metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1H-pyrazole-κN2)bis­­(2,4,6-tri­iso­propyl­benzoato-κO)cobalt(II)

aChemisches Institut der Otto-von-Guericke-Universität, Universitätsplatz 2, D-39116 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

(Received 22 September 2010; accepted 4 October 2010; online 13 October 2010)

The title compound, [Co(C16H23O2)2(C3H4N2)2] or (C3H4N2)2Co(O2CC6H2iPr3-2,4,6), is a rare example of a tetra­coordinate cobalt(II) carboxyl­ate stabilized by ancillary N-heterocyclic ligands. The Co(II) ion resides on a crystallographic twofold axis so that the asymmetric unit comprises one half-mol­ecule. Due to the steric bulk of the 2,4,6-triisopropyl­phenyl substituents, the carboxyl­ate ligands are both coordinated in a monodentate fashion despite the low coordination number. The coordination geometry around the central Co(II) ion is distorted tetra­hedral with angles at Co ranging from 92.27 (18)° to 121.08 (14)°.

Related literature

For cobalt(II) carboxyl­ate complexes containing N-coordin­ated heterocyclic ligands, see: Manhas et al. (1975[Manhas, B. S., Jolly, G. S., Kumar, N. & Gandotra, A. K. (1975). J. Chem. Sci. 1, 1-12.]); Catterick & Thornton (1976[Catterick, J. & Thornton, P. (1976). J. Chem. Soc. Dalton Trans. pp. 1634-1640.]); Kumar & Gandotra (1980a[Kumar, N. & Gandotra, A. K. (1980a). J. Inorg. Nucl. Chem. 42, 1247-1252.],b[Kumar, N. & Gandotra, A. K. (1980b). Transition Met. Chem. 5, 365-367.]); Kumar & Bajju (1999[Kumar, N. & Bajju, G. D. (1999). Indian J. Chem. Sect. A. 38, 291-294.]); Ju et al. (2006[Ju, W.-Z., Jiao, R.-H., Cao, P. & Fang, R.-Q. (2006). Acta Cryst. E62, m1012-m1013.]); Karmakar et al. (2007[Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). Polyhedron, 26, 1347-1355.]). Normally the carboxyl­ate anions are either bidentate or bridging. For an exception in which the benzoate ligands are coordinated in a monodentate fashion, see: Hökelek & Necefouğlu (1999[Hökelek, T. & Necefouğlu, H. (1999). Acta Cryst. C55, 545-547.]). Inter­esting supra­molecular structures have also been reported, see: Boldog et al. (2001[Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Dalton Trans. pp. 893-897.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C16H23O2)2(C3H4N2)2]

  • Mr = 689.78

  • Orthorhombic, P b c n

  • a = 9.6146 (19) Å

  • b = 12.792 (3) Å

  • c = 31.275 (6) Å

  • V = 3846.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 153 K

  • 0.80 × 0.50 × 0.10 mm

Data collection
  • Stoe STADI4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.696, Tmax = 0.953

  • 6256 measured reflections

  • 3378 independent reflections

  • 2073 reflections with I > 2σ(I)

  • Rint = 0.071

  • 3 standard reflections every 120 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.173

  • S = 1.09

  • 3378 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: DIF4 (Stoe & Cie, 1992[Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.]); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992[Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cobalt(II) carboxylate complexes containing N-coordinated heterocyclic ligands have been the subject of detailed structural investigations in the past [Manhas et al. (1975); Catterick et al. (1976); Kumar et al. (1980a,b, 1999); Ju et al. (2006); Karmakar et al. (2007)]. The most frequently employed co-ligands are pyridine derivatives. Normally the carboxylate anions are either bidentate or bridging. A notable exception is the octahedral complex trans-diaqua-bis(benzoato-O)-bis(nicotinamide-N1)cobalt(II), in which the benzoate ligands are coordinated in a monodentate fashion [Hökelek et al. (1999)]. Interesting supramolecular structures have have also been reported in this chemistry [Boldog et al. (2001)]. These compounds contained the heterocyclic co-ligand 3,3',5,5'-tetramethyl-4,4'-bipyrazolyl. The title compound, which contains unsubstituted pyrazole as co-ligand, was obtained in small amounts from a reaction of cobalt(II) hydroxide with 2,4,6-triisopropylbenzoic acid in aqueous solution in the presence of pyrazole. The coordination geometry around the central cobalt atom is distorted tetrahedral. Due to the steric bulk of the 2,4,6-triisopropylphenyl substituents the carboxylate ligands in the title compound are monodentate despite the low coordination number of 4 around Co.

Related literature top

For cobalt(II) carboxylate complexes containing N-coordinated heterocyclic ligands, see: Manhas et al. (1975); Catterick & Thornton (1976); Kumar & Gandotra (1980a,b); Kumar & Bajju (1999); Ju et al. (2006); Karmakar et al. (2007). Normally the carboxylate anions are either bidentate or bridging. For an exception in which the benzoate ligands are coordinated in a monodentate fashion, see: Hökelek & Necefouğlu (1999). Interesting supramolecular structures have have also been reported, see: Boldog et al. (2001).

Experimental top

Small amounts of blue single crystals of the title compound were obtained from a reaction of cobalt(II) hydroxide with 2,4,6-triisopropylbenzoic acid in aqueous solution in the presence of pyrazole.

Refinement top

The hydrogen atoms were included using a riding model, with N2—H2 = 0.88 Å, aromatic C—H = 0.95 Å, methyn C—H = 1.00 Å [Uiso(H) = 1.2Ueq(C)] and methyl C—H = 0.98 Å [Uiso(H) = 1.5Ueq(C)].

Structure description top

Cobalt(II) carboxylate complexes containing N-coordinated heterocyclic ligands have been the subject of detailed structural investigations in the past [Manhas et al. (1975); Catterick et al. (1976); Kumar et al. (1980a,b, 1999); Ju et al. (2006); Karmakar et al. (2007)]. The most frequently employed co-ligands are pyridine derivatives. Normally the carboxylate anions are either bidentate or bridging. A notable exception is the octahedral complex trans-diaqua-bis(benzoato-O)-bis(nicotinamide-N1)cobalt(II), in which the benzoate ligands are coordinated in a monodentate fashion [Hökelek et al. (1999)]. Interesting supramolecular structures have have also been reported in this chemistry [Boldog et al. (2001)]. These compounds contained the heterocyclic co-ligand 3,3',5,5'-tetramethyl-4,4'-bipyrazolyl. The title compound, which contains unsubstituted pyrazole as co-ligand, was obtained in small amounts from a reaction of cobalt(II) hydroxide with 2,4,6-triisopropylbenzoic acid in aqueous solution in the presence of pyrazole. The coordination geometry around the central cobalt atom is distorted tetrahedral. Due to the steric bulk of the 2,4,6-triisopropylphenyl substituents the carboxylate ligands in the title compound are monodentate despite the low coordination number of 4 around Co.

For cobalt(II) carboxylate complexes containing N-coordinated heterocyclic ligands, see: Manhas et al. (1975); Catterick & Thornton (1976); Kumar & Gandotra (1980a,b); Kumar & Bajju (1999); Ju et al. (2006); Karmakar et al. (2007). Normally the carboxylate anions are either bidentate or bridging. For an exception in which the benzoate ligands are coordinated in a monodentate fashion, see: Hökelek & Necefouğlu (1999). Interesting supramolecular structures have have also been reported, see: Boldog et al. (2001).

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4 (Stoe & Cie, 1992); data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels.
Bis(1H-pyrazole-κN3)bis(2,4,6-triisopropylbenzoato- κO)cobalt(II) top
Crystal data top
[Co(C16H23O2)2(C3H4N2)2]F(000) = 1476
Mr = 689.78Dx = 1.191 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 25 reflections
a = 9.6146 (19) Åθ = 15–25°
b = 12.792 (3) ŵ = 0.49 mm1
c = 31.275 (6) ÅT = 153 K
V = 3846.5 (13) Å3Platelet, violet
Z = 40.80 × 0.50 × 0.10 mm
Data collection top
Stoe STADI4
diffractometer
2073 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ωθ–scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 150
Tmin = 0.696, Tmax = 0.953l = 370
6256 measured reflections3 standard reflections every 120 min
3378 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0566P)2 + 5.530P]
where P = (Fo2 + 2Fc2)/3
3378 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(C16H23O2)2(C3H4N2)2]V = 3846.5 (13) Å3
Mr = 689.78Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 9.6146 (19) ŵ = 0.49 mm1
b = 12.792 (3) ÅT = 153 K
c = 31.275 (6) Å0.80 × 0.50 × 0.10 mm
Data collection top
Stoe STADI4
diffractometer
2073 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.071
Tmin = 0.696, Tmax = 0.9533 standard reflections every 120 min
6256 measured reflections intensity decay: 3%
3378 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
3378 reflectionsΔρmin = 0.48 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.38310 (6)0.25000.0350 (3)
O10.0464 (3)0.4910 (2)0.20630 (10)0.0408 (8)
O20.0446 (4)0.3536 (2)0.16381 (11)0.0516 (9)
N10.1650 (4)0.2895 (3)0.25715 (12)0.0407 (9)
N20.2189 (6)0.2259 (4)0.22795 (17)0.0756 (15)
H20.19400.22650.20090.091*
C10.1346 (5)0.5130 (4)0.13559 (15)0.0406 (11)
C20.2789 (5)0.5234 (4)0.13413 (17)0.0514 (13)
C30.3346 (6)0.5847 (5)0.1010 (2)0.0731 (18)
H30.43230.59550.09990.088*
C40.2509 (7)0.6304 (5)0.0697 (2)0.0778 (19)
C50.1112 (7)0.6181 (5)0.07273 (19)0.0701 (17)
H50.05370.65060.05190.084*
C60.0485 (5)0.5603 (4)0.10495 (16)0.0501 (13)
C70.3722 (6)0.4637 (5)0.16474 (19)0.0630 (16)
H7A0.31700.44850.19110.076*
C80.4125 (7)0.3596 (5)0.1447 (2)0.090 (2)
H8A0.32820.32140.13650.135*
H8B0.46560.31820.16540.135*
H8C0.46960.37220.11930.135*
C90.5041 (7)0.5219 (6)0.1784 (3)0.099 (2)
H9A0.47850.58840.19180.149*
H9B0.56220.53540.15320.149*
H9C0.55610.47910.19890.149*
C100.3147 (9)0.6955 (6)0.0337 (3)0.113 (3)
H10A0.23870.69350.01190.135*
C110.4247 (10)0.6439 (8)0.0113 (3)0.143 (4)
H11A0.45810.68890.01190.214*
H11B0.39010.57800.00070.214*
H11C0.50130.62930.03110.214*
C120.3206 (11)0.8054 (6)0.0431 (2)0.134 (4)
H12A0.35900.84290.01850.200*
H12B0.38000.81700.06810.200*
H12C0.22660.83130.04910.200*
C130.1072 (6)0.5466 (4)0.10610 (17)0.0563 (14)
H13A0.13300.52610.13590.068*
C140.1865 (6)0.6474 (5)0.0955 (2)0.079 (2)
H14A0.15700.70320.11500.118*
H14B0.28660.63530.09880.118*
H14C0.16660.66800.06590.118*
C150.1521 (8)0.4578 (6)0.0765 (2)0.106 (3)
H15A0.10090.39410.08390.160*
H15B0.13200.47690.04680.160*
H15C0.25210.44550.07980.160*
C160.2320 (6)0.2617 (4)0.29427 (18)0.0594 (15)
H160.21760.29210.32160.071*
C170.3225 (6)0.1830 (4)0.2852 (2)0.0651 (17)
H170.38200.14890.30500.078*
C180.3129 (4)0.1623 (3)0.24355 (14)0.0316 (10)
H180.36420.11130.22810.038*
C190.0713 (5)0.4460 (4)0.16973 (15)0.0375 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0309 (4)0.0278 (4)0.0463 (5)0.0000.0002 (4)0.000
O10.0410 (18)0.0424 (18)0.0391 (18)0.0000 (14)0.0033 (15)0.0010 (15)
O20.060 (2)0.0385 (19)0.057 (2)0.0102 (16)0.0027 (17)0.0018 (16)
N10.040 (2)0.0349 (19)0.048 (3)0.0090 (17)0.0004 (19)0.0039 (19)
N20.079 (4)0.069 (3)0.079 (4)0.004 (3)0.001 (3)0.002 (3)
C10.044 (3)0.039 (3)0.038 (3)0.000 (2)0.008 (2)0.002 (2)
C20.044 (3)0.052 (3)0.059 (3)0.003 (2)0.014 (3)0.004 (3)
C30.055 (4)0.070 (4)0.095 (5)0.005 (3)0.033 (4)0.012 (4)
C40.079 (4)0.065 (4)0.090 (5)0.014 (3)0.038 (4)0.032 (4)
C50.071 (4)0.077 (4)0.063 (4)0.021 (3)0.020 (3)0.030 (3)
C60.058 (3)0.048 (3)0.045 (3)0.003 (3)0.006 (3)0.010 (3)
C70.042 (3)0.079 (4)0.068 (4)0.001 (3)0.002 (3)0.006 (3)
C80.081 (5)0.082 (5)0.107 (6)0.023 (4)0.008 (4)0.011 (4)
C90.049 (3)0.116 (6)0.133 (7)0.003 (4)0.013 (4)0.012 (5)
C100.113 (6)0.087 (6)0.138 (7)0.013 (5)0.071 (6)0.051 (5)
C110.138 (8)0.177 (10)0.113 (7)0.020 (7)0.069 (6)0.060 (7)
C120.221 (11)0.100 (6)0.079 (5)0.080 (7)0.038 (6)0.004 (5)
C130.052 (3)0.069 (4)0.048 (3)0.002 (3)0.000 (3)0.008 (3)
C140.054 (4)0.099 (5)0.084 (5)0.023 (4)0.002 (3)0.025 (4)
C150.076 (5)0.121 (7)0.122 (7)0.009 (5)0.014 (5)0.031 (5)
C160.054 (3)0.069 (4)0.055 (3)0.024 (3)0.008 (3)0.007 (3)
C170.046 (3)0.062 (4)0.088 (5)0.026 (3)0.006 (3)0.017 (3)
C180.034 (2)0.0270 (19)0.034 (3)0.0153 (18)0.002 (2)0.0022 (19)
C190.032 (2)0.045 (3)0.036 (3)0.000 (2)0.004 (2)0.001 (2)
Geometric parameters (Å, º) top
Co1—O1i1.993 (3)C8—H8C0.9800
Co1—O11.993 (3)C9—H9A0.9800
Co1—N12.000 (4)C9—H9B0.9800
Co1—N1i2.000 (4)C9—H9C0.9800
O1—C191.303 (5)C10—C111.431 (10)
O2—C191.223 (5)C10—C121.437 (10)
N1—N21.328 (6)C10—H10A1.0000
N1—C161.375 (6)C11—H11A0.9800
N2—C181.310 (6)C11—H11B0.9800
N2—H20.8800C11—H11C0.9800
C1—C21.394 (7)C12—H12A0.9800
C1—C61.403 (7)C12—H12B0.9800
C1—C191.499 (6)C12—H12C0.9800
C2—C31.404 (7)C13—C151.527 (8)
C2—C71.518 (7)C13—C141.534 (8)
C3—C41.397 (9)C13—H13A1.0000
C3—H30.9500C14—H14A0.9800
C4—C51.355 (9)C14—H14B0.9800
C4—C101.529 (8)C14—H14C0.9800
C5—C61.388 (7)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C131.507 (8)C15—H15C0.9800
C7—C81.522 (8)C16—C171.360 (7)
C7—C91.531 (8)C16—H160.9500
C7—H7A1.0000C17—C181.331 (7)
C8—H8A0.9800C17—H170.9500
C8—H8B0.9800C18—H180.9500
O1i—Co1—O192.32 (18)C11—C10—C12121.6 (8)
O1i—Co1—N1121.02 (14)C11—C10—C4113.9 (6)
O1—Co1—N1108.28 (14)C12—C10—C4113.5 (7)
O1i—Co1—N1i108.28 (14)C11—C10—H10A101.2
O1—Co1—N1i121.02 (14)C12—C10—H10A101.2
N1—Co1—N1i106.5 (2)C4—C10—H10A101.2
C19—O1—Co1109.7 (3)C10—C11—H11A109.5
N2—N1—C16103.8 (4)C10—C11—H11B109.5
N2—N1—Co1126.8 (3)H11A—C11—H11B109.5
C16—N1—Co1128.4 (3)C10—C11—H11C109.5
C18—N2—N1113.2 (5)H11A—C11—H11C109.5
C18—N2—H2123.4H11B—C11—H11C109.5
N1—N2—H2123.4C10—C12—H12A109.5
C2—C1—C6121.6 (5)C10—C12—H12B109.5
C2—C1—C19118.8 (4)H12A—C12—H12B109.5
C6—C1—C19119.5 (4)C10—C12—H12C109.5
C1—C2—C3117.2 (5)H12A—C12—H12C109.5
C1—C2—C7121.3 (5)H12B—C12—H12C109.5
C3—C2—C7121.4 (5)C6—C13—C15110.6 (5)
C4—C3—C2122.1 (6)C6—C13—C14113.0 (5)
C4—C3—H3118.9C15—C13—C14110.7 (5)
C2—C3—H3118.9C6—C13—H13A107.4
C5—C4—C3118.2 (5)C15—C13—H13A107.4
C5—C4—C10120.9 (7)C14—C13—H13A107.4
C3—C4—C10120.9 (7)C13—C14—H14A109.5
C4—C5—C6122.9 (6)C13—C14—H14B109.5
C4—C5—H5118.5H14A—C14—H14B109.5
C6—C5—H5118.5C13—C14—H14C109.5
C5—C6—C1117.9 (5)H14A—C14—H14C109.5
C5—C6—C13120.7 (5)H14B—C14—H14C109.5
C1—C6—C13121.3 (5)C13—C15—H15A109.5
C2—C7—C8109.3 (5)C13—C15—H15B109.5
C2—C7—C9114.9 (5)H15A—C15—H15B109.5
C8—C7—C9109.2 (5)C13—C15—H15C109.5
C2—C7—H7A107.7H15A—C15—H15C109.5
C8—C7—H7A107.7H15B—C15—H15C109.5
C9—C7—H7A107.7C17—C16—N1108.3 (5)
C7—C8—H8A109.5C17—C16—H16125.8
C7—C8—H8B109.5N1—C16—H16125.8
H8A—C8—H8B109.5C18—C17—C16107.9 (5)
C7—C8—H8C109.5C18—C17—H17126.0
H8A—C8—H8C109.5C16—C17—H17126.0
H8B—C8—H8C109.5N2—C18—C17106.8 (4)
C7—C9—H9A109.5N2—C18—H18126.6
C7—C9—H9B109.5C17—C18—H18126.6
H9A—C9—H9B109.5O2—C19—O1121.5 (4)
C7—C9—H9C109.5O2—C19—C1122.0 (4)
H9A—C9—H9C109.5O1—C19—C1116.5 (4)
H9B—C9—H9C109.5
O1i—Co1—O1—C19174.0 (3)C2—C1—C6—C13178.5 (5)
N1—Co1—O1—C1962.1 (3)C19—C1—C6—C131.2 (8)
N1i—Co1—O1—C1961.0 (3)C1—C2—C7—C890.8 (7)
O1i—Co1—N1—N2169.3 (4)C3—C2—C7—C884.0 (7)
O1—Co1—N1—N264.9 (4)C1—C2—C7—C9146.0 (6)
N1i—Co1—N1—N266.7 (4)C3—C2—C7—C939.2 (8)
O1i—Co1—N1—C1623.7 (5)C5—C4—C10—C11130.1 (9)
O1—Co1—N1—C16128.1 (4)C3—C4—C10—C1151.9 (11)
N1i—Co1—N1—C16100.4 (5)C5—C4—C10—C1285.1 (11)
C16—N1—N2—C180.3 (6)C3—C4—C10—C1292.8 (10)
Co1—N1—N2—C18169.9 (3)C5—C6—C13—C1582.9 (7)
C6—C1—C2—C31.0 (8)C1—C6—C13—C1595.5 (6)
C19—C1—C2—C3178.4 (5)C5—C6—C13—C1441.9 (8)
C6—C1—C2—C7174.0 (5)C1—C6—C13—C14139.7 (5)
C19—C1—C2—C73.4 (8)N2—N1—C16—C170.1 (6)
C1—C2—C3—C42.5 (9)Co1—N1—C16—C17169.4 (4)
C7—C2—C3—C4172.5 (6)N1—C16—C17—C180.2 (7)
C2—C3—C4—C52.8 (10)N1—N2—C18—C170.4 (6)
C2—C3—C4—C10179.2 (6)C16—C17—C18—N20.4 (6)
C3—C4—C5—C61.6 (11)Co1—O1—C19—O211.3 (5)
C10—C4—C5—C6179.6 (6)Co1—O1—C19—C1168.4 (3)
C4—C5—C6—C10.2 (9)C2—C1—C19—O293.1 (6)
C4—C5—C6—C13178.2 (6)C6—C1—C19—O284.3 (6)
C2—C1—C6—C50.1 (8)C2—C1—C19—O186.6 (6)
C19—C1—C6—C5177.3 (5)C6—C1—C19—O195.9 (5)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C16H23O2)2(C3H4N2)2]
Mr689.78
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)153
a, b, c (Å)9.6146 (19), 12.792 (3), 31.275 (6)
V3)3846.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.80 × 0.50 × 0.10
Data collection
DiffractometerStoe STADI4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.696, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
6256, 3378, 2073
Rint0.071
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.173, 1.09
No. of reflections3378
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.48

Computer programs: DIF4 (Stoe & Cie, 1992), REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Otto-von-Guericke-Universität for financial support of this work.

References

First citationBoldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Dalton Trans. pp. 893–897.  CrossRef Google Scholar
First citationCatterick, J. & Thornton, P. (1976). J. Chem. Soc. Dalton Trans. pp. 1634–1640.  CrossRef Web of Science Google Scholar
First citationHökelek, T. & Necefouğlu, H. (1999). Acta Cryst. C55, 545–547.  CSD CrossRef IUCr Journals Google Scholar
First citationJu, W.-Z., Jiao, R.-H., Cao, P. & Fang, R.-Q. (2006). Acta Cryst. E62, m1012–m1013.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarmakar, A., Sarma, R. J. & Baruah, J. B. (2007). Polyhedron, 26, 1347–1355.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, N. & Bajju, G. D. (1999). Indian J. Chem. Sect. A. 38, 291–294.  Google Scholar
First citationKumar, N. & Gandotra, A. K. (1980a). J. Inorg. Nucl. Chem. 42, 1247–1252.  CrossRef CAS Web of Science Google Scholar
First citationKumar, N. & Gandotra, A. K. (1980b). Transition Met. Chem. 5, 365–367.  CrossRef CAS Web of Science Google Scholar
First citationManhas, B. S., Jolly, G. S., Kumar, N. & Gandotra, A. K. (1975). J. Chem. Sci. 1, 1–12.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds