6A0.44660.30480.60760.178*
H6B0.60440.23190.61230.178*
H6C0.50970.15130.60650.178*
C70.47704 (16)0.34920 (17)0.26968 (12)0.0439 (4)
C80.3211 (2)0.2186 (3)0.3245 (2)0.0829 (7)
H8A0.31710.13040.35990.124*
H8B0.30630.23460.25600.124*
H8C0.24950.28330.36210.124*
C90.58512 (16)0.57734 (15)0.15500 (12)0.0413 (3)
C100.4878 (2)0.6777 (2)0.00915 (16)0.0659 (5)
H10A0.49260.65970.05640.099*
H10B0.51550.75660.00210.099*
H10C0.39340.69140.05000.099*
C110.89050 (16)0.52834 (14)0.14811 (11)0.0398 (3)
C121.1076 (2)0.5725 (2)0.11739 (17)0.0631 (5)
H12A1.19090.54100.14420.095*
H12B1.06220.66500.12190.095*
H12C1.13260.56320.04630.095*
C130.76060 (16)0.11180 (15)0.24985 (12)0.0417 (3)
C140.79602 (19)0.14481 (18)0.14288 (14)0.0520 (4)
H140.79910.23130.11120.062*
C150.8269 (2)0.0515 (2)0.08212 (17)0.0666 (5)
H150.85170.07510.01030.080*
C160.8210 (3)0.0755 (2)0.1277 (2)0.0758 (6)
H160.84110.13820.08700.091*
C170.7855 (3)0.1097 (2)0.2332 (2)0.0795 (7)
H170.78140.19610.26410.095*
C180.7554 (2)0.01671 (18)0.29509 (17)0.0617 (5)
H180.73190.04130.36690.074*
C191.03797 (15)0.16713 (15)0.24022 (12)0.0386 (3)
C201.07591 (19)0.03839 (16)0.29863 (14)0.0514 (4)
H201.01970.01520.36300.062*
C211.1982 (2)0.05435 (18)0.25964 (19)0.0651 (5)
H211.22410.14040.29810.078*
C221.2813 (2)0.0205 (2)0.16489 (19)0.0674 (5)
H221.36430.08300.14010.081*
C231.24248 (19)0.1049 (2)0.10654 (15)0.0586 (5)
H231.29880.12680.04180.070*
C241.11999 (17)0.19945 (16)0.14305 (12)0.0452 (4)
H241.09310.28400.10260.054*
C250.88459 (16)0.32367 (15)0.40546 (12)0.0422 (3)
C260.97926 (18)0.24694 (18)0.46578 (13)0.0492 (4)
H261.04610.16930.44690.059*
C270.9748 (2)0.2854 (2)0.55454 (15)0.0661 (5)
H271.04020.23430.59440.079*
C280.8755 (3)0.3978 (3)0.58435 (17)0.0789 (6)
H280.87290.42270.64440.095*
C290.7807 (3)0.4726 (3)0.5259 (2)0.0965 (9)
H290.71220.54840.54670.116*
C300.7848 (3)0.4378 (2)0.43626 (18)0.0789 (7)
H300.72030.49100.39610.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0331 (2)0.0310 (2)0.0361 (2)0.00411 (15)0.01189 (14)0.00373 (14)
O10.0660 (8)0.0580 (8)0.0472 (7)0.0097 (7)0.0169 (6)0.0087 (6)
O20.0576 (8)0.0871 (10)0.0400 (6)0.0074 (7)0.0074 (6)0.0113 (6)
O30.0386 (6)0.0697 (8)0.0637 (8)0.0056 (6)0.0192 (5)0.0055 (6)
O40.0423 (6)0.0612 (8)0.0795 (9)0.0201 (6)0.0157 (6)0.0060 (6)
O50.0722 (8)0.0435 (6)0.0633 (7)0.0130 (6)0.0303 (6)0.0223 (6)
O60.0543 (6)0.0410 (6)0.0410 (6)0.0028 (5)0.0215 (5)0.0068 (4)
O70.0622 (7)0.0400 (6)0.0618 (7)0.0175 (6)0.0285 (6)0.0100 (5)
O80.0456 (6)0.0440 (6)0.0573 (7)0.0155 (5)0.0196 (5)0.0015 (5)
C10.0332 (7)0.0361 (7)0.0372 (7)0.0083 (6)0.0099 (5)0.0031 (6)
C20.0346 (7)0.0391 (7)0.0380 (7)0.0039 (6)0.0117 (6)0.0077 (6)
C30.0379 (7)0.0347 (7)0.0356 (7)0.0014 (6)0.0139 (6)0.0093 (6)
C40.0395 (7)0.0309 (7)0.0404 (7)0.0051 (6)0.0144 (6)0.0026 (5)
C50.0428 (8)0.0503 (9)0.0406 (8)0.0146 (7)0.0097 (6)0.0017 (7)
C60.0901 (19)0.162 (3)0.0423 (11)0.0193 (19)0.0018 (11)0.0134 (15)
C70.0366 (7)0.0540 (9)0.0395 (7)0.0072 (7)0.0096 (6)0.0133 (7)
C80.0564 (12)0.0940 (17)0.1114 (19)0.0385 (12)0.0180 (12)0.0192 (15)
C90.0412 (8)0.0369 (7)0.0422 (8)0.0004 (6)0.0156 (6)0.0099 (6)
C100.0837 (14)0.0527 (10)0.0630 (11)0.0071 (10)0.0465 (11)0.0017 (9)
C110.0455 (8)0.0315 (7)0.0417 (7)0.0076 (6)0.0149 (6)0.0054 (6)
C120.0531 (10)0.0639 (11)0.0758 (13)0.0278 (9)0.0145 (9)0.0047 (10)
C130.0370 (7)0.0365 (7)0.0516 (8)0.0076 (6)0.0147 (6)0.0077 (6)
C140.0590 (10)0.0472 (9)0.0503 (9)0.0108 (8)0.0158 (8)0.0129 (7)
C150.0774 (13)0.0631 (12)0.0621 (11)0.0089 (10)0.0212 (10)0.0260 (9)
C160.0861 (15)0.0580 (12)0.0943 (17)0.0055 (11)0.0352 (13)0.0363 (12)
C170.0990 (17)0.0417 (10)0.1046 (19)0.0212 (11)0.0300 (14)0.0160 (11)
C180.0737 (12)0.0437 (9)0.0665 (11)0.0186 (9)0.0187 (10)0.0042 (8)
C190.0345 (7)0.0354 (7)0.0441 (7)0.0036 (6)0.0146 (6)0.0075 (6)
C200.0491 (9)0.0397 (8)0.0572 (10)0.0055 (7)0.0166 (8)0.0014 (7)
C210.0596 (11)0.0380 (9)0.0876 (14)0.0051 (8)0.0289 (11)0.0087 (9)
C220.0480 (10)0.0590 (11)0.0890 (15)0.0070 (9)0.0155 (10)0.0343 (11)
C230.0475 (9)0.0654 (11)0.0585 (10)0.0068 (8)0.0037 (8)0.0272 (9)
C240.0459 (8)0.0445 (8)0.0433 (8)0.0083 (7)0.0120 (7)0.0099 (7)
C250.0444 (8)0.0421 (8)0.0414 (7)0.0109 (7)0.0132 (6)0.0085 (6)
C260.0490 (9)0.0516 (9)0.0455 (8)0.0133 (8)0.0167 (7)0.0026 (7)
C270.0751 (13)0.0788 (14)0.0506 (10)0.0234 (11)0.0307 (9)0.0029 (9)
C280.1066 (18)0.0837 (15)0.0560 (11)0.0224 (14)0.0288 (12)0.0244 (11)
C290.116 (2)0.0873 (17)0.0825 (16)0.0170 (16)0.0434 (15)0.0498 (14)
C300.0877 (15)0.0693 (13)0.0761 (14)0.0194 (12)0.0430 (12)0.0377 (11)
Geometric parameters (Å, º) top
P1—C41.7342 (17)C12—H12C0.9600
P1—C191.7872 (19)C13—C181.379 (2)
P1—C251.8001 (16)C13—C141.383 (2)
P1—C11.8921 (17)C14—C151.384 (3)
O1—C51.201 (2)C14—H140.9300
O2—C51.314 (2)C15—C161.367 (3)
O2—C61.453 (3)C15—H150.9300
O3—C71.204 (2)C16—C171.365 (4)
O4—C71.347 (2)C16—H160.9300
O4—C81.426 (2)C17—C181.395 (3)
O5—C91.192 (2)C17—H170.9300
O6—C91.3220 (19)C18—H180.9300
O6—C101.440 (2)C19—C241.384 (2)
O7—C111.2078 (19)C19—C201.395 (2)
O8—C111.357 (2)C20—C211.384 (3)
O8—C121.436 (2)C20—H200.9300
C1—C21.521 (2)C21—C221.369 (3)
C1—C51.526 (2)C21—H210.9300
C1—C131.543 (2)C22—C231.369 (3)
C2—C31.367 (2)C22—H220.9300
C2—C71.448 (2)C23—C241.385 (3)
C3—C41.420 (2)C23—H230.9300
C3—C91.503 (2)C24—H240.9300
C4—C111.429 (2)C25—C261.375 (2)
C6—H6A0.9600C25—C301.386 (3)
C6—H6B0.9600C26—C271.382 (3)
C6—H6C0.9600C26—H260.9300
C8—H8A0.9600C27—C281.366 (3)
C8—H8B0.9600C27—H270.9300
C8—H8C0.9600C28—C291.355 (4)
C10—H10A0.9600C28—H280.9300
C10—H10B0.9600C29—C301.374 (3)
C10—H10C0.9600C29—H290.9300
C12—H12A0.9600C30—H300.9300
C12—H12B0.9600
C4—P1—C19118.31 (8)O8—C12—H12C109.5
C4—P1—C25111.01 (8)H12A—C12—H12C109.5
C19—P1—C25110.45 (8)H12B—C12—H12C109.5
C4—P1—C195.25 (8)C18—C13—C14118.39 (16)
C19—P1—C1110.67 (8)C18—C13—C1124.08 (16)
C25—P1—C1110.13 (8)C14—C13—C1117.46 (14)
C5—O2—C6116.29 (17)C13—C14—C15121.17 (18)
C7—O4—C8116.36 (17)C13—C14—H14119.4
C9—O6—C10115.99 (13)C15—C14—H14119.4
C11—O8—C12116.43 (14)C16—C15—C14120.0 (2)
C2—C1—C5115.65 (13)C16—C15—H15120.0
C2—C1—C13109.52 (12)C14—C15—H15120.0
C5—C1—C13113.31 (13)C17—C16—C15119.67 (19)
C2—C1—P1101.49 (10)C17—C16—H16120.2
C5—C1—P1105.46 (10)C15—C16—H16120.2
C13—C1—P1110.62 (10)C16—C17—C18120.8 (2)
C3—C2—C7123.29 (14)C16—C17—H17119.6
C3—C2—C1114.70 (13)C18—C17—H17119.6
C7—C2—C1121.52 (14)C13—C18—C17120.0 (2)
C2—C3—C4118.33 (14)C13—C18—H18120.0
C2—C3—C9121.37 (14)C17—C18—H18120.0
C4—C3—C9120.26 (14)C24—C19—C20119.92 (15)
C3—C4—C11125.85 (14)C24—C19—P1120.09 (12)
C3—C4—P1108.19 (12)C20—C19—P1119.89 (13)
C11—C4—P1125.44 (12)C21—C20—C19119.24 (18)
O1—C5—O2124.05 (16)C21—C20—H20120.4
O1—C5—C1123.65 (15)C19—C20—H20120.4
O2—C5—C1112.10 (14)C22—C21—C20120.56 (18)
O2—C6—H6A109.5C22—C21—H21119.7
O2—C6—H6B109.5C20—C21—H21119.7
H6A—C6—H6B109.5C23—C22—C21120.22 (17)
O2—C6—H6C109.5C23—C22—H22119.9
H6A—C6—H6C109.5C21—C22—H22119.9
H6B—C6—H6C109.5C22—C23—C24120.53 (18)
O3—C7—O4122.88 (15)C22—C23—H23119.7
O3—C7—C2125.66 (17)C24—C23—H23119.7
O4—C7—C2111.46 (14)C23—C24—C19119.47 (16)
O4—C8—H8A109.5C23—C24—H24120.3
O4—C8—H8B109.5C19—C24—H24120.3
H8A—C8—H8B109.5C26—C25—C30118.85 (16)
O4—C8—H8C109.5C26—C25—P1124.91 (13)
H8A—C8—H8C109.5C30—C25—P1116.24 (13)
H8B—C8—H8C109.5C25—C26—C27119.85 (18)
O5—C9—O6125.55 (14)C25—C26—H26120.1
O5—C9—C3123.73 (14)C27—C26—H26120.1
O6—C9—C3110.72 (12)C28—C27—C26120.73 (19)
O6—C10—H10A109.5C28—C27—H27119.6
O6—C10—H10B109.5C26—C27—H27119.6
H10A—C10—H10B109.5C29—C28—C27119.59 (19)
O6—C10—H10C109.5C29—C28—H28120.2
H10A—C10—H10C109.5C27—C28—H28120.2
H10B—C10—H10C109.5C28—C29—C30120.7 (2)
O7—C11—O8122.87 (14)C28—C29—H29119.6
O7—C11—C4126.20 (15)C30—C29—H29119.6
O8—C11—C4110.93 (13)C29—C30—C25120.2 (2)
O8—C12—H12A109.5C29—C30—H30119.9
O8—C12—H12B109.5C25—C30—H30119.9
H12A—C12—H12B109.5
C4—P1—C1—C212.94 (10)C12—O8—C11—O78.6 (2)
C19—P1—C1—C2135.88 (10)C12—O8—C11—C4171.39 (14)
C25—P1—C1—C2101.72 (11)C3—C4—C11—O713.6 (3)
C4—P1—C1—C5133.91 (11)P1—C4—C11—O7175.67 (13)
C19—P1—C1—C5103.16 (11)C3—C4—C11—O8166.45 (13)
C25—P1—C1—C519.25 (12)P1—C4—C11—O84.29 (19)
C4—P1—C1—C13103.22 (11)C2—C1—C13—C18129.20 (17)
C19—P1—C1—C1319.72 (12)C5—C1—C13—C181.6 (2)
C25—P1—C1—C13142.12 (11)P1—C1—C13—C18119.74 (16)
C5—C1—C2—C3124.77 (14)C2—C1—C13—C1447.76 (18)
C13—C1—C2—C3105.73 (14)C5—C1—C13—C14178.51 (14)
P1—C1—C2—C311.24 (14)P1—C1—C13—C1463.30 (17)
C5—C1—C2—C763.05 (18)C18—C13—C14—C150.6 (3)
C13—C1—C2—C766.44 (17)C1—C13—C14—C15177.72 (17)
P1—C1—C2—C7176.59 (11)C13—C14—C15—C160.8 (3)
C7—C2—C3—C4175.57 (13)C14—C15—C16—C170.5 (4)
C1—C2—C3—C43.56 (19)C15—C16—C17—C180.1 (4)
C7—C2—C3—C96.7 (2)C14—C13—C18—C170.0 (3)
C1—C2—C3—C9178.76 (12)C1—C13—C18—C17176.93 (18)
C2—C3—C4—C11179.26 (14)C16—C17—C18—C130.4 (4)
C9—C3—C4—C111.5 (2)C4—P1—C19—C249.56 (15)
C2—C3—C4—P17.20 (16)C25—P1—C19—C24119.90 (13)
C9—C3—C4—P1170.51 (10)C1—P1—C19—C24117.88 (13)
C19—P1—C4—C3128.76 (11)C4—P1—C19—C20166.72 (12)
C25—P1—C4—C3102.04 (12)C25—P1—C19—C2063.82 (15)
C1—P1—C4—C311.88 (11)C1—P1—C19—C2058.40 (15)
C19—P1—C4—C1159.14 (15)C24—C19—C20—C212.1 (3)
C25—P1—C4—C1170.06 (15)P1—C19—C20—C21178.33 (14)
C1—P1—C4—C11176.01 (13)C19—C20—C21—C220.0 (3)
C6—O2—C5—O10.0 (3)C20—C21—C22—C231.5 (3)
C6—O2—C5—C1175.0 (2)C21—C22—C23—C240.9 (3)
C2—C1—C5—O1176.41 (15)C22—C23—C24—C191.2 (3)
C13—C1—C5—O148.8 (2)C20—C19—C24—C232.7 (2)
P1—C1—C5—O172.36 (19)P1—C19—C24—C23178.96 (13)
C2—C1—C5—O28.5 (2)C4—P1—C25—C26149.65 (14)
C13—C1—C5—O2136.16 (15)C19—P1—C25—C2616.38 (17)
P1—C1—C5—O2102.70 (15)C1—P1—C25—C26106.15 (16)
C8—O4—C7—O31.7 (3)C4—P1—C25—C3030.89 (19)
C8—O4—C7—C2178.33 (17)C19—P1—C25—C30164.16 (17)
C3—C2—C7—O39.5 (2)C1—P1—C25—C3073.31 (19)
C1—C2—C7—O3179.04 (15)C30—C25—C26—C270.9 (3)
C3—C2—C7—O4170.58 (14)P1—C25—C26—C27179.64 (15)
C1—C2—C7—O40.9 (2)C25—C26—C27—C281.3 (3)
C10—O6—C9—O56.5 (3)C26—C27—C28—C290.3 (4)
C10—O6—C9—C3173.85 (15)C27—C28—C29—C300.9 (5)
C2—C3—C9—O594.9 (2)C28—C29—C30—C251.3 (5)
C4—C3—C9—O582.8 (2)C26—C25—C30—C290.4 (4)
C2—C3—C9—O685.44 (17)P1—C25—C30—C29179.1 (2)
C4—C3—C9—O696.92 (17)

Experimental details

Crystal data
Chemical formulaC30H27O8P
Mr546.49
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.445 (6), 10.897 (4), 13.778 (4)
α, β, γ (°)73.93 (3), 72.54 (4), 69.24 (4)
V3)1373.0 (10)
Z2
Radiation typeCu Kα
µ (mm1)1.32
Crystal size (mm)0.20 × 0.12 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Ruby CCD
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.714, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
20877, 5207, 4503
Rint0.032
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.128, 1.10
No. of reflections5207
No. of parameters352
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Polish Ministry of Science and Higher Education for financial support (grant No. N204 030636).

References

First citationDatta, P. K., Yau, C., Hooper, T. S., Yvon, B. L. & Charlton, J. L. (2001). J. Org. Chem. 66, 8606–8611.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGordaliza, M., del Corral, J. M. M., Castro, M. A., Salinero, M. A., San Feliciano, A., Dorado, J. M. & Valle, F. (1996). Synlett, pp. 1201–1202.  CrossRef Google Scholar
First citationHadjoudis, E. & Mavridis, M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationKrawczyk, K. K., Wojtasiewicz, K., Maurin, J. K., Gronowska, E. & Czarnocki, Z. (2010). Acta Cryst. E66, o2792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaercker, A. (1965). Org. React. 14, 270–490.  CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD andCrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationShaw, M. A., Tebby, J. C., Ward, R. S. & Williams, D. H. (1967). J. Chem. Soc. C, pp. 2442–2446.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1987). Acta Cryst. C43, 1233–1235.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationStobbe, H. (1893). Ber. Dtsch. Chem. Ges. 26, 2312–2319.  CrossRef Google Scholar
First citationThomas, J. A. & Hamor, T. A. (1993). Acta Cryst. C49, 355–357.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWaite, N. E., Tebby, J. C., Ward, R. S., Shaw, M. A. & Williams, D. H. (1971). J. Chem. Soc. C, pp. 1620–1622.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds