metal-organic compounds
Tris(2,4-dimethylbenzenethiolato)phenyltin(IV)
aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico
*Correspondence e-mail: simonho@unam.mx, joseivan@unam.mx
In the title compound, [Sn(C6H5)(C8H9S)3], the Sn atom has an approximately tetrahedral SNCS3 geometry, with angles at this atom ranging from 105.13 (3) to 113.54 (9)°. The crystal packing does not involve any significant intermolecular interactions, although the benzene rings are involved in a number of weak intra- and intermolecular C—H⋯π interactions.
Related literature
For background to the development of synthetic methods for highly substituted thiophenols with varying degrees of et al. (2008); Fleischer (2005); Huber et al. (1997); Estudiante-Negrete et al. (2007). For the synthesis of phenol derivatives, see: Flores-Figueroa et al. (2005); Mondragón et al. (2010). For similar structures, see: Huber et al. (1997); Li et al. (2006). For bond-length data, see: Allen et al. (1987).
see: Lloyd-JonesExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810039851/fj2342sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810039851/fj2342Isup2.hkl
To a tetrahydrofuran solution of 2,4-dimethylthiophenol (0.50 g, 3.70 mmol) was added triethylamine (0.65 ml, 4.07 mmol) under an atmosphere of N2. After stirring for 1 h, PhSnCl3 (0.20 mL, 1.23 mmol) was added via syringe, and the mixture was stirred overnight. The volatile materials were evaporated under reduced pressure, and the solid was extracted with hexane (2 x 15 ml), and X-ray quality crystals were obtained by slow evaporation of the solution. Yield: 0.48 g (64%); m.p. 320–323 K; IR (KBr, cm-1) 3056, 3012, 2916, 2859, 2728, 1898, 1753, 1598, 1471, 1434, 1373, 1266,1229, 1162, 1138, 1069, 1042, 876, 811, 728, 695, 620, 543, 443, 372, 299; 1H NMR (300 MHz, CDCl3, TMS internal reference δ p.p.m.)7.20 (2H, m, Ph) 7.11 (3H, d,ArH), 7.08 (1H, s, Ph), 6.95 (2H, d, Ph), 6.85 (3H, s, ArH), 6.69 (3H, d,ArH), 2.18 (18H, s, ArMe); 13C NMR (75 MHz, CDCl3, TMS internal reference, δ p.p.m.)142.29, 139.48, 137.62, 136. 60, 135.17, 131.58, 130.44, 128.69, 127.32,123.88, 22.19, 21.03.
H atoms were included in calculated positions (C—H = 0.93Å arom, and 0.96 Å CH3), and refined using a riding model, with Uĩso~(H) = 1.2Ueq and 1.5 U eq respectively of the carrier atom.
The development of synthetic methods for highly substituted thiophenols with varying degrees of
has been an active field of research (Lloyd-Jones et al., 2008), due in part to the potential of sterically encumbered thiophenols to emulate the active site of sulfur-rich metalloenzymes (Fleischer, 2005). In this context, we developed a series of 2,4-disubstituted thiophenols (Flores-Figueroa et al., 2005, Mondragón et al.,2010), among which 2,4-dimethylthiophenol represents a commercially available ligand. In order to assess the steric properties of this thiophenol, we soughtout to prepare a metal-thiolate derivative amenable to structural characterization. Since phenyl- and diphenyltin (IV) derivatives tend to be crystalline materials (Huber et al., 1997 & Estudiante-Negrete et al., 2007), we decided to employ PhSnCl3 to introduce the 2,4-dimethylthiophenolate moiety. Thus, the reaction of 3 equivalents of 2,4-Me2C6H3SH with PhSnCl3 in the presence of 3 equivalents of triethylamine afforded the title compound phenyl tris(2,4-dimethylphenylthiolate)tin (IV) (I) in good yield.The structure of the title compound (PhSn(S-2,4-Me2C6H3)3,) is shown with numbering scheme in Figure 1. According to the bond angles, (I) exhibits a slightly distorted tetrahedral geometry. The phenyl ring (C1—C6) is in a close to coplanar disposition with respect to one of the 2,4-dimethylphenyl groups (C23–C30), forming a dihedral angle of 25.3 (2)°. The Sn—C distance (2.114 (3) Å) is slightly shorter than those described for the related compounds (Allen et al., 1987) phenyl tris(pyridinthiolate)tin [2.139 (5) Å, PhSn(SPy)3 (Huber et al., 1997)] and phenyl tris(pyrimidinethiolato)tin [2.139 (3) Å, PhSn(SPym)3 (Li et al., 2006)]. The Sn—S distances are shorter than those in PhSn(SPy)3 [2.491–2.576 Å], and PhSn(SPym)3[2.455–2.552 Å]. Due to the geometry adopted, in the π, intra and intermolecular interactions.
there are C—H-For background to the development of synthetic methods for highly substituted thiophenols with varying degrees of
see: Lloyd-Jones et al. (2008); Fleischer (2005);dn Huber et al. (1997); Estudiante-Negrete et al. (2007). For the synthesis of phenol derivatives, see: Flores-Figueroa et al. (2005); Mondragón et al. (2010). For similar structures, see; Huber et al. (1997); Li et al. (2006) et al.987 . For bond-length data, see: Allen et al. (1987).Data collection: SMART (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).[Sn(C6H5)(C8H9S)3] | Z = 2 |
Mr = 607.43 | F(000) = 620 |
Triclinic, P1 | Dx = 1.365 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2717 (7) Å | Cell parameters from 6072 reflections |
b = 10.6370 (8) Å | θ = 2.3–25.4° |
c = 15.6486 (11) Å | µ = 1.09 mm−1 |
α = 93.420 (2)° | T = 298 K |
β = 93.520 (1)° | Prism-lamina, colourless |
γ = 105.800 (1)° | 0.32 × 0.26 × 0.04 mm |
V = 1477.51 (19) Å3 |
Bruker SMART APEX CCD area-detector diffractometer | 5416 independent reflections |
Radiation source: fine-focus sealed tube | 4057 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 0.83 pixels mm-1 | θmax = 25.4°, θmin = 1.3° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | k = −12→12 |
Tmin = 0.705, Tmax = 0.958 | l = −18→18 |
12493 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 0.86 | w = 1/[σ2(Fo2) + (0.021P)2] where P = (Fo2 + 2Fc2)/3 |
5416 reflections | (Δ/σ)max = 0.002 |
313 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Sn(C6H5)(C8H9S)3] | γ = 105.800 (1)° |
Mr = 607.43 | V = 1477.51 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.2717 (7) Å | Mo Kα radiation |
b = 10.6370 (8) Å | µ = 1.09 mm−1 |
c = 15.6486 (11) Å | T = 298 K |
α = 93.420 (2)° | 0.32 × 0.26 × 0.04 mm |
β = 93.520 (1)° |
Bruker SMART APEX CCD area-detector diffractometer | 5416 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 4057 reflections with I > 2σ(I) |
Tmin = 0.705, Tmax = 0.958 | Rint = 0.036 |
12493 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 0.86 | Δρmax = 0.64 e Å−3 |
5416 reflections | Δρmin = −0.37 e Å−3 |
313 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.76585 (2) | 0.68776 (2) | 0.732737 (14) | 0.04856 (8) | |
S1 | 0.79793 (10) | 0.74342 (8) | 0.88495 (5) | 0.0604 (2) | |
S2 | 0.76443 (10) | 0.46303 (9) | 0.70323 (6) | 0.0713 (3) | |
S3 | 0.97179 (9) | 0.83866 (9) | 0.67586 (6) | 0.0649 (3) | |
C1 | 0.5620 (3) | 0.7073 (3) | 0.6745 (2) | 0.0493 (8) | |
C2 | 0.4930 (4) | 0.7944 (3) | 0.7097 (2) | 0.0613 (9) | |
H2 | 0.5331 | 0.8414 | 0.7617 | 0.074* | |
C3 | 0.3652 (4) | 0.8137 (4) | 0.6695 (3) | 0.0784 (11) | |
H3 | 0.3188 | 0.8721 | 0.6949 | 0.094* | |
C4 | 0.3072 (4) | 0.7475 (4) | 0.5931 (3) | 0.0784 (12) | |
H4 | 0.2211 | 0.7607 | 0.5659 | 0.094* | |
C5 | 0.3745 (4) | 0.6615 (4) | 0.5557 (2) | 0.0799 (12) | |
H5 | 0.3355 | 0.6172 | 0.5027 | 0.096* | |
C6 | 0.5015 (4) | 0.6405 (4) | 0.5974 (2) | 0.0698 (10) | |
H6 | 0.5460 | 0.5803 | 0.5726 | 0.084* | |
C7 | 0.9858 (3) | 0.8485 (3) | 0.88924 (18) | 0.0480 (8) | |
C8 | 1.0125 (4) | 0.9837 (3) | 0.88760 (18) | 0.0503 (8) | |
C9 | 1.1612 (4) | 1.0570 (3) | 0.89292 (19) | 0.0615 (9) | |
H9 | 1.1811 | 1.1475 | 0.8925 | 0.074* | |
C10 | 1.2818 (4) | 1.0050 (4) | 0.8988 (2) | 0.0627 (9) | |
C11 | 1.2497 (4) | 0.8703 (4) | 0.8994 (2) | 0.0652 (10) | |
H11 | 1.3281 | 0.8313 | 0.9029 | 0.078* | |
C12 | 1.1045 (4) | 0.7937 (3) | 0.89512 (19) | 0.0558 (9) | |
H12 | 1.0855 | 0.7034 | 0.8961 | 0.067* | |
C13 | 0.8877 (4) | 1.0482 (3) | 0.8784 (2) | 0.0729 (10) | |
H13A | 0.8203 | 1.0071 | 0.8294 | 0.109* | |
H13B | 0.9292 | 1.1395 | 0.8707 | 0.109* | |
H13C | 0.8338 | 1.0392 | 0.9292 | 0.109* | |
C14 | 1.4406 (4) | 1.0917 (4) | 0.9042 (3) | 0.1016 (14) | |
H14A | 1.4584 | 1.1336 | 0.8517 | 0.152* | |
H14B | 1.5094 | 1.0398 | 0.9131 | 0.152* | |
H14C | 1.4553 | 1.1572 | 0.9513 | 0.152* | |
C15 | 0.9354 (3) | 0.4663 (3) | 0.7653 (2) | 0.0525 (8) | |
C16 | 0.9311 (3) | 0.4193 (3) | 0.8463 (2) | 0.0519 (8) | |
C17 | 1.0672 (4) | 0.4228 (3) | 0.8900 (2) | 0.0564 (9) | |
H17 | 1.0661 | 0.3920 | 0.9444 | 0.068* | |
C18 | 1.2041 (4) | 0.4697 (3) | 0.8564 (2) | 0.0584 (9) | |
C19 | 1.2029 (4) | 0.5147 (3) | 0.7760 (2) | 0.0673 (10) | |
H19 | 1.2935 | 0.5469 | 0.7517 | 0.081* | |
C20 | 1.0702 (4) | 0.5132 (3) | 0.7307 (2) | 0.0645 (9) | |
H20 | 1.0720 | 0.5441 | 0.6763 | 0.077* | |
C21 | 0.7866 (4) | 0.3664 (3) | 0.8865 (2) | 0.0773 (11) | |
H21A | 0.7355 | 0.4334 | 0.8922 | 0.116* | |
H21B | 0.8074 | 0.3391 | 0.9422 | 0.116* | |
H21C | 0.7240 | 0.2928 | 0.8508 | 0.116* | |
C22 | 1.3519 (4) | 0.4742 (4) | 0.9061 (2) | 0.0858 (12) | |
H22A | 1.4186 | 0.4506 | 0.8676 | 0.129* | |
H22B | 1.3332 | 0.4137 | 0.9500 | 0.129* | |
H22C | 1.3970 | 0.5613 | 0.9322 | 0.129* | |
C23 | 0.8789 (3) | 0.8297 (3) | 0.5717 (2) | 0.0579 (9) | |
C24 | 0.8116 (4) | 0.9252 (3) | 0.5474 (2) | 0.0661 (10) | |
C25 | 0.7413 (5) | 0.9110 (4) | 0.4651 (3) | 0.0882 (13) | |
H25 | 0.6951 | 0.9741 | 0.4485 | 0.106* | |
C26 | 0.7372 (5) | 0.8077 (5) | 0.4068 (3) | 0.0920 (14) | |
C27 | 0.8052 (5) | 0.7156 (4) | 0.4322 (3) | 0.0902 (13) | |
H27 | 0.8037 | 0.6447 | 0.3941 | 0.108* | |
C28 | 0.8759 (4) | 0.7266 (4) | 0.5136 (2) | 0.0759 (11) | |
H28 | 0.9223 | 0.6632 | 0.5294 | 0.091* | |
C29 | 0.8112 (5) | 1.0413 (4) | 0.6079 (3) | 0.0950 (13) | |
H29A | 0.7519 | 1.0114 | 0.6547 | 0.143* | |
H29B | 0.7690 | 1.1005 | 0.5776 | 0.143* | |
H29C | 0.9124 | 1.0857 | 0.6299 | 0.143* | |
C30 | 0.6584 (6) | 0.7974 (5) | 0.3179 (3) | 0.146 (2) | |
H30A | 0.5860 | 0.8471 | 0.3188 | 0.219* | |
H30B | 0.6081 | 0.7072 | 0.3006 | 0.219* | |
H30C | 0.7310 | 0.8315 | 0.2780 | 0.219* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.04127 (13) | 0.05660 (15) | 0.04794 (14) | 0.01525 (11) | −0.00392 (9) | 0.00492 (10) |
S1 | 0.0608 (6) | 0.0633 (6) | 0.0494 (5) | 0.0041 (5) | 0.0036 (4) | 0.0058 (4) |
S2 | 0.0706 (6) | 0.0607 (6) | 0.0782 (7) | 0.0212 (5) | −0.0255 (5) | −0.0114 (5) |
S3 | 0.0442 (5) | 0.0874 (7) | 0.0578 (6) | 0.0085 (5) | 0.0002 (4) | 0.0123 (5) |
C1 | 0.0378 (18) | 0.057 (2) | 0.053 (2) | 0.0136 (16) | 0.0015 (15) | 0.0104 (17) |
C2 | 0.050 (2) | 0.066 (2) | 0.069 (2) | 0.0185 (19) | −0.0010 (18) | 0.0057 (19) |
C3 | 0.060 (3) | 0.080 (3) | 0.104 (3) | 0.036 (2) | 0.005 (2) | 0.009 (2) |
C4 | 0.048 (2) | 0.098 (3) | 0.094 (3) | 0.026 (2) | −0.006 (2) | 0.034 (3) |
C5 | 0.058 (2) | 0.112 (3) | 0.063 (3) | 0.021 (2) | −0.0156 (19) | −0.003 (2) |
C6 | 0.050 (2) | 0.089 (3) | 0.074 (3) | 0.029 (2) | −0.0029 (19) | −0.008 (2) |
C7 | 0.057 (2) | 0.047 (2) | 0.0360 (18) | 0.0095 (17) | −0.0030 (15) | −0.0001 (14) |
C8 | 0.062 (2) | 0.049 (2) | 0.0385 (18) | 0.0144 (18) | −0.0052 (15) | 0.0018 (15) |
C9 | 0.081 (3) | 0.046 (2) | 0.048 (2) | 0.005 (2) | −0.0101 (18) | 0.0026 (16) |
C10 | 0.057 (2) | 0.073 (3) | 0.050 (2) | 0.005 (2) | −0.0043 (17) | 0.0099 (19) |
C11 | 0.062 (2) | 0.083 (3) | 0.054 (2) | 0.028 (2) | −0.0076 (17) | 0.0047 (19) |
C12 | 0.066 (2) | 0.052 (2) | 0.049 (2) | 0.017 (2) | −0.0063 (17) | 0.0040 (16) |
C13 | 0.087 (3) | 0.061 (2) | 0.074 (3) | 0.031 (2) | −0.008 (2) | 0.0000 (19) |
C14 | 0.069 (3) | 0.115 (3) | 0.098 (3) | −0.014 (3) | −0.015 (2) | 0.027 (3) |
C15 | 0.054 (2) | 0.0442 (19) | 0.060 (2) | 0.0171 (17) | −0.0060 (17) | −0.0017 (16) |
C16 | 0.051 (2) | 0.0379 (18) | 0.067 (2) | 0.0131 (16) | 0.0047 (17) | 0.0106 (16) |
C17 | 0.059 (2) | 0.047 (2) | 0.065 (2) | 0.0169 (18) | 0.0013 (18) | 0.0151 (17) |
C18 | 0.053 (2) | 0.047 (2) | 0.077 (3) | 0.0186 (18) | −0.0001 (19) | 0.0082 (18) |
C19 | 0.052 (2) | 0.066 (2) | 0.090 (3) | 0.0209 (19) | 0.020 (2) | 0.018 (2) |
C20 | 0.074 (3) | 0.069 (2) | 0.060 (2) | 0.030 (2) | 0.014 (2) | 0.0170 (18) |
C21 | 0.061 (2) | 0.068 (2) | 0.103 (3) | 0.013 (2) | 0.011 (2) | 0.029 (2) |
C22 | 0.059 (2) | 0.087 (3) | 0.113 (3) | 0.027 (2) | −0.013 (2) | 0.010 (2) |
C23 | 0.052 (2) | 0.068 (2) | 0.050 (2) | 0.0091 (19) | 0.0078 (16) | 0.0087 (19) |
C24 | 0.075 (3) | 0.062 (2) | 0.054 (2) | 0.005 (2) | 0.0029 (19) | 0.0147 (19) |
C25 | 0.106 (3) | 0.079 (3) | 0.075 (3) | 0.018 (3) | −0.007 (3) | 0.027 (2) |
C26 | 0.113 (4) | 0.091 (3) | 0.055 (3) | 0.002 (3) | −0.007 (2) | 0.015 (3) |
C27 | 0.116 (4) | 0.089 (3) | 0.058 (3) | 0.020 (3) | 0.007 (2) | −0.008 (2) |
C28 | 0.074 (3) | 0.090 (3) | 0.066 (3) | 0.025 (2) | 0.009 (2) | 0.006 (2) |
C29 | 0.125 (4) | 0.072 (3) | 0.092 (3) | 0.031 (3) | 0.005 (3) | 0.015 (2) |
C30 | 0.197 (6) | 0.145 (5) | 0.072 (3) | 0.017 (4) | −0.044 (3) | 0.016 (3) |
Sn—C1 | 2.114 (3) | C15—C20 | 1.371 (4) |
Sn—S3 | 2.3927 (9) | C15—C16 | 1.390 (4) |
Sn—S1 | 2.4002 (9) | C16—C17 | 1.388 (4) |
Sn—S2 | 2.4037 (9) | C16—C21 | 1.498 (4) |
S1—C7 | 1.790 (3) | C17—C18 | 1.380 (4) |
S2—C15 | 1.798 (3) | C17—H17 | 0.9300 |
S3—C23 | 1.782 (3) | C18—C19 | 1.373 (4) |
C1—C6 | 1.368 (4) | C18—C22 | 1.521 (4) |
C1—C2 | 1.370 (4) | C19—C20 | 1.378 (4) |
C2—C3 | 1.378 (4) | C19—H19 | 0.9300 |
C2—H2 | 0.9300 | C20—H20 | 0.9300 |
C3—C4 | 1.353 (5) | C21—H21A | 0.9600 |
C3—H3 | 0.9300 | C21—H21B | 0.9600 |
C4—C5 | 1.363 (5) | C21—H21C | 0.9600 |
C4—H4 | 0.9300 | C22—H22A | 0.9600 |
C5—C6 | 1.389 (4) | C22—H22B | 0.9600 |
C5—H5 | 0.9300 | C22—H22C | 0.9600 |
C6—H6 | 0.9300 | C23—C28 | 1.375 (4) |
C7—C12 | 1.379 (4) | C23—C24 | 1.388 (4) |
C7—C8 | 1.394 (4) | C24—C25 | 1.388 (5) |
C8—C9 | 1.381 (4) | C24—C29 | 1.512 (5) |
C8—C13 | 1.501 (4) | C25—C26 | 1.376 (5) |
C9—C10 | 1.377 (4) | C25—H25 | 0.9300 |
C9—H9 | 0.9300 | C26—C27 | 1.365 (5) |
C10—C11 | 1.382 (4) | C26—C30 | 1.516 (5) |
C10—C14 | 1.504 (4) | C27—C28 | 1.380 (5) |
C11—C12 | 1.365 (4) | C27—H27 | 0.9300 |
C11—H11 | 0.9300 | C28—H28 | 0.9300 |
C12—H12 | 0.9300 | C29—H29A | 0.9600 |
C13—H13A | 0.9600 | C29—H29B | 0.9600 |
C13—H13B | 0.9600 | C29—H29C | 0.9600 |
C13—H13C | 0.9600 | C30—H30A | 0.9600 |
C14—H14A | 0.9600 | C30—H30B | 0.9600 |
C14—H14B | 0.9600 | C30—H30C | 0.9600 |
C14—H14C | 0.9600 | ||
C1—Sn—S3 | 108.97 (8) | C16—C15—S2 | 120.6 (3) |
C1—Sn—S1 | 113.54 (9) | C17—C16—C15 | 117.5 (3) |
S3—Sn—S1 | 105.13 (3) | C17—C16—C21 | 120.3 (3) |
C1—Sn—S2 | 106.68 (9) | C15—C16—C21 | 122.2 (3) |
S3—Sn—S2 | 112.83 (4) | C18—C17—C16 | 123.1 (3) |
S1—Sn—S2 | 109.83 (3) | C18—C17—H17 | 118.5 |
C7—S1—Sn | 97.37 (10) | C16—C17—H17 | 118.5 |
C15—S2—Sn | 98.83 (10) | C19—C18—C17 | 117.4 (3) |
C23—S3—Sn | 95.05 (11) | C19—C18—C22 | 120.6 (3) |
C6—C1—C2 | 118.1 (3) | C17—C18—C22 | 122.0 (3) |
C6—C1—Sn | 120.8 (2) | C18—C19—C20 | 121.3 (3) |
C2—C1—Sn | 120.9 (2) | C18—C19—H19 | 119.4 |
C1—C2—C3 | 121.3 (3) | C20—C19—H19 | 119.4 |
C1—C2—H2 | 119.3 | C15—C20—C19 | 120.4 (3) |
C3—C2—H2 | 119.3 | C15—C20—H20 | 119.8 |
C4—C3—C2 | 119.8 (4) | C19—C20—H20 | 119.8 |
C4—C3—H3 | 120.1 | C16—C21—H21A | 109.5 |
C2—C3—H3 | 120.1 | C16—C21—H21B | 109.5 |
C3—C4—C5 | 120.3 (3) | H21A—C21—H21B | 109.5 |
C3—C4—H4 | 119.8 | C16—C21—H21C | 109.5 |
C5—C4—H4 | 119.8 | H21A—C21—H21C | 109.5 |
C4—C5—C6 | 119.6 (4) | H21B—C21—H21C | 109.5 |
C4—C5—H5 | 120.2 | C18—C22—H22A | 109.5 |
C6—C5—H5 | 120.2 | C18—C22—H22B | 109.5 |
C1—C6—C5 | 120.8 (3) | H22A—C22—H22B | 109.5 |
C1—C6—H6 | 119.6 | C18—C22—H22C | 109.5 |
C5—C6—H6 | 119.6 | H22A—C22—H22C | 109.5 |
C12—C7—C8 | 120.2 (3) | H22B—C22—H22C | 109.5 |
C12—C7—S1 | 119.0 (2) | C28—C23—C24 | 119.4 (3) |
C8—C7—S1 | 120.8 (3) | C28—C23—S3 | 119.0 (3) |
C9—C8—C7 | 116.6 (3) | C24—C23—S3 | 121.6 (3) |
C9—C8—C13 | 120.8 (3) | C23—C24—C25 | 118.1 (4) |
C7—C8—C13 | 122.5 (3) | C23—C24—C29 | 122.1 (3) |
C10—C9—C8 | 124.3 (3) | C25—C24—C29 | 119.8 (4) |
C10—C9—H9 | 117.8 | C26—C25—C24 | 122.8 (4) |
C8—C9—H9 | 117.8 | C26—C25—H25 | 118.6 |
C9—C10—C11 | 116.9 (3) | C24—C25—H25 | 118.6 |
C9—C10—C14 | 121.0 (4) | C27—C26—C25 | 117.9 (4) |
C11—C10—C14 | 122.0 (4) | C27—C26—C30 | 121.8 (5) |
C12—C11—C10 | 120.9 (3) | C25—C26—C30 | 120.4 (5) |
C12—C11—H11 | 119.5 | C26—C27—C28 | 120.9 (4) |
C10—C11—H11 | 119.5 | C26—C27—H27 | 119.6 |
C11—C12—C7 | 121.0 (3) | C28—C27—H27 | 119.6 |
C11—C12—H12 | 119.5 | C23—C28—C27 | 121.0 (4) |
C7—C12—H12 | 119.5 | C23—C28—H28 | 119.5 |
C8—C13—H13A | 109.5 | C27—C28—H28 | 119.5 |
C8—C13—H13B | 109.5 | C24—C29—H29A | 109.5 |
H13A—C13—H13B | 109.5 | C24—C29—H29B | 109.5 |
C8—C13—H13C | 109.5 | H29A—C29—H29B | 109.5 |
H13A—C13—H13C | 109.5 | C24—C29—H29C | 109.5 |
H13B—C13—H13C | 109.5 | H29A—C29—H29C | 109.5 |
C10—C14—H14A | 109.5 | H29B—C29—H29C | 109.5 |
C10—C14—H14B | 109.5 | C26—C30—H30A | 109.5 |
H14A—C14—H14B | 109.5 | C26—C30—H30B | 109.5 |
C10—C14—H14C | 109.5 | H30A—C30—H30B | 109.5 |
H14A—C14—H14C | 109.5 | C26—C30—H30C | 109.5 |
H14B—C14—H14C | 109.5 | H30A—C30—H30C | 109.5 |
C20—C15—C16 | 120.3 (3) | H30B—C30—H30C | 109.5 |
C20—C15—S2 | 119.0 (3) | ||
C1—Sn—S1—C7 | −131.63 (14) | C14—C10—C11—C12 | 179.5 (3) |
S3—Sn—S1—C7 | −12.61 (11) | C10—C11—C12—C7 | 0.6 (5) |
S2—Sn—S1—C7 | 109.04 (11) | C8—C7—C12—C11 | 0.0 (5) |
C1—Sn—S2—C15 | −175.21 (14) | S1—C7—C12—C11 | −179.3 (2) |
S3—Sn—S2—C15 | 65.16 (12) | Sn—S2—C15—C20 | −81.6 (3) |
S1—Sn—S2—C15 | −51.77 (12) | Sn—S2—C15—C16 | 99.9 (2) |
C1—Sn—S3—C23 | −32.90 (16) | C20—C15—C16—C17 | 0.4 (5) |
S1—Sn—S3—C23 | −154.93 (13) | S2—C15—C16—C17 | 178.9 (2) |
S2—Sn—S3—C23 | 85.39 (13) | C20—C15—C16—C21 | −179.6 (3) |
S3—Sn—C1—C6 | 85.5 (3) | S2—C15—C16—C21 | −1.1 (4) |
S1—Sn—C1—C6 | −157.8 (2) | C15—C16—C17—C18 | −0.3 (5) |
S2—Sn—C1—C6 | −36.6 (3) | C21—C16—C17—C18 | 179.7 (3) |
S3—Sn—C1—C2 | −89.7 (3) | C16—C17—C18—C19 | 0.1 (5) |
S1—Sn—C1—C2 | 27.1 (3) | C16—C17—C18—C22 | 179.1 (3) |
S2—Sn—C1—C2 | 148.2 (2) | C17—C18—C19—C20 | 0.0 (5) |
C6—C1—C2—C3 | 0.7 (5) | C22—C18—C19—C20 | −179.0 (3) |
Sn—C1—C2—C3 | 176.0 (3) | C16—C15—C20—C19 | −0.3 (5) |
C1—C2—C3—C4 | −1.1 (6) | S2—C15—C20—C19 | −178.8 (3) |
C2—C3—C4—C5 | 0.2 (6) | C18—C19—C20—C15 | 0.1 (5) |
C3—C4—C5—C6 | 1.1 (6) | Sn—S3—C23—C28 | −81.4 (3) |
C2—C1—C6—C5 | 0.6 (5) | Sn—S3—C23—C24 | 99.6 (3) |
Sn—C1—C6—C5 | −174.6 (3) | C28—C23—C24—C25 | 1.0 (5) |
C4—C5—C6—C1 | −1.6 (6) | S3—C23—C24—C25 | −179.9 (3) |
Sn—S1—C7—C12 | −85.7 (2) | C28—C23—C24—C29 | −179.8 (3) |
Sn—S1—C7—C8 | 95.0 (2) | S3—C23—C24—C29 | −0.8 (5) |
C12—C7—C8—C9 | −0.6 (4) | C23—C24—C25—C26 | −0.7 (6) |
S1—C7—C8—C9 | 178.7 (2) | C29—C24—C25—C26 | −179.8 (4) |
C12—C7—C8—C13 | 178.0 (3) | C24—C25—C26—C27 | 0.3 (7) |
S1—C7—C8—C13 | −2.7 (4) | C24—C25—C26—C30 | 179.9 (4) |
C7—C8—C9—C10 | 0.6 (5) | C25—C26—C27—C28 | −0.2 (7) |
C13—C8—C9—C10 | −178.0 (3) | C30—C26—C27—C28 | −179.8 (4) |
C8—C9—C10—C11 | −0.1 (5) | C24—C23—C28—C27 | −1.0 (5) |
C8—C9—C10—C14 | 179.9 (3) | S3—C23—C28—C27 | 179.9 (3) |
C9—C10—C11—C12 | −0.6 (5) | C26—C27—C28—C23 | 0.6 (6) |
Cg1 and Cg2 are the centroids of the C15–C20 and C7–C12 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···Cg1 | 0.93 | 2.72 | 3.557 (3) | 149 |
C13—H13C···Cg2i | 0.96 | 2.75 | 3.579 (3) | 144 |
Symmetry code: (i) −x+2, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Sn(C6H5)(C8H9S)3] |
Mr | 607.43 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 9.2717 (7), 10.6370 (8), 15.6486 (11) |
α, β, γ (°) | 93.420 (2), 93.520 (1), 105.800 (1) |
V (Å3) | 1477.51 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.09 |
Crystal size (mm) | 0.32 × 0.26 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.705, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12493, 5416, 4057 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.061, 0.86 |
No. of reflections | 5416 |
No. of parameters | 313 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.64, −0.37 |
Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).
Cg1 and Cg2 are the centroids of the C15–C20 and C7–C12 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···Cg1 | 0.93 | 2.72 | 3.557 (3) | 149 |
C13—H13C···Cg2i | 0.96 | 2.75 | 3.579 (3) | 144 |
Symmetry code: (i) −x+2, −y+2, −z+2. |
Acknowledgements
The authors thank the Instituto Rcxaslan-CSIC, Spain for a license to use the Cambridge Structural Database (Allen, 2002).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Estudiante-Negrete, F., Redón, R., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 1651–1660. Web of Science CSD CrossRef CAS Google Scholar
Fleischer, H. (2005). Coord. Chem. Rev. 249, 799–827. Web of Science CrossRef CAS Google Scholar
Flores-Figueroa, A., Arista-M, V., Talancón-Sánchez, D. & Castillo, I. (2005). J. Braz. Chem. Soc. 16, 397–403. Web of Science CrossRef CAS Google Scholar
Huber, F., Schmiedgen, R., Schurmann, M., Barbieri, R., Ruisi, G. & Silvestri, A. (1997). Appl. Organomet. Chem. 11, 869–888. CrossRef CAS Google Scholar
Li, Y.-X., Zhang, R.-F. & Ma, C.-L. (2006). Acta Cryst. E62, m957–m958. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lloyd-Jones, G. C., Moseley, J. D. & Renny, J. S. (2008). Synthesis, pp. 661–689. Google Scholar
Mondragón, A., Monsalvo, I., Regla, I. & Castillo, I. (2010). Tetrahedron Lett. 51, 767–770. Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The development of synthetic methods for highly substituted thiophenols with varying degrees of steric hindrance has been an active field of research (Lloyd-Jones et al., 2008), due in part to the potential of sterically encumbered thiophenols to emulate the active site of sulfur-rich metalloenzymes (Fleischer, 2005). In this context, we developed a series of 2,4-disubstituted thiophenols (Flores-Figueroa et al., 2005, Mondragón et al.,2010), among which 2,4-dimethylthiophenol represents a commercially available ligand. In order to assess the steric properties of this thiophenol, we soughtout to prepare a metal-thiolate derivative amenable to structural characterization. Since phenyl- and diphenyltin (IV) derivatives tend to be crystalline materials (Huber et al., 1997 & Estudiante-Negrete et al., 2007), we decided to employ PhSnCl3 to introduce the 2,4-dimethylthiophenolate moiety. Thus, the reaction of 3 equivalents of 2,4-Me2C6H3SH with PhSnCl3 in the presence of 3 equivalents of triethylamine afforded the title compound phenyl tris(2,4-dimethylphenylthiolate)tin (IV) (I) in good yield.
The structure of the title compound (PhSn(S-2,4-Me2C6H3)3,) is shown with numbering scheme in Figure 1. According to the bond angles, (I) exhibits a slightly distorted tetrahedral geometry. The phenyl ring (C1—C6) is in a close to coplanar disposition with respect to one of the 2,4-dimethylphenyl groups (C23–C30), forming a dihedral angle of 25.3 (2)°. The Sn—C distance (2.114 (3) Å) is slightly shorter than those described for the related compounds (Allen et al., 1987) phenyl tris(pyridinthiolate)tin [2.139 (5) Å, PhSn(SPy)3 (Huber et al., 1997)] and phenyl tris(pyrimidinethiolato)tin [2.139 (3) Å, PhSn(SPym)3 (Li et al., 2006)]. The Sn—S distances are shorter than those in PhSn(SPy)3 [2.491–2.576 Å], and PhSn(SPym)3[2.455–2.552 Å]. Due to the geometry adopted, in the crystal structure, there are C—H-π, intra and intermolecular interactions.