metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-4-amino-3-nitro­benzoato)bis­­(4-amino-3-nitro­benzoato)octa­butyldi-μ3-oxido-tetra­tin(IV)

aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 7 October 2010; accepted 7 October 2010; online 13 October 2010)

The tetranuclear molecules of the title compound, [Sn4(C4H9)8(C7H5N2O4)4O2], reside on a crystallographic inversion center. Both the two independent Sn atoms are five-coordinate, with distorted trigonal–bipyramidal geometries. One Sn atom is coordinated by two O atoms of the carboxyl­ate anions, one bridging O atom and two butyl groups and the other Sn atom is coordinated by an O atom of the carboxyl­ate anion, two bridging O atoms and two butyl groups. All the butyl groups are equatorial with respect to the SnO3 trigonal plane. The mol­ecular structure is stabilized by intra­molecular N—H⋯O hydrogen bonds. In the crystal, pairs of inter­molecular bifurcated acceptor N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains along [10[\overline{1}]]. Weak inter­molecular C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.713 (2) Å] are also observed.

Related literature

For general background to and applications of the title complex, see: Khoo & Hazell (1999[Khoo, L. E. & Hazell, A. (1999). Acta Cryst. C55, 2070-2073.]); Parvez et al. (2004[Parvez, M., Sadiq-ur-Rehman,, Shahid, K., Ali, S. & Mazhar, M. (2004). Acta Cryst. E60, m1465-m1467.]); Li et al. (2006[Li, F.-H., Yin, H.-D., Gao, Z.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, m788-m790.]); Win et al. (2008a[Win, Y. F., Teoh, S. G., Lim, E. K., Ng, S. L. & Fun, H. K. (2008a). J. Chem. Crystallogr. 38, 345-350.],b[Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008b). Acta Cryst. E64, m1572-m1573.]). For closely related structures, see: Khoo & Hazell (1999[Khoo, L. E. & Hazell, A. (1999). Acta Cryst. C55, 2070-2073.]); Parvez et al. (2004[Parvez, M., Sadiq-ur-Rehman,, Shahid, K., Ali, S. & Mazhar, M. (2004). Acta Cryst. E60, m1465-m1467.]); Li et al. (2006[Li, F.-H., Yin, H.-D., Gao, Z.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, m788-m790.]); Win et al. (2008b[Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008b). Acta Cryst. E64, m1572-m1573.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(C4H9)8(C7H5N2O4)4O2]

  • Mr = 1688.18

  • Triclinic, [P \overline 1]

  • a = 11.9585 (9) Å

  • b = 13.0679 (10) Å

  • c = 13.1897 (10) Å

  • α = 76.256 (2)°

  • β = 67.445 (2)°

  • γ = 66.108 (2)°

  • V = 1732.1 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.06 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.758, Tmax = 0.912

  • 32184 measured reflections

  • 11359 independent reflections

  • 8603 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.116

  • S = 1.04

  • 11359 reflections

  • 410 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C16–C21 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O6 0.91 2.59 3.422 (4) 153
N1—H2N1⋯O1 1.03 1.83 2.644 (5) 133
N3—H1N3⋯O4i 0.88 2.04 2.910 (4) 167
N3—H2N3⋯O5 0.88 2.06 2.669 (4) 125
C17—H17A⋯O4i 0.93 2.51 3.246 (5) 137
C30—H30ACg1ii 0.96 2.80 3.584 (5) 139
Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In general, there are many well-documented structures on complexes isolated from 1:1 molar ratio reaction between diorganotin(IV) with the respective organic acids (Khoo & Hazell, 1999; Parvez et al., 2004; Li et al., 2006; Win et al., 2008a,b). This dimeric structure is known as organodistannoxane dimer with the core geometry consisting of a centrosymmetric planar Sn2O2 group (Win et al., 2008a,b). The centrosymmetric planar Sn2O2 group is bonded to the exo- and endocyclic tin(IV) atom moiety via the bridging oxygen atoms so that the oxygen atoms are tri-coordinated (Khoo & Hazell, 1999; Parvez et al., 2004; Li et al., 2006). In this study, the crystal structure of the title complex is similar to bis(2,3-dibromopropionato)tetrabutyldistannoxane(IV) dimer and consists of a centrosymmetric planar Sn2O2 group (Win et al., 2008b). The only exception is 4-amino-3-nitrobenzoic acid is utilized in the reaction to obtain the title complex.

The asymmetric unit of the title complex (Fig. 1) lies on a crystallographic inversion center and comprises of one-half molecule, with the other half of the molecule is generated by symmetry code -x, -y+1, -z. The Sn1 atom is five-coordinated by two butyl groups in equatorial position, an O atom of the monodentate carboxylate anion, an O atom of the bridging carboxylate atom and one bridging O atom in a distorted trigonal bipiramidal geometry. The Sn2 atom also has a distorted trigonal bipiramidal geometry, being coordinated by two butyl groups in equatorial position, one bridging carboxylate O atom and two bridging O atoms. Intramolecular N1—H2N1···O1 and N3—H2N3···O5 hydrogen bonds (Table 1) form two different six-membered rings, generating S(6) ring motifs (Bernstein et al., 1995) which help to stabilize the molecular structure. All geometric parameters are consistent to those observed in closely related structures (Khoo & Hazell, 1999; Parvez et al., 2004; Li et al., 2006; Win et al., 2008b).

In the crystal structure, pairs of intermolecular bifurcated acceptor N3—H1N3···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules into one-dimensional chains incorporating R21(6) hydrogen bond ring motifs along the [101] direction (Bernstein et al., 1995, Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular C30—H30A···Cg1 interactions (Table 1) as well as Cg1···Cg2 aromatic stacking interactions where Cg1 and Cg 2 are the centroids of the C16-C21 and C1-C6 benzene rings.

Related literature top

For general background to and applications of the title complex, see: Khoo & Hazell (1999); Parvez et al. (2004); Li et al. (2006); Win et al. (2008a,b). For closely related structures, see: Khoo & Hazell (1999); Parvez et al. (2004); Li et al. (2006); Win et al. (2008b). For graph-set motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title complex was obtained by heating under reflux in a 1:1 molar mixture of dibutyltin(IV) oxide (0.50 g, 2 mmol) and 4-amino-3-nitrobenzoic acid (0.36 g, 2 mmol) in methanol (50 ml) for 4 h. Clear yellowish solution was isolated by filtration and kept in a bottle. After 12 days, yellow single crystals (0.71 g, 75.8 % yeild) were collected. M.p. 525.8–527.4 K. Analysis found for C60H92N8O18Sn4: C, 42.84; H, 5.43; N, 6.49; Sn, 28.28 %. Calculated found for C60H92N8O18Sn4: C, 42.68; H, 5.49; N, 6.64; Sn, 28.13 %.

Refinement top

The amino group H atoms were located from the difference Fourier map and constrained to ride with the parent atom with Uiso = 1.2 Ueq(N). All other H atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl groups. The highest residual electron density peak and the deepest hole were located at 0.72 Å from atom Sn1.

Structure description top

In general, there are many well-documented structures on complexes isolated from 1:1 molar ratio reaction between diorganotin(IV) with the respective organic acids (Khoo & Hazell, 1999; Parvez et al., 2004; Li et al., 2006; Win et al., 2008a,b). This dimeric structure is known as organodistannoxane dimer with the core geometry consisting of a centrosymmetric planar Sn2O2 group (Win et al., 2008a,b). The centrosymmetric planar Sn2O2 group is bonded to the exo- and endocyclic tin(IV) atom moiety via the bridging oxygen atoms so that the oxygen atoms are tri-coordinated (Khoo & Hazell, 1999; Parvez et al., 2004; Li et al., 2006). In this study, the crystal structure of the title complex is similar to bis(2,3-dibromopropionato)tetrabutyldistannoxane(IV) dimer and consists of a centrosymmetric planar Sn2O2 group (Win et al., 2008b). The only exception is 4-amino-3-nitrobenzoic acid is utilized in the reaction to obtain the title complex.

The asymmetric unit of the title complex (Fig. 1) lies on a crystallographic inversion center and comprises of one-half molecule, with the other half of the molecule is generated by symmetry code -x, -y+1, -z. The Sn1 atom is five-coordinated by two butyl groups in equatorial position, an O atom of the monodentate carboxylate anion, an O atom of the bridging carboxylate atom and one bridging O atom in a distorted trigonal bipiramidal geometry. The Sn2 atom also has a distorted trigonal bipiramidal geometry, being coordinated by two butyl groups in equatorial position, one bridging carboxylate O atom and two bridging O atoms. Intramolecular N1—H2N1···O1 and N3—H2N3···O5 hydrogen bonds (Table 1) form two different six-membered rings, generating S(6) ring motifs (Bernstein et al., 1995) which help to stabilize the molecular structure. All geometric parameters are consistent to those observed in closely related structures (Khoo & Hazell, 1999; Parvez et al., 2004; Li et al., 2006; Win et al., 2008b).

In the crystal structure, pairs of intermolecular bifurcated acceptor N3—H1N3···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules into one-dimensional chains incorporating R21(6) hydrogen bond ring motifs along the [101] direction (Bernstein et al., 1995, Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular C30—H30A···Cg1 interactions (Table 1) as well as Cg1···Cg2 aromatic stacking interactions where Cg1 and Cg 2 are the centroids of the C16-C21 and C1-C6 benzene rings.

For general background to and applications of the title complex, see: Khoo & Hazell (1999); Parvez et al. (2004); Li et al. (2006); Win et al. (2008a,b). For closely related structures, see: Khoo & Hazell (1999); Parvez et al. (2004); Li et al. (2006); Win et al. (2008b). For graph-set motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The suffix A corresponds to symmetry code [-x, -y+1, -z]. Intramolecular hydrogen bonds are shown as dashed lines and all C-bound H atoms were omitted for clarity.
[Figure 2] Fig. 2. The crystal structure of the title complex, viewed along the b axis, showing a one-dimensional chain along the [101] direction. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.
Bis(µ2-4-amino-3-nitrobenzoato)bis(4-amino-3-nitrobenzoato)octabutyldi- µ3-oxido-tetratin(IV) top
Crystal data top
[Sn4(C4H9)8(C7H5N2O4)4O2]Z = 1
Mr = 1688.18F(000) = 852
Triclinic, P1Dx = 1.618 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.9585 (9) ÅCell parameters from 5645 reflections
b = 13.0679 (10) Åθ = 3.4–33.2°
c = 13.1897 (10) ŵ = 1.50 mm1
α = 76.256 (2)°T = 100 K
β = 67.445 (2)°Block, yellow
γ = 66.108 (2)°0.20 × 0.15 × 0.06 mm
V = 1732.1 (2) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
11359 independent reflections
Radiation source: fine-focus sealed tube8603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 31.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.758, Tmax = 0.912k = 1918
32184 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
11359 reflections(Δ/σ)max = 0.001
410 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 1.18 e Å3
Crystal data top
[Sn4(C4H9)8(C7H5N2O4)4O2]γ = 66.108 (2)°
Mr = 1688.18V = 1732.1 (2) Å3
Triclinic, P1Z = 1
a = 11.9585 (9) ÅMo Kα radiation
b = 13.0679 (10) ŵ = 1.50 mm1
c = 13.1897 (10) ÅT = 100 K
α = 76.256 (2)°0.20 × 0.15 × 0.06 mm
β = 67.445 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
11359 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8603 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.912Rint = 0.055
32184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 1.26 e Å3
11359 reflectionsΔρmin = 1.18 e Å3
410 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.15407 (2)0.426491 (18)0.258267 (17)0.01235 (6)
Sn20.126384 (19)0.388757 (17)0.012249 (17)0.01183 (6)
O10.5285 (3)0.1013 (3)0.4294 (3)0.0452 (9)
O20.3268 (4)0.0394 (3)0.5298 (3)0.0469 (9)
O30.0372 (2)0.29294 (19)0.21639 (19)0.0150 (5)
O40.0160 (2)0.2104 (2)0.3863 (2)0.0230 (5)
O50.9029 (2)0.0002 (2)0.1901 (2)0.0233 (5)
O60.7210 (3)0.0470 (2)0.0558 (2)0.0254 (6)
O70.3299 (2)0.3217 (2)0.10236 (19)0.0183 (5)
O80.3316 (2)0.5805 (2)0.2675 (2)0.0187 (5)
O90.0734 (2)0.47928 (19)0.09963 (18)0.0133 (4)
N10.5993 (3)0.0496 (3)0.2134 (3)0.0313 (8)
H1N10.65730.04350.14500.038*
H2N10.62220.09390.28300.038*
N20.4123 (4)0.0430 (3)0.4400 (3)0.0315 (8)
N30.9151 (3)0.0899 (3)0.3964 (2)0.0192 (6)
H1N30.94670.12580.46000.023*
H2N30.95740.03170.35940.023*
N40.7854 (3)0.0571 (2)0.1543 (2)0.0173 (6)
C10.2968 (3)0.1390 (3)0.1681 (3)0.0186 (7)
H1A0.26930.17870.10840.022*
C20.4240 (3)0.0748 (3)0.1495 (3)0.0212 (7)
H2A0.48090.07180.07760.025*
C30.4715 (3)0.0126 (3)0.2369 (3)0.0213 (7)
C40.3797 (4)0.0193 (3)0.3434 (3)0.0211 (7)
C50.2486 (3)0.0864 (3)0.3609 (3)0.0182 (6)
H5A0.19020.08950.43220.022*
C60.2058 (3)0.1470 (3)0.2745 (3)0.0163 (6)
C70.0658 (3)0.2188 (3)0.2964 (3)0.0161 (6)
C80.2737 (3)0.3386 (3)0.2691 (3)0.0190 (7)
H8A0.33790.34460.34200.023*
H8B0.31950.37710.21640.023*
C90.2096 (4)0.2138 (3)0.2494 (3)0.0238 (7)
H9A0.18200.17070.31180.029*
H9B0.13340.20380.18430.029*
C100.3018 (4)0.1683 (3)0.2336 (4)0.0283 (8)
H10A0.26120.08750.23130.034*
H10B0.38020.18280.29680.034*
C110.3378 (6)0.2205 (5)0.1287 (4)0.0438 (12)
H11A0.39580.18940.12400.066*
H11B0.26110.20430.06550.066*
H11C0.37930.30040.13070.066*
C120.1180 (3)0.4888 (3)0.3732 (3)0.0191 (7)
H12A0.06760.42520.41170.023*
H12B0.06500.53440.33210.023*
C130.2355 (4)0.5582 (4)0.4589 (3)0.0248 (8)
H13A0.28620.62230.42110.030*
H13B0.28860.51280.50100.030*
C140.2041 (4)0.6002 (4)0.5377 (3)0.0280 (8)
H14A0.15210.64660.49630.034*
H14B0.15330.53650.57580.034*
C150.3241 (5)0.6682 (4)0.6222 (4)0.0352 (10)
H15A0.29920.69270.67070.053*
H15B0.37540.62240.66440.053*
H15C0.37370.73250.58510.053*
C160.5905 (3)0.2917 (3)0.3655 (3)0.0166 (6)
H16A0.54650.34510.41070.020*
C170.7173 (3)0.2297 (3)0.4104 (3)0.0178 (6)
H17A0.75740.24070.48590.021*
C180.7904 (3)0.1483 (3)0.3449 (3)0.0152 (6)
C190.7236 (3)0.1349 (3)0.2307 (3)0.0135 (6)
C200.5918 (3)0.1990 (3)0.1861 (3)0.0133 (6)
H20A0.54990.18850.11090.016*
C210.5243 (3)0.2764 (3)0.2514 (3)0.0136 (6)
C220.3840 (3)0.3441 (3)0.2034 (3)0.0138 (6)
C230.0916 (4)0.2564 (3)0.0232 (3)0.0194 (7)
H23A0.15370.18530.00550.023*
H23B0.00610.25700.02410.023*
C240.1005 (3)0.2635 (3)0.1432 (3)0.0183 (6)
H24A0.03630.33320.16040.022*
H24B0.18500.26510.19080.022*
C250.0794 (4)0.1652 (3)0.1674 (3)0.0215 (7)
H25A0.13670.09520.14210.026*
H25B0.00880.16890.12660.026*
C260.1044 (4)0.1659 (4)0.2894 (4)0.0301 (9)
H26A0.10040.09830.30200.045*
H26B0.18850.17010.33090.045*
H26C0.04000.22990.31250.045*
C270.2107 (3)0.4357 (3)0.1018 (3)0.0174 (6)
H27A0.14360.46680.16820.021*
H27B0.27370.36850.12450.021*
C280.2768 (4)0.5210 (3)0.0386 (3)0.0202 (7)
H28A0.34220.49170.02920.024*
H28B0.21340.59000.01890.024*
C290.3397 (3)0.5474 (3)0.1050 (3)0.0221 (7)
H29A0.39600.47730.13130.027*
H29B0.39310.59060.05670.027*
C300.2445 (4)0.6125 (4)0.2031 (3)0.0269 (8)
H30A0.29080.61940.24520.040*
H30B0.18690.57330.24870.040*
H30C0.19570.68600.17740.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01042 (10)0.01296 (11)0.01006 (10)0.00221 (7)0.00232 (7)0.00013 (8)
Sn20.01123 (10)0.01097 (10)0.01065 (10)0.00180 (7)0.00337 (7)0.00046 (7)
O10.0303 (17)0.047 (2)0.053 (2)0.0028 (14)0.0281 (16)0.0003 (17)
O20.042 (2)0.059 (2)0.0247 (16)0.0027 (16)0.0162 (15)0.0049 (15)
O30.0112 (10)0.0149 (11)0.0138 (10)0.0025 (8)0.0021 (8)0.0003 (9)
O40.0167 (12)0.0256 (14)0.0165 (12)0.0040 (9)0.0023 (10)0.0045 (10)
O50.0134 (11)0.0237 (13)0.0247 (13)0.0002 (9)0.0071 (10)0.0013 (10)
O60.0214 (13)0.0294 (15)0.0150 (12)0.0009 (10)0.0053 (10)0.0010 (10)
O70.0117 (11)0.0233 (13)0.0119 (10)0.0004 (9)0.0021 (9)0.0007 (9)
O80.0135 (11)0.0199 (12)0.0174 (11)0.0010 (9)0.0068 (9)0.0017 (9)
O90.0116 (10)0.0127 (10)0.0117 (10)0.0025 (8)0.0029 (8)0.0009 (8)
N10.0133 (14)0.0299 (18)0.043 (2)0.0003 (12)0.0082 (14)0.0053 (16)
N20.0276 (18)0.0309 (19)0.0340 (19)0.0016 (13)0.0198 (15)0.0013 (15)
N30.0104 (12)0.0188 (14)0.0184 (14)0.0006 (10)0.0018 (10)0.0026 (11)
N40.0149 (13)0.0170 (14)0.0190 (14)0.0021 (10)0.0088 (11)0.0010 (11)
C10.0141 (15)0.0159 (15)0.0233 (17)0.0039 (11)0.0057 (13)0.0005 (13)
C20.0146 (15)0.0217 (17)0.0237 (17)0.0053 (12)0.0027 (13)0.0040 (14)
C30.0149 (15)0.0163 (16)0.0331 (19)0.0041 (12)0.0078 (14)0.0057 (14)
C40.0245 (18)0.0179 (16)0.0251 (17)0.0081 (13)0.0140 (14)0.0015 (14)
C50.0148 (15)0.0182 (16)0.0206 (16)0.0051 (11)0.0073 (13)0.0014 (13)
C60.0118 (14)0.0142 (15)0.0217 (16)0.0041 (11)0.0051 (12)0.0011 (12)
C70.0144 (14)0.0132 (15)0.0188 (15)0.0019 (11)0.0089 (12)0.0025 (12)
C80.0149 (15)0.0174 (16)0.0218 (16)0.0056 (11)0.0040 (13)0.0006 (13)
C90.0226 (17)0.0192 (17)0.0300 (19)0.0075 (13)0.0078 (15)0.0041 (15)
C100.033 (2)0.0203 (18)0.034 (2)0.0134 (15)0.0121 (17)0.0024 (16)
C110.066 (4)0.041 (3)0.047 (3)0.034 (3)0.031 (3)0.004 (2)
C120.0168 (15)0.0209 (17)0.0175 (15)0.0020 (12)0.0073 (12)0.0038 (13)
C130.0201 (17)0.033 (2)0.0234 (18)0.0076 (14)0.0060 (14)0.0104 (16)
C140.035 (2)0.033 (2)0.0184 (17)0.0131 (16)0.0098 (16)0.0030 (15)
C150.043 (3)0.035 (2)0.026 (2)0.0060 (18)0.0123 (19)0.0121 (18)
C160.0147 (14)0.0166 (15)0.0148 (14)0.0032 (11)0.0048 (12)0.0011 (12)
C170.0132 (14)0.0192 (16)0.0143 (14)0.0013 (11)0.0035 (12)0.0003 (12)
C180.0118 (13)0.0148 (15)0.0173 (15)0.0048 (11)0.0034 (12)0.0007 (12)
C190.0121 (13)0.0130 (14)0.0159 (14)0.0039 (10)0.0060 (11)0.0007 (11)
C200.0124 (13)0.0141 (14)0.0122 (13)0.0048 (10)0.0026 (11)0.0014 (11)
C210.0102 (13)0.0144 (14)0.0117 (13)0.0014 (10)0.0012 (11)0.0026 (11)
C220.0132 (14)0.0122 (14)0.0168 (14)0.0028 (10)0.0061 (11)0.0038 (12)
C230.0211 (16)0.0192 (16)0.0171 (15)0.0079 (12)0.0042 (13)0.0024 (13)
C240.0202 (16)0.0174 (16)0.0195 (16)0.0063 (12)0.0090 (13)0.0020 (13)
C250.0188 (16)0.0197 (17)0.0275 (18)0.0053 (12)0.0076 (14)0.0073 (14)
C260.026 (2)0.035 (2)0.034 (2)0.0072 (15)0.0130 (17)0.0120 (18)
C270.0165 (15)0.0186 (16)0.0169 (15)0.0079 (12)0.0040 (12)0.0006 (12)
C280.0233 (17)0.0228 (17)0.0164 (15)0.0126 (13)0.0053 (13)0.0007 (13)
C290.0185 (16)0.0252 (18)0.0259 (18)0.0125 (13)0.0081 (14)0.0020 (14)
C300.0252 (19)0.029 (2)0.033 (2)0.0119 (15)0.0110 (16)0.0075 (17)
Geometric parameters (Å, º) top
Sn1—O92.022 (2)C11—H11C0.9600
Sn1—C82.117 (4)C12—C131.520 (5)
Sn1—C122.125 (3)C12—H12A0.9700
Sn1—O32.200 (2)C12—H12B0.9700
Sn1—O82.243 (2)C13—C141.504 (5)
Sn2—O9i2.044 (2)C13—H13A0.9700
Sn2—C232.121 (3)C13—H13B0.9700
Sn2—C272.133 (3)C14—C151.517 (6)
Sn2—O92.163 (2)C14—H14A0.9700
Sn2—O72.249 (2)C14—H14B0.9700
Sn2—Sn2i3.2982 (4)C15—H15A0.9600
O1—N21.255 (5)C15—H15B0.9600
O2—N21.228 (5)C15—H15C0.9600
O3—C71.301 (4)C16—C171.360 (4)
O4—C71.229 (4)C16—C211.415 (4)
O5—N41.251 (4)C16—H16A0.9300
O6—N41.238 (4)C17—C181.425 (5)
O7—C221.260 (4)C17—H17A0.9300
O8—C22i1.260 (4)C18—C191.415 (5)
O9—Sn2i2.044 (2)C19—C201.409 (4)
N1—C31.357 (5)C20—C211.369 (5)
N1—H1N10.9127C20—H20A0.9300
N1—H2N11.0326C21—C221.499 (4)
N2—C41.439 (5)C22—O8i1.260 (4)
N3—C181.348 (4)C23—C241.527 (5)
N3—H1N30.8828C23—H23A0.9700
N3—H2N30.8795C23—H23B0.9700
N4—C191.439 (4)C24—C251.527 (5)
C1—C21.363 (5)C24—H24A0.9700
C1—C61.404 (5)C24—H24B0.9700
C1—H1A0.9300C25—C261.518 (6)
C2—C31.413 (6)C25—H25A0.9700
C2—H2A0.9300C25—H25B0.9700
C3—C41.408 (5)C26—H26A0.9600
C4—C51.408 (5)C26—H26B0.9600
C5—C61.371 (5)C26—H26C0.9600
C5—H5A0.9300C27—C281.526 (5)
C6—C71.500 (5)C27—H27A0.9700
C8—C91.533 (5)C27—H27B0.9700
C8—H8A0.9700C28—C291.521 (5)
C8—H8B0.9700C28—H28A0.9700
C9—C101.543 (6)C28—H28B0.9700
C9—H9A0.9700C29—C301.517 (5)
C9—H9B0.9700C29—H29A0.9700
C10—C111.528 (7)C29—H29B0.9700
C10—H10A0.9700C30—H30A0.9600
C10—H10B0.9700C30—H30B0.9600
C11—H11A0.9600C30—H30C0.9600
C11—H11B0.9600
O9—Sn1—C8110.89 (12)C13—C12—H12B108.1
O9—Sn1—C12113.25 (12)Sn1—C12—H12B108.1
C8—Sn1—C12135.33 (14)H12A—C12—H12B107.3
O9—Sn1—O378.94 (9)C14—C13—C12114.5 (3)
C8—Sn1—O3100.88 (11)C14—C13—H13A108.6
C12—Sn1—O393.91 (11)C12—C13—H13A108.6
O9—Sn1—O889.41 (9)C14—C13—H13B108.6
C8—Sn1—O884.97 (12)C12—C13—H13B108.6
C12—Sn1—O888.89 (11)H13A—C13—H13B107.6
O3—Sn1—O8168.19 (9)C13—C14—C15112.6 (4)
O9i—Sn2—C23104.84 (12)C13—C14—H14A109.1
O9i—Sn2—C27108.28 (12)C15—C14—H14A109.1
C23—Sn2—C27146.36 (14)C13—C14—H14B109.1
O9i—Sn2—O976.78 (9)C15—C14—H14B109.1
C23—Sn2—O995.98 (11)H14A—C14—H14B107.8
C27—Sn2—O997.07 (11)C14—C15—H15A109.5
O9i—Sn2—O792.75 (9)C14—C15—H15B109.5
C23—Sn2—O787.89 (12)H15A—C15—H15B109.5
C27—Sn2—O784.87 (11)C14—C15—H15C109.5
O9—Sn2—O7169.46 (9)H15A—C15—H15C109.5
O9i—Sn2—Sn2i39.68 (6)H15B—C15—H15C109.5
C23—Sn2—Sn2i103.12 (10)C17—C16—C21121.3 (3)
C27—Sn2—Sn2i105.97 (10)C17—C16—H16A119.4
O9—Sn2—Sn2i37.10 (6)C21—C16—H16A119.4
O7—Sn2—Sn2i132.42 (6)C16—C17—C18121.9 (3)
C7—O3—Sn1116.89 (19)C16—C17—H17A119.1
C22—O7—Sn2133.4 (2)C18—C17—H17A119.1
C22i—O8—Sn1139.1 (2)N3—C18—C19125.8 (3)
Sn1—O9—Sn2i137.06 (11)N3—C18—C17117.9 (3)
Sn1—O9—Sn2119.61 (11)C19—C18—C17116.3 (3)
Sn2i—O9—Sn2103.22 (9)C20—C19—C18120.9 (3)
C3—N1—H1N1121.9C20—C19—N4116.6 (3)
C3—N1—H2N1112.1C18—C19—N4122.5 (3)
H1N1—N1—H2N1125.5C21—C20—C19121.3 (3)
O2—N2—O1121.7 (4)C21—C20—H20A119.4
O2—N2—C4119.9 (3)C19—C20—H20A119.4
O1—N2—C4118.4 (4)C20—C21—C16118.3 (3)
C18—N3—H1N3111.7C20—C21—C22121.0 (3)
C18—N3—H2N3118.7C16—C21—C22120.7 (3)
H1N3—N3—H2N3128.4O7—C22—O8i126.0 (3)
O6—N4—O5121.8 (3)O7—C22—C21117.0 (3)
O6—N4—C19119.5 (3)O8i—C22—C21117.0 (3)
O5—N4—C19118.7 (3)C24—C23—Sn2114.1 (2)
C2—C1—C6122.2 (4)C24—C23—H23A108.7
C2—C1—H1A118.9Sn2—C23—H23A108.7
C6—C1—H1A118.9C24—C23—H23B108.7
C1—C2—C3121.5 (3)Sn2—C23—H23B108.7
C1—C2—H2A119.3H23A—C23—H23B107.6
C3—C2—H2A119.3C25—C24—C23113.0 (3)
N1—C3—C4124.9 (4)C25—C24—H24A109.0
N1—C3—C2118.9 (4)C23—C24—H24A109.0
C4—C3—C2116.2 (3)C25—C24—H24B109.0
C3—C4—C5121.4 (4)C23—C24—H24B109.0
C3—C4—N2122.7 (3)H24A—C24—H24B107.8
C5—C4—N2115.9 (3)C26—C25—C24112.3 (3)
C6—C5—C4121.0 (3)C26—C25—H25A109.1
C6—C5—H5A119.5C24—C25—H25A109.1
C4—C5—H5A119.5C26—C25—H25B109.1
C5—C6—C1117.7 (3)C24—C25—H25B109.1
C5—C6—C7119.6 (3)H25A—C25—H25B107.9
C1—C6—C7122.7 (3)C25—C26—H26A109.5
O4—C7—O3122.2 (3)C25—C26—H26B109.5
O4—C7—C6121.6 (3)H26A—C26—H26B109.5
O3—C7—C6116.2 (3)C25—C26—H26C109.5
C9—C8—Sn1118.1 (2)H26A—C26—H26C109.5
C9—C8—H8A107.8H26B—C26—H26C109.5
Sn1—C8—H8A107.8C28—C27—Sn2115.0 (2)
C9—C8—H8B107.8C28—C27—H27A108.5
Sn1—C8—H8B107.8Sn2—C27—H27A108.5
H8A—C8—H8B107.1C28—C27—H27B108.5
C8—C9—C10112.1 (3)Sn2—C27—H27B108.5
C8—C9—H9A109.2H27A—C27—H27B107.5
C10—C9—H9A109.2C29—C28—C27112.5 (3)
C8—C9—H9B109.2C29—C28—H28A109.1
C10—C9—H9B109.2C27—C28—H28A109.1
H9A—C9—H9B107.9C29—C28—H28B109.1
C11—C10—C9113.5 (4)C27—C28—H28B109.1
C11—C10—H10A108.9H28A—C28—H28B107.8
C9—C10—H10A108.9C30—C29—C28114.2 (3)
C11—C10—H10B108.9C30—C29—H29A108.7
C9—C10—H10B108.9C28—C29—H29A108.7
H10A—C10—H10B107.7C30—C29—H29B108.7
C10—C11—H11A109.5C28—C29—H29B108.7
C10—C11—H11B109.5H29A—C29—H29B107.6
H11A—C11—H11B109.5C29—C30—H30A109.5
C10—C11—H11C109.5C29—C30—H30B109.5
H11A—C11—H11C109.5H30A—C30—H30B109.5
H11B—C11—H11C109.5C29—C30—H30C109.5
C13—C12—Sn1116.8 (2)H30A—C30—H30C109.5
C13—C12—H12A108.1H30B—C30—H30C109.5
Sn1—C12—H12A108.1
O9—Sn1—O3—C7173.3 (3)C5—C6—C7—O3164.7 (3)
C8—Sn1—O3—C777.3 (3)C1—C6—C7—O315.1 (5)
C12—Sn1—O3—C760.4 (3)O9—Sn1—C8—C983.0 (3)
O8—Sn1—O3—C7163.8 (4)C12—Sn1—C8—C9106.3 (3)
O9i—Sn2—O7—C2211.5 (3)O3—Sn1—C8—C90.8 (3)
C23—Sn2—O7—C2293.3 (3)O8—Sn1—C8—C9170.4 (3)
C27—Sn2—O7—C22119.6 (3)Sn1—C8—C9—C10166.9 (3)
O9—Sn2—O7—C2218.5 (7)C8—C9—C10—C1166.1 (5)
Sn2i—Sn2—O7—C2212.6 (4)O9—Sn1—C12—C13121.2 (3)
O9—Sn1—O8—C22i17.1 (4)C8—Sn1—C12—C1349.4 (4)
C8—Sn1—O8—C22i94.0 (4)O3—Sn1—C12—C13159.2 (3)
C12—Sn1—O8—C22i130.3 (4)O8—Sn1—C12—C1332.3 (3)
O3—Sn1—O8—C22i26.4 (7)Sn1—C12—C13—C14179.8 (3)
C8—Sn1—O9—Sn2i82.2 (2)C12—C13—C14—C15179.6 (4)
C12—Sn1—O9—Sn2i90.8 (2)C21—C16—C17—C181.4 (5)
O3—Sn1—O9—Sn2i179.71 (19)C16—C17—C18—N3179.4 (3)
O8—Sn1—O9—Sn2i2.23 (18)C16—C17—C18—C190.4 (5)
C8—Sn1—O9—Sn2102.47 (15)N3—C18—C19—C20178.5 (3)
C12—Sn1—O9—Sn284.59 (15)C17—C18—C19—C200.4 (5)
O3—Sn1—O9—Sn24.93 (11)N3—C18—C19—N42.1 (5)
O8—Sn1—O9—Sn2173.13 (13)C17—C18—C19—N4179.1 (3)
O9i—Sn2—O9—Sn1176.76 (19)O6—N4—C19—C202.5 (5)
C23—Sn2—O9—Sn179.36 (15)O5—N4—C19—C20178.9 (3)
C27—Sn2—O9—Sn169.56 (15)O6—N4—C19—C18178.0 (3)
O7—Sn2—O9—Sn1169.5 (4)O5—N4—C19—C180.6 (5)
Sn2i—Sn2—O9—Sn1176.76 (19)C18—C19—C20—C210.3 (5)
O9i—Sn2—O9—Sn2i0.001 (2)N4—C19—C20—C21179.2 (3)
C23—Sn2—O9—Sn2i103.88 (13)C19—C20—C21—C160.6 (5)
C27—Sn2—O9—Sn2i107.20 (13)C19—C20—C21—C22179.9 (3)
O7—Sn2—O9—Sn2i7.2 (5)C17—C16—C21—C201.4 (5)
C6—C1—C2—C30.1 (6)C17—C16—C21—C22179.0 (3)
C1—C2—C3—N1179.8 (4)Sn2—O7—C22—O8i3.3 (5)
C1—C2—C3—C41.1 (5)Sn2—O7—C22—C21178.0 (2)
N1—C3—C4—C5179.8 (4)C20—C21—C22—O74.1 (5)
C2—C3—C4—C51.3 (5)C16—C21—C22—O7176.3 (3)
N1—C3—C4—N21.7 (6)C20—C21—C22—O8i174.7 (3)
C2—C3—C4—N2177.3 (3)C16—C21—C22—O8i4.9 (5)
O2—N2—C4—C3175.4 (4)O9i—Sn2—C23—C2427.4 (3)
O1—N2—C4—C33.5 (6)C27—Sn2—C23—C24142.4 (2)
O2—N2—C4—C53.2 (6)O9—Sn2—C23—C24105.2 (2)
O1—N2—C4—C5177.9 (4)O7—Sn2—C23—C2464.9 (3)
C3—C4—C5—C60.4 (5)Sn2i—Sn2—C23—C2468.3 (3)
N2—C4—C5—C6178.2 (3)Sn2—C23—C24—C25178.1 (2)
C4—C5—C6—C10.7 (5)C23—C24—C25—C26173.1 (3)
C4—C5—C6—C7179.1 (3)O9i—Sn2—C27—C2828.8 (3)
C2—C1—C6—C50.8 (5)C23—Sn2—C27—C28140.8 (3)
C2—C1—C6—C7179.0 (3)O9—Sn2—C27—C28107.1 (2)
Sn1—O3—C7—O412.7 (4)O7—Sn2—C27—C2862.5 (2)
Sn1—O3—C7—C6164.9 (2)Sn2i—Sn2—C27—C2870.3 (2)
C5—C6—C7—O412.8 (5)Sn2—C27—C28—C29177.6 (2)
C1—C6—C7—O4167.4 (3)C27—C28—C29—C3068.9 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C21 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O60.912.593.422 (4)153
N1—H2N1···O11.031.832.644 (5)133
N3—H1N3···O4ii0.882.042.910 (4)167
N3—H2N3···O50.882.062.669 (4)125
C17—H17A···O4ii0.932.513.246 (5)137
C30—H30A···Cg1iii0.962.803.584 (5)139
Symmetry codes: (ii) x+1, y, z1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn4(C4H9)8(C7H5N2O4)4O2]
Mr1688.18
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.9585 (9), 13.0679 (10), 13.1897 (10)
α, β, γ (°)76.256 (2), 67.445 (2), 66.108 (2)
V3)1732.1 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.20 × 0.15 × 0.06
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.758, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
32184, 11359, 8603
Rint0.055
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.116, 1.04
No. of reflections11359
No. of parameters410
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 1.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C21 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O60.912.593.422 (4)153
N1—H2N1···O11.031.832.644 (5)133
N3—H1N3···O4i0.882.042.910 (4)167
N3—H2N3···O50.882.062.669 (4)125
C17—H17A···O4i0.932.513.246 (5)137
C30—H30A···Cg1ii0.962.803.584 (5)139
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (Vote No. 6200/Y02) and Universiti Sains Malaysia (USM) for financial support as well as technical assistance and facilities. HKF and JHG also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhoo, L. E. & Hazell, A. (1999). Acta Cryst. C55, 2070–2073.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, F.-H., Yin, H.-D., Gao, Z.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, m788–m790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParvez, M., Sadiq-ur-Rehman,, Shahid, K., Ali, S. & Mazhar, M. (2004). Acta Cryst. E60, m1465–m1467.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWin, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008b). Acta Cryst. E64, m1572–m1573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWin, Y. F., Teoh, S. G., Lim, E. K., Ng, S. L. & Fun, H. K. (2008a). J. Chem. Crystallogr. 38, 345–350.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds