metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2,4-di­methyl­benzene­thiol­ato)phenyl­tin(IV)

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico
*Correspondence e-mail: simonho@unam.mx, joseivan@unam.mx

(Received 20 September 2010; accepted 5 October 2010; online 13 October 2010)

In the title compound, [Sn(C6H5)(C8H9S)3], the Sn atom has an approximately tetra­hedral SNCS3 geometry, with angles at this atom ranging from 105.13 (3) to 113.54 (9)°. The crystal packing does not involve any significant inter­molecular inter­actions, although the benzene rings are involved in a number of weak intra- and inter­molecular C—H⋯π inter­actions.

Related literature

For background to the development of synthetic methods for highly substituted thio­phenols with varying degrees of steric hindrance, see: Lloyd-Jones et al. (2008[Lloyd-Jones, G. C., Moseley, J. D. & Renny, J. S. (2008). Synthesis, pp. 661-689.]); Fleischer (2005[Fleischer, H. (2005). Coord. Chem. Rev. 249, 799-827.]); Huber et al. (1997[Huber, F., Schmiedgen, R., Schurmann, M., Barbieri, R., Ruisi, G. & Silvestri, A. (1997). Appl. Organomet. Chem. 11, 869-888.]); Estudiante-Negrete et al. (2007[Estudiante-Negrete, F., Redón, R., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 1651-1660.]). For the synthesis of phenol derivatives, see: Flores-Figueroa et al. (2005[Flores-Figueroa, A., Arista-M, V., Talancón-Sánchez, D. & Castillo, I. (2005). J. Braz. Chem. Soc. 16, 397-403.]); Mondragón et al. (2010[Mondragón, A., Monsalvo, I., Regla, I. & Castillo, I. (2010). Tetrahedron Lett. 51, 767-770.]). For similar structures, see: Huber et al. (1997[Huber, F., Schmiedgen, R., Schurmann, M., Barbieri, R., Ruisi, G. & Silvestri, A. (1997). Appl. Organomet. Chem. 11, 869-888.]); Li et al. (2006[Li, Y.-X., Zhang, R.-F. & Ma, C.-L. (2006). Acta Cryst. E62, m957-m958.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)(C8H9S)3]

  • Mr = 607.43

  • Triclinic, [P \overline 1]

  • a = 9.2717 (7) Å

  • b = 10.6370 (8) Å

  • c = 15.6486 (11) Å

  • α = 93.420 (2)°

  • β = 93.520 (1)°

  • γ = 105.800 (1)°

  • V = 1477.51 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 298 K

  • 0.32 × 0.26 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.705, Tmax = 0.958

  • 12493 measured reflections

  • 5416 independent reflections

  • 4057 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.061

  • S = 0.86

  • 5416 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C15–C20 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1 0.93 2.72 3.557 (3) 149
C13—H13CCg2i 0.96 2.75 3.579 (3) 144
Symmetry code: (i) -x+2, -y+2, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The development of synthetic methods for highly substituted thiophenols with varying degrees of steric hindrance has been an active field of research (Lloyd-Jones et al., 2008), due in part to the potential of sterically encumbered thiophenols to emulate the active site of sulfur-rich metalloenzymes (Fleischer, 2005). In this context, we developed a series of 2,4-disubstituted thiophenols (Flores-Figueroa et al., 2005, Mondragón et al.,2010), among which 2,4-dimethylthiophenol represents a commercially available ligand. In order to assess the steric properties of this thiophenol, we soughtout to prepare a metal-thiolate derivative amenable to structural characterization. Since phenyl- and diphenyltin (IV) derivatives tend to be crystalline materials (Huber et al., 1997 & Estudiante-Negrete et al., 2007), we decided to employ PhSnCl3 to introduce the 2,4-dimethylthiophenolate moiety. Thus, the reaction of 3 equivalents of 2,4-Me2C6H3SH with PhSnCl3 in the presence of 3 equivalents of triethylamine afforded the title compound phenyl tris(2,4-dimethylphenylthiolate)tin (IV) (I) in good yield.

The structure of the title compound (PhSn(S-2,4-Me2C6H3)3,) is shown with numbering scheme in Figure 1. According to the bond angles, (I) exhibits a slightly distorted tetrahedral geometry. The phenyl ring (C1—C6) is in a close to coplanar disposition with respect to one of the 2,4-dimethylphenyl groups (C23–C30), forming a dihedral angle of 25.3 (2)°. The Sn—C distance (2.114 (3) Å) is slightly shorter than those described for the related compounds (Allen et al., 1987) phenyl tris(pyridinthiolate)tin [2.139 (5) Å, PhSn(SPy)3 (Huber et al., 1997)] and phenyl tris(pyrimidinethiolato)tin [2.139 (3) Å, PhSn(SPym)3 (Li et al., 2006)]. The Sn—S distances are shorter than those in PhSn(SPy)3 [2.491–2.576 Å], and PhSn(SPym)3[2.455–2.552 Å]. Due to the geometry adopted, in the crystal structure, there are C—H-π, intra and intermolecular interactions.

Related literature top

For background to the development of synthetic methods for highly substituted thiophenols with varying degrees of steric hindrance, see: Lloyd-Jones et al. (2008); Fleischer (2005);dn Huber et al. (1997); Estudiante-Negrete et al. (2007). For the synthesis of phenol derivatives, see: Flores-Figueroa et al. (2005); Mondragón et al. (2010). For similar structures, see; Huber et al. (1997); Li et al. (2006) et al.987 . For bond-length data, see: Allen et al. (1987).

Experimental top

To a tetrahydrofuran solution of 2,4-dimethylthiophenol (0.50 g, 3.70 mmol) was added triethylamine (0.65 ml, 4.07 mmol) under an atmosphere of N2. After stirring for 1 h, PhSnCl3 (0.20 mL, 1.23 mmol) was added via syringe, and the mixture was stirred overnight. The volatile materials were evaporated under reduced pressure, and the solid was extracted with hexane (2 x 15 ml), and X-ray quality crystals were obtained by slow evaporation of the solution. Yield: 0.48 g (64%); m.p. 320–323 K; IR (KBr, cm-1) 3056, 3012, 2916, 2859, 2728, 1898, 1753, 1598, 1471, 1434, 1373, 1266,1229, 1162, 1138, 1069, 1042, 876, 811, 728, 695, 620, 543, 443, 372, 299; 1H NMR (300 MHz, CDCl3, TMS internal reference δ p.p.m.)7.20 (2H, m, Ph) 7.11 (3H, d,ArH), 7.08 (1H, s, Ph), 6.95 (2H, d, Ph), 6.85 (3H, s, ArH), 6.69 (3H, d,ArH), 2.18 (18H, s, ArMe); 13C NMR (75 MHz, CDCl3, TMS internal reference, δ p.p.m.)142.29, 139.48, 137.62, 136. 60, 135.17, 131.58, 130.44, 128.69, 127.32,123.88, 22.19, 21.03.

Refinement top

H atoms were included in calculated positions (C—H = 0.93Å arom, and 0.96 Å CH3), and refined using a riding model, with Uĩso~(H) = 1.2Ueq and 1.5 U eq respectively of the carrier atom.

Structure description top

The development of synthetic methods for highly substituted thiophenols with varying degrees of steric hindrance has been an active field of research (Lloyd-Jones et al., 2008), due in part to the potential of sterically encumbered thiophenols to emulate the active site of sulfur-rich metalloenzymes (Fleischer, 2005). In this context, we developed a series of 2,4-disubstituted thiophenols (Flores-Figueroa et al., 2005, Mondragón et al.,2010), among which 2,4-dimethylthiophenol represents a commercially available ligand. In order to assess the steric properties of this thiophenol, we soughtout to prepare a metal-thiolate derivative amenable to structural characterization. Since phenyl- and diphenyltin (IV) derivatives tend to be crystalline materials (Huber et al., 1997 & Estudiante-Negrete et al., 2007), we decided to employ PhSnCl3 to introduce the 2,4-dimethylthiophenolate moiety. Thus, the reaction of 3 equivalents of 2,4-Me2C6H3SH with PhSnCl3 in the presence of 3 equivalents of triethylamine afforded the title compound phenyl tris(2,4-dimethylphenylthiolate)tin (IV) (I) in good yield.

The structure of the title compound (PhSn(S-2,4-Me2C6H3)3,) is shown with numbering scheme in Figure 1. According to the bond angles, (I) exhibits a slightly distorted tetrahedral geometry. The phenyl ring (C1—C6) is in a close to coplanar disposition with respect to one of the 2,4-dimethylphenyl groups (C23–C30), forming a dihedral angle of 25.3 (2)°. The Sn—C distance (2.114 (3) Å) is slightly shorter than those described for the related compounds (Allen et al., 1987) phenyl tris(pyridinthiolate)tin [2.139 (5) Å, PhSn(SPy)3 (Huber et al., 1997)] and phenyl tris(pyrimidinethiolato)tin [2.139 (3) Å, PhSn(SPym)3 (Li et al., 2006)]. The Sn—S distances are shorter than those in PhSn(SPy)3 [2.491–2.576 Å], and PhSn(SPym)3[2.455–2.552 Å]. Due to the geometry adopted, in the crystal structure, there are C—H-π, intra and intermolecular interactions.

For background to the development of synthetic methods for highly substituted thiophenols with varying degrees of steric hindrance, see: Lloyd-Jones et al. (2008); Fleischer (2005);dn Huber et al. (1997); Estudiante-Negrete et al. (2007). For the synthesis of phenol derivatives, see: Flores-Figueroa et al. (2005); Mondragón et al. (2010). For similar structures, see; Huber et al. (1997); Li et al. (2006) et al.987 . For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of PhSn(SMe2Ph)3 with numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Only the H atoms involved in C—H-π and S-π interactions are shown.
Tris(2,4-dimethylbenzenethiolato)phenyltin(IV) top
Crystal data top
[Sn(C6H5)(C8H9S)3]Z = 2
Mr = 607.43F(000) = 620
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2717 (7) ÅCell parameters from 6072 reflections
b = 10.6370 (8) Åθ = 2.3–25.4°
c = 15.6486 (11) ŵ = 1.09 mm1
α = 93.420 (2)°T = 298 K
β = 93.520 (1)°Prism-lamina, colourless
γ = 105.800 (1)°0.32 × 0.26 × 0.04 mm
V = 1477.51 (19) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5416 independent reflections
Radiation source: fine-focus sealed tube4057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 1.3°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 1212
Tmin = 0.705, Tmax = 0.958l = 1818
12493 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
5416 reflections(Δ/σ)max = 0.002
313 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Sn(C6H5)(C8H9S)3]γ = 105.800 (1)°
Mr = 607.43V = 1477.51 (19) Å3
Triclinic, P1Z = 2
a = 9.2717 (7) ÅMo Kα radiation
b = 10.6370 (8) ŵ = 1.09 mm1
c = 15.6486 (11) ÅT = 298 K
α = 93.420 (2)°0.32 × 0.26 × 0.04 mm
β = 93.520 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5416 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4057 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.958Rint = 0.036
12493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 0.86Δρmax = 0.64 e Å3
5416 reflectionsΔρmin = 0.37 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.76585 (2)0.68776 (2)0.732737 (14)0.04856 (8)
S10.79793 (10)0.74342 (8)0.88495 (5)0.0604 (2)
S20.76443 (10)0.46303 (9)0.70323 (6)0.0713 (3)
S30.97179 (9)0.83866 (9)0.67586 (6)0.0649 (3)
C10.5620 (3)0.7073 (3)0.6745 (2)0.0493 (8)
C20.4930 (4)0.7944 (3)0.7097 (2)0.0613 (9)
H20.53310.84140.76170.074*
C30.3652 (4)0.8137 (4)0.6695 (3)0.0784 (11)
H30.31880.87210.69490.094*
C40.3072 (4)0.7475 (4)0.5931 (3)0.0784 (12)
H40.22110.76070.56590.094*
C50.3745 (4)0.6615 (4)0.5557 (2)0.0799 (12)
H50.33550.61720.50270.096*
C60.5015 (4)0.6405 (4)0.5974 (2)0.0698 (10)
H60.54600.58030.57260.084*
C70.9858 (3)0.8485 (3)0.88924 (18)0.0480 (8)
C81.0125 (4)0.9837 (3)0.88760 (18)0.0503 (8)
C91.1612 (4)1.0570 (3)0.89292 (19)0.0615 (9)
H91.18111.14750.89250.074*
C101.2818 (4)1.0050 (4)0.8988 (2)0.0627 (9)
C111.2497 (4)0.8703 (4)0.8994 (2)0.0652 (10)
H111.32810.83130.90290.078*
C121.1045 (4)0.7937 (3)0.89512 (19)0.0558 (9)
H121.08550.70340.89610.067*
C130.8877 (4)1.0482 (3)0.8784 (2)0.0729 (10)
H13A0.82031.00710.82940.109*
H13B0.92921.13950.87070.109*
H13C0.83381.03920.92920.109*
C141.4406 (4)1.0917 (4)0.9042 (3)0.1016 (14)
H14A1.45841.13360.85170.152*
H14B1.50941.03980.91310.152*
H14C1.45531.15720.95130.152*
C150.9354 (3)0.4663 (3)0.7653 (2)0.0525 (8)
C160.9311 (3)0.4193 (3)0.8463 (2)0.0519 (8)
C171.0672 (4)0.4228 (3)0.8900 (2)0.0564 (9)
H171.06610.39200.94440.068*
C181.2041 (4)0.4697 (3)0.8564 (2)0.0584 (9)
C191.2029 (4)0.5147 (3)0.7760 (2)0.0673 (10)
H191.29350.54690.75170.081*
C201.0702 (4)0.5132 (3)0.7307 (2)0.0645 (9)
H201.07200.54410.67630.077*
C210.7866 (4)0.3664 (3)0.8865 (2)0.0773 (11)
H21A0.73550.43340.89220.116*
H21B0.80740.33910.94220.116*
H21C0.72400.29280.85080.116*
C221.3519 (4)0.4742 (4)0.9061 (2)0.0858 (12)
H22A1.41860.45060.86760.129*
H22B1.33320.41370.95000.129*
H22C1.39700.56130.93220.129*
C230.8789 (3)0.8297 (3)0.5717 (2)0.0579 (9)
C240.8116 (4)0.9252 (3)0.5474 (2)0.0661 (10)
C250.7413 (5)0.9110 (4)0.4651 (3)0.0882 (13)
H250.69510.97410.44850.106*
C260.7372 (5)0.8077 (5)0.4068 (3)0.0920 (14)
C270.8052 (5)0.7156 (4)0.4322 (3)0.0902 (13)
H270.80370.64470.39410.108*
C280.8759 (4)0.7266 (4)0.5136 (2)0.0759 (11)
H280.92230.66320.52940.091*
C290.8112 (5)1.0413 (4)0.6079 (3)0.0950 (13)
H29A0.75191.01140.65470.143*
H29B0.76901.10050.57760.143*
H29C0.91241.08570.62990.143*
C300.6584 (6)0.7974 (5)0.3179 (3)0.146 (2)
H30A0.58600.84710.31880.219*
H30B0.60810.70720.30060.219*
H30C0.73100.83150.27800.219*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.04127 (13)0.05660 (15)0.04794 (14)0.01525 (11)0.00392 (9)0.00492 (10)
S10.0608 (6)0.0633 (6)0.0494 (5)0.0041 (5)0.0036 (4)0.0058 (4)
S20.0706 (6)0.0607 (6)0.0782 (7)0.0212 (5)0.0255 (5)0.0114 (5)
S30.0442 (5)0.0874 (7)0.0578 (6)0.0085 (5)0.0002 (4)0.0123 (5)
C10.0378 (18)0.057 (2)0.053 (2)0.0136 (16)0.0015 (15)0.0104 (17)
C20.050 (2)0.066 (2)0.069 (2)0.0185 (19)0.0010 (18)0.0057 (19)
C30.060 (3)0.080 (3)0.104 (3)0.036 (2)0.005 (2)0.009 (2)
C40.048 (2)0.098 (3)0.094 (3)0.026 (2)0.006 (2)0.034 (3)
C50.058 (2)0.112 (3)0.063 (3)0.021 (2)0.0156 (19)0.003 (2)
C60.050 (2)0.089 (3)0.074 (3)0.029 (2)0.0029 (19)0.008 (2)
C70.057 (2)0.047 (2)0.0360 (18)0.0095 (17)0.0030 (15)0.0001 (14)
C80.062 (2)0.049 (2)0.0385 (18)0.0144 (18)0.0052 (15)0.0018 (15)
C90.081 (3)0.046 (2)0.048 (2)0.005 (2)0.0101 (18)0.0026 (16)
C100.057 (2)0.073 (3)0.050 (2)0.005 (2)0.0043 (17)0.0099 (19)
C110.062 (2)0.083 (3)0.054 (2)0.028 (2)0.0076 (17)0.0047 (19)
C120.066 (2)0.052 (2)0.049 (2)0.017 (2)0.0063 (17)0.0040 (16)
C130.087 (3)0.061 (2)0.074 (3)0.031 (2)0.008 (2)0.0000 (19)
C140.069 (3)0.115 (3)0.098 (3)0.014 (3)0.015 (2)0.027 (3)
C150.054 (2)0.0442 (19)0.060 (2)0.0171 (17)0.0060 (17)0.0017 (16)
C160.051 (2)0.0379 (18)0.067 (2)0.0131 (16)0.0047 (17)0.0106 (16)
C170.059 (2)0.047 (2)0.065 (2)0.0169 (18)0.0013 (18)0.0151 (17)
C180.053 (2)0.047 (2)0.077 (3)0.0186 (18)0.0001 (19)0.0082 (18)
C190.052 (2)0.066 (2)0.090 (3)0.0209 (19)0.020 (2)0.018 (2)
C200.074 (3)0.069 (2)0.060 (2)0.030 (2)0.014 (2)0.0170 (18)
C210.061 (2)0.068 (2)0.103 (3)0.013 (2)0.011 (2)0.029 (2)
C220.059 (2)0.087 (3)0.113 (3)0.027 (2)0.013 (2)0.010 (2)
C230.052 (2)0.068 (2)0.050 (2)0.0091 (19)0.0078 (16)0.0087 (19)
C240.075 (3)0.062 (2)0.054 (2)0.005 (2)0.0029 (19)0.0147 (19)
C250.106 (3)0.079 (3)0.075 (3)0.018 (3)0.007 (3)0.027 (2)
C260.113 (4)0.091 (3)0.055 (3)0.002 (3)0.007 (2)0.015 (3)
C270.116 (4)0.089 (3)0.058 (3)0.020 (3)0.007 (2)0.008 (2)
C280.074 (3)0.090 (3)0.066 (3)0.025 (2)0.009 (2)0.006 (2)
C290.125 (4)0.072 (3)0.092 (3)0.031 (3)0.005 (3)0.015 (2)
C300.197 (6)0.145 (5)0.072 (3)0.017 (4)0.044 (3)0.016 (3)
Geometric parameters (Å, º) top
Sn—C12.114 (3)C15—C201.371 (4)
Sn—S32.3927 (9)C15—C161.390 (4)
Sn—S12.4002 (9)C16—C171.388 (4)
Sn—S22.4037 (9)C16—C211.498 (4)
S1—C71.790 (3)C17—C181.380 (4)
S2—C151.798 (3)C17—H170.9300
S3—C231.782 (3)C18—C191.373 (4)
C1—C61.368 (4)C18—C221.521 (4)
C1—C21.370 (4)C19—C201.378 (4)
C2—C31.378 (4)C19—H190.9300
C2—H20.9300C20—H200.9300
C3—C41.353 (5)C21—H21A0.9600
C3—H30.9300C21—H21B0.9600
C4—C51.363 (5)C21—H21C0.9600
C4—H40.9300C22—H22A0.9600
C5—C61.389 (4)C22—H22B0.9600
C5—H50.9300C22—H22C0.9600
C6—H60.9300C23—C281.375 (4)
C7—C121.379 (4)C23—C241.388 (4)
C7—C81.394 (4)C24—C251.388 (5)
C8—C91.381 (4)C24—C291.512 (5)
C8—C131.501 (4)C25—C261.376 (5)
C9—C101.377 (4)C25—H250.9300
C9—H90.9300C26—C271.365 (5)
C10—C111.382 (4)C26—C301.516 (5)
C10—C141.504 (4)C27—C281.380 (5)
C11—C121.365 (4)C27—H270.9300
C11—H110.9300C28—H280.9300
C12—H120.9300C29—H29A0.9600
C13—H13A0.9600C29—H29B0.9600
C13—H13B0.9600C29—H29C0.9600
C13—H13C0.9600C30—H30A0.9600
C14—H14A0.9600C30—H30B0.9600
C14—H14B0.9600C30—H30C0.9600
C14—H14C0.9600
C1—Sn—S3108.97 (8)C16—C15—S2120.6 (3)
C1—Sn—S1113.54 (9)C17—C16—C15117.5 (3)
S3—Sn—S1105.13 (3)C17—C16—C21120.3 (3)
C1—Sn—S2106.68 (9)C15—C16—C21122.2 (3)
S3—Sn—S2112.83 (4)C18—C17—C16123.1 (3)
S1—Sn—S2109.83 (3)C18—C17—H17118.5
C7—S1—Sn97.37 (10)C16—C17—H17118.5
C15—S2—Sn98.83 (10)C19—C18—C17117.4 (3)
C23—S3—Sn95.05 (11)C19—C18—C22120.6 (3)
C6—C1—C2118.1 (3)C17—C18—C22122.0 (3)
C6—C1—Sn120.8 (2)C18—C19—C20121.3 (3)
C2—C1—Sn120.9 (2)C18—C19—H19119.4
C1—C2—C3121.3 (3)C20—C19—H19119.4
C1—C2—H2119.3C15—C20—C19120.4 (3)
C3—C2—H2119.3C15—C20—H20119.8
C4—C3—C2119.8 (4)C19—C20—H20119.8
C4—C3—H3120.1C16—C21—H21A109.5
C2—C3—H3120.1C16—C21—H21B109.5
C3—C4—C5120.3 (3)H21A—C21—H21B109.5
C3—C4—H4119.8C16—C21—H21C109.5
C5—C4—H4119.8H21A—C21—H21C109.5
C4—C5—C6119.6 (4)H21B—C21—H21C109.5
C4—C5—H5120.2C18—C22—H22A109.5
C6—C5—H5120.2C18—C22—H22B109.5
C1—C6—C5120.8 (3)H22A—C22—H22B109.5
C1—C6—H6119.6C18—C22—H22C109.5
C5—C6—H6119.6H22A—C22—H22C109.5
C12—C7—C8120.2 (3)H22B—C22—H22C109.5
C12—C7—S1119.0 (2)C28—C23—C24119.4 (3)
C8—C7—S1120.8 (3)C28—C23—S3119.0 (3)
C9—C8—C7116.6 (3)C24—C23—S3121.6 (3)
C9—C8—C13120.8 (3)C23—C24—C25118.1 (4)
C7—C8—C13122.5 (3)C23—C24—C29122.1 (3)
C10—C9—C8124.3 (3)C25—C24—C29119.8 (4)
C10—C9—H9117.8C26—C25—C24122.8 (4)
C8—C9—H9117.8C26—C25—H25118.6
C9—C10—C11116.9 (3)C24—C25—H25118.6
C9—C10—C14121.0 (4)C27—C26—C25117.9 (4)
C11—C10—C14122.0 (4)C27—C26—C30121.8 (5)
C12—C11—C10120.9 (3)C25—C26—C30120.4 (5)
C12—C11—H11119.5C26—C27—C28120.9 (4)
C10—C11—H11119.5C26—C27—H27119.6
C11—C12—C7121.0 (3)C28—C27—H27119.6
C11—C12—H12119.5C23—C28—C27121.0 (4)
C7—C12—H12119.5C23—C28—H28119.5
C8—C13—H13A109.5C27—C28—H28119.5
C8—C13—H13B109.5C24—C29—H29A109.5
H13A—C13—H13B109.5C24—C29—H29B109.5
C8—C13—H13C109.5H29A—C29—H29B109.5
H13A—C13—H13C109.5C24—C29—H29C109.5
H13B—C13—H13C109.5H29A—C29—H29C109.5
C10—C14—H14A109.5H29B—C29—H29C109.5
C10—C14—H14B109.5C26—C30—H30A109.5
H14A—C14—H14B109.5C26—C30—H30B109.5
C10—C14—H14C109.5H30A—C30—H30B109.5
H14A—C14—H14C109.5C26—C30—H30C109.5
H14B—C14—H14C109.5H30A—C30—H30C109.5
C20—C15—C16120.3 (3)H30B—C30—H30C109.5
C20—C15—S2119.0 (3)
C1—Sn—S1—C7131.63 (14)C14—C10—C11—C12179.5 (3)
S3—Sn—S1—C712.61 (11)C10—C11—C12—C70.6 (5)
S2—Sn—S1—C7109.04 (11)C8—C7—C12—C110.0 (5)
C1—Sn—S2—C15175.21 (14)S1—C7—C12—C11179.3 (2)
S3—Sn—S2—C1565.16 (12)Sn—S2—C15—C2081.6 (3)
S1—Sn—S2—C1551.77 (12)Sn—S2—C15—C1699.9 (2)
C1—Sn—S3—C2332.90 (16)C20—C15—C16—C170.4 (5)
S1—Sn—S3—C23154.93 (13)S2—C15—C16—C17178.9 (2)
S2—Sn—S3—C2385.39 (13)C20—C15—C16—C21179.6 (3)
S3—Sn—C1—C685.5 (3)S2—C15—C16—C211.1 (4)
S1—Sn—C1—C6157.8 (2)C15—C16—C17—C180.3 (5)
S2—Sn—C1—C636.6 (3)C21—C16—C17—C18179.7 (3)
S3—Sn—C1—C289.7 (3)C16—C17—C18—C190.1 (5)
S1—Sn—C1—C227.1 (3)C16—C17—C18—C22179.1 (3)
S2—Sn—C1—C2148.2 (2)C17—C18—C19—C200.0 (5)
C6—C1—C2—C30.7 (5)C22—C18—C19—C20179.0 (3)
Sn—C1—C2—C3176.0 (3)C16—C15—C20—C190.3 (5)
C1—C2—C3—C41.1 (6)S2—C15—C20—C19178.8 (3)
C2—C3—C4—C50.2 (6)C18—C19—C20—C150.1 (5)
C3—C4—C5—C61.1 (6)Sn—S3—C23—C2881.4 (3)
C2—C1—C6—C50.6 (5)Sn—S3—C23—C2499.6 (3)
Sn—C1—C6—C5174.6 (3)C28—C23—C24—C251.0 (5)
C4—C5—C6—C11.6 (6)S3—C23—C24—C25179.9 (3)
Sn—S1—C7—C1285.7 (2)C28—C23—C24—C29179.8 (3)
Sn—S1—C7—C895.0 (2)S3—C23—C24—C290.8 (5)
C12—C7—C8—C90.6 (4)C23—C24—C25—C260.7 (6)
S1—C7—C8—C9178.7 (2)C29—C24—C25—C26179.8 (4)
C12—C7—C8—C13178.0 (3)C24—C25—C26—C270.3 (7)
S1—C7—C8—C132.7 (4)C24—C25—C26—C30179.9 (4)
C7—C8—C9—C100.6 (5)C25—C26—C27—C280.2 (7)
C13—C8—C9—C10178.0 (3)C30—C26—C27—C28179.8 (4)
C8—C9—C10—C110.1 (5)C24—C23—C28—C271.0 (5)
C8—C9—C10—C14179.9 (3)S3—C23—C28—C27179.9 (3)
C9—C10—C11—C120.6 (5)C26—C27—C28—C230.6 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C15–C20 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg10.932.723.557 (3)149
C13—H13C···Cg2i0.962.753.579 (3)144
Symmetry code: (i) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)(C8H9S)3]
Mr607.43
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.2717 (7), 10.6370 (8), 15.6486 (11)
α, β, γ (°)93.420 (2), 93.520 (1), 105.800 (1)
V3)1477.51 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.32 × 0.26 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.705, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
12493, 5416, 4057
Rint0.036
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.061, 0.86
No. of reflections5416
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.37

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C15–C20 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg10.932.723.557 (3)149
C13—H13C···Cg2i0.962.753.579 (3)144
Symmetry code: (i) x+2, y+2, z+2.
 

Acknowledgements

The authors thank the Instituto Rcxaslan-CSIC, Spain for a license to use the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEstudiante-Negrete, F., Redón, R., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 1651–1660.  Web of Science CSD CrossRef CAS Google Scholar
First citationFleischer, H. (2005). Coord. Chem. Rev. 249, 799–827.  Web of Science CrossRef CAS Google Scholar
First citationFlores-Figueroa, A., Arista-M, V., Talancón-Sánchez, D. & Castillo, I. (2005). J. Braz. Chem. Soc. 16, 397–403.  Web of Science CrossRef CAS Google Scholar
First citationHuber, F., Schmiedgen, R., Schurmann, M., Barbieri, R., Ruisi, G. & Silvestri, A. (1997). Appl. Organomet. Chem. 11, 869–888.  CrossRef CAS Google Scholar
First citationLi, Y.-X., Zhang, R.-F. & Ma, C.-L. (2006). Acta Cryst. E62, m957–m958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLloyd-Jones, G. C., Moseley, J. D. & Renny, J. S. (2008). Synthesis, pp. 661–689.  Google Scholar
First citationMondragón, A., Monsalvo, I., Regla, I. & Castillo, I. (2010). Tetrahedron Lett. 51, 767–770.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds