organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

o-Benzo­quinone dioxime

aDipartimento di Chimica I.F.M.,University of Turin, Via P. Giuria 7, 10125, Torino, Italy
*Correspondence e-mail: giuliana.gervasio@unito.it

(Received 14 September 2010; accepted 4 October 2010; online 9 October 2010)

The title compound, C6H6N2O2, was obtained as a product of an in vitro study of the metabolism of benzofuroxan. The molecule exhibits a amphi configuration of the oxime groups C=N—OH. One oxime group is involved in the formation of a strong intra­molecular O—H⋯N hydrogen bond, while another links mol­ecules into zigzag chains along the c axis via inter­molecular O—H⋯N hydrogen bonds.

Related literature

For details of the synthesis, see: Grosa et al. (2004[Grosa, G., Galli, U., Rolando, B., Fruttero, R., Gervasio, G. & Gasco, A. (2004). Xenobiotica, 34, 345-352.]). For a related structure, see: Mégnamisi-Bélombé & Endres (1985[Mégnamisi-Bélombé, M. & Endres, H. (1985). Acta Cryst. C41, 513-515.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N2O2

  • Mr = 138.13

  • Orthorhombic, P c a 21

  • a = 15.009 (5) Å

  • b = 3.8181 (13) Å

  • c = 10.694 (3) Å

  • V = 612.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.24 × 0.12 × 0.04 mm

Data collection
  • Siemens–Bruker APEX diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.856, Tmax = 1.000

  • 2330 measured reflections

  • 468 independent reflections

  • 418 reflections with I > 2σ(I)

  • Rint = 0.055

  • θmax = 23.3°

  • 11 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.01

  • 468 reflections

  • 99 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.85 (7) 1.92 (7) 2.745 (4) 162 (6)
O2—H2⋯N1 1.06 (8) 1.57 (8) 2.532 (4) 147 (6)
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, o-benzoquinone dioxime, has been obtained according to Grosa et al. (2004). In the C1—C6 ring the C3-C4 and C5-C6 bond distances correspond to formal double bonds (1.336 (5) Å av.). Also the C1-N1 and C2-N2 distances agree with a double bond character (1.304 (5) Å av.). Noteworthy is the presence of a strong intramolecular hydrogen bond O2-H2···N2 that probably stabilize the syn form of the dioxime. A further intermolecular hydrogen bond O1-H1..N2 forms chains of molecules. O-benzoquinone dioxime is known as an excellent ligand which forms bis-chelated transition metal complexes especially with the dipositive metal ions of the Ni triad (cf. Mégnamisi-Bélombé & Endres, 1985).

Related literature top

For details of the synthesis, see: Grosa et al. (2004). For a related structure, see: Mégnamisi-Bélombé & Endres (1985).

Experimental top

The o-benzoquinone dioxime has been otained according to Grosa et al. (2004)

Refinement top

A very small and poorly diffracting crystal has been used; it was not possible to obtain a better crystal because it is a product of a metabolism. C-bound H atoms were placed in geometrically idealized positions (C—H = 0.93 Å), and refined as riding, with Uiso(H) = 1.2Ueq(C). Two O-bound H atoms were located on a difference map and refined isotropically. A restraint has been imposed on the planarity of the hexagonal ring. In the absence of any significant anomalous scatterers in the molecule, 368 Friedel pairs were merged before the final refinement.

Structure description top

The title compound, o-benzoquinone dioxime, has been obtained according to Grosa et al. (2004). In the C1—C6 ring the C3-C4 and C5-C6 bond distances correspond to formal double bonds (1.336 (5) Å av.). Also the C1-N1 and C2-N2 distances agree with a double bond character (1.304 (5) Å av.). Noteworthy is the presence of a strong intramolecular hydrogen bond O2-H2···N2 that probably stabilize the syn form of the dioxime. A further intermolecular hydrogen bond O1-H1..N2 forms chains of molecules. O-benzoquinone dioxime is known as an excellent ligand which forms bis-chelated transition metal complexes especially with the dipositive metal ions of the Ni triad (cf. Mégnamisi-Bélombé & Endres, 1985).

For details of the synthesis, see: Grosa et al. (2004). For a related structure, see: Mégnamisi-Bélombé & Endres (1985).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of trhe title compound showing the atomic numbering and 50% of probability displacements ellipsoids.
o-Benzoquinone dioxime top
Crystal data top
C6H6N2O2Dx = 1.497 Mg m3
Mr = 138.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 500 reflections
a = 15.009 (5) Åθ = 2.7–23.3°
b = 3.8181 (13) ŵ = 0.12 mm1
c = 10.694 (3) ÅT = 293 K
V = 612.8 (4) Å3Prism, orange
Z = 40.24 × 0.12 × 0.04 mm
F(000) = 288
Data collection top
Siemens–Bruker APEX
diffractometer
418 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 23.3°, θmin = 2.7°
φ scansh = 1616
Absorption correction: multi-scan
(Blessing, 1995)
k = 43
Tmin = 0.856, Tmax = 1.000l = 1111
2330 measured reflections11 standard reflections every 60 min
468 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0605P)2]
where P = (Fo2 + 2Fc2)/3
468 reflections(Δ/σ)max < 0.001
99 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C6H6N2O2V = 612.8 (4) Å3
Mr = 138.13Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 15.009 (5) ŵ = 0.12 mm1
b = 3.8181 (13) ÅT = 293 K
c = 10.694 (3) Å0.24 × 0.12 × 0.04 mm
Data collection top
Siemens–Bruker APEX
diffractometer
418 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1995)
Rint = 0.055
Tmin = 0.856, Tmax = 1.000θmax = 23.3°
2330 measured reflections11 standard reflections every 60 min
468 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.19 e Å3
468 reflectionsΔρmin = 0.13 e Å3
99 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6109 (3)0.3317 (8)0.4796 (3)0.0377 (8)
C20.5481 (2)0.2457 (9)0.5795 (3)0.0377 (8)
C30.5843 (3)0.0751 (9)0.6896 (3)0.0479 (10)
H3A0.54610.01190.75430.057*
C40.6706 (3)0.0072 (9)0.6998 (3)0.0520 (12)
H4A0.69190.10430.77110.062*
C50.7312 (3)0.1027 (10)0.6031 (3)0.0532 (10)
H5A0.79160.05520.61280.064*
C60.7028 (3)0.2599 (9)0.4981 (3)0.0461 (9)
H6A0.74370.32250.43680.055*
N10.5761 (2)0.4735 (7)0.3794 (3)0.0426 (8)
N20.4629 (2)0.3068 (8)0.5828 (3)0.0489 (8)
O10.6388 (2)0.5573 (8)0.2905 (2)0.0561 (8)
H10.603 (4)0.638 (17)0.236 (6)0.11 (2)*
O20.4235 (2)0.4598 (7)0.4801 (2)0.0584 (9)
H20.477 (5)0.541 (17)0.422 (6)0.13 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.0412 (18)0.0267 (15)0.0013 (15)0.0039 (15)0.0047 (13)
C20.043 (2)0.0426 (19)0.0278 (15)0.0044 (16)0.0022 (16)0.0053 (14)
C30.067 (3)0.046 (2)0.0306 (17)0.0030 (17)0.0005 (18)0.0007 (18)
C40.072 (3)0.050 (2)0.035 (2)0.004 (2)0.018 (2)0.0031 (14)
C50.054 (3)0.055 (2)0.050 (2)0.0067 (19)0.012 (2)0.0059 (17)
C60.047 (2)0.053 (2)0.0382 (18)0.0039 (18)0.0018 (17)0.0051 (17)
N10.041 (2)0.0576 (19)0.0294 (14)0.0035 (13)0.0044 (16)0.0011 (12)
N20.051 (2)0.0646 (18)0.0306 (14)0.0003 (17)0.0034 (15)0.0015 (16)
O10.0470 (18)0.091 (2)0.0303 (12)0.0017 (14)0.0032 (14)0.0104 (13)
O20.046 (2)0.090 (2)0.0393 (14)0.0042 (14)0.0021 (14)0.0018 (13)
Geometric parameters (Å, º) top
C1—N11.309 (5)C4—H4A0.9300
C1—C61.420 (5)C5—C61.342 (5)
C1—C21.462 (5)C5—H5A0.9300
C2—N21.299 (4)C6—H6A0.9300
C2—C31.450 (5)N1—O11.375 (4)
C3—C41.326 (6)N2—O21.377 (4)
C3—H3A0.9300O1—H10.85 (7)
C4—C51.425 (6)O2—H21.06 (8)
N1—C1—C6125.5 (3)C5—C4—H4A119.5
N1—C1—C2115.8 (3)C6—C5—C4121.2 (4)
C6—C1—C2118.7 (3)C6—C5—H5A119.4
N2—C2—C3115.3 (3)C4—C5—H5A119.4
N2—C2—C1127.8 (3)C5—C6—C1120.8 (4)
C3—C2—C1116.9 (3)C5—C6—H6A119.6
C4—C3—C2121.4 (4)C1—C6—H6A119.6
C4—C3—H3A119.3C1—N1—O1112.9 (3)
C2—C3—H3A119.3C2—N2—O2118.5 (3)
C3—C4—C5120.9 (3)N1—O1—H197 (4)
C3—C4—H4A119.5N2—O2—H2105 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.85 (7)1.92 (7)2.745 (4)162 (6)
O2—H2···N11.06 (8)1.57 (8)2.532 (4)147 (6)
Symmetry code: (i) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC6H6N2O2
Mr138.13
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)15.009 (5), 3.8181 (13), 10.694 (3)
V3)612.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.12 × 0.04
Data collection
DiffractometerSiemens–Bruker APEX
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.856, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2330, 468, 418
Rint0.055
θmax (°)23.3
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.01
No. of reflections468
No. of parameters99
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.13

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.85 (7)1.92 (7)2.745 (4)162 (6)
O2—H2···N11.06 (8)1.57 (8)2.532 (4)147 (6)
Symmetry code: (i) x+1, y+1, z1/2.
 

Acknowledgements

We thank Professor A. Gasco for supplying crystals of the title compound.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrosa, G., Galli, U., Rolando, B., Fruttero, R., Gervasio, G. & Gasco, A. (2004). Xenobiotica, 34, 345–352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMégnamisi-Bélombé, M. & Endres, H. (1985). Acta Cryst. C41, 513–515.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds