organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,5-Di­chloro­benzene­sulfonamido)-3-methyl­butanoic acid

aMaterials Chemistry Laboratory, Department of Chemistry, Government College, University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 14 October 2010; accepted 15 October 2010; online 23 October 2010)

The structure of the title compound, C11H13Cl2NO4S, shows one sulfonamide-O atom to lie almost in the plane of the benzene ring [C—C—S—O = −178.7 (2) °] and the other to one side [C—C—S—O = −49.4 (3)°]. Lying to the other side is the amine residue, which occupies a position almost perpendicular to the plane [C—S—N—C = 70.2 (2)°]; the carb­oxy­lic acid group is orientated to lie over the benzene ring. In the crystal, the appearance of an 11-membered {⋯OH⋯OCOH⋯OC2NH} synthon, which features the hy­droxy group forming both donor (to a carbonyl-O) and acceptor (from the amine-H) inter­actions, leads to the formation of a supra­molecular chain along the a axis. Chains are connected in the crystal structure by C—H⋯O contacts.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed, pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed, pp. 1047-1057. Singapore: McGraw-Hill.]). For related structures, see: Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]); Khan et al. (2010[Khan, I. U., Sharif, S., Batool, S., Mumtaz, A. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2641.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13Cl2NO4S

  • Mr = 326.18

  • Orthorhombic, P 21 21 21

  • a = 5.4584 (2) Å

  • b = 14.0623 (6) Å

  • c = 19.4545 (8) Å

  • V = 1493.28 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 293 K

  • 0.19 × 0.13 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.805, Tmax = 0.921

  • 14542 measured reflections

  • 3405 independent reflections

  • 2876 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.127

  • S = 1.00

  • 3405 reflections

  • 180 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1415 Friedel pairs

  • Flack parameter: 0.09 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O4i 0.82 (3) 1.86 (2) 2.674 (3) 171 (3)
N1—H1n⋯O3ii 0.85 (2) 2.32 (2) 3.161 (3) 167 (3)
C7—H7⋯O1iii 0.98 2.42 3.341 (3) 157
C4—H4⋯O2iv 0.93 2.41 3.223 (5) 146
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x-1, y, z; (iii) x+1, y, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title compound, (I), was determined in connection with on-going structural studies of sulfonamides (Sharif et al., 2010; Khan et al., 2010), of interest owing to their biological properties (Korolkovas, 1988; Mandell & Sande, 1992).

With reference to the benzene ring in (I), Fig. 1, the O2 atom lies in the plane [the O2—S1—C1—C2 torsion angle = -178.7 (2) °] but the O1 atom lies out of the plane [O1—S1—C1—C2 = -49.4 (3) °]. The amine group lies to the opposite side of the plane to the O1 atom and occupies a position almost perpendicular to it [C1—S1—N1—C7 = 70.2 (2) °]. Within the amine residue, the carboxylic acid group is co-planar with the amine-N1 [N1—C7—C11—O4 = -1.6 (4) °], and is folded to be orientated over the benzene ring with the carbonyl-O4 atom closest to it.

In the crystal packing, the hydroxyl-O3 group forms both donor and acceptor interactions, the former to a symmetry related carbonyl-O4 and the latter with a symmetry related amine-N1—H atom, Table 1. These lead to a linear supramolecular chain, Fig. 2, aligned along the a axis and mediated by an 11-membered {···OH···OCOH···OC2NH} synthon; the chain is further stabilized by a C7—H7···O1 contact, Table 1. Chains are held in the crystal structure by C—H···O contacts, Fig. 3 and Table 1.

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2010); Khan et al. (2010).

Experimental top

To 2-amino-3-methylbutanoic acid (234 mg, 2 mmol) in distilled water (15 ml), was added 2,5-dichlorobenzenesulfonyl chloride (491 mg, 2 mmol) while maintaining the pH of reaction mixture at 8 by using 3% sodium carbonate solution. The consumption of the reactants was confirmed by TLC. The pH of reaction mixture was adjusted to 3 using 3 N HCl. The precipitates were washed with water and crystallized from methanol

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were refined with the distance restraints O—H = 0.82±0.01 Å and N–H = 0.86±0.01 Å, and with Uiso(H) = yUeq(parent atom) for y = 1.5 (parent atom = O) and y = 1.2 (N). In the final refinement four low angle reflections evidently effected by the beam stop were omitted, i.e. (002), (012), (011) and (021).

Structure description top

The crystal structure of the title compound, (I), was determined in connection with on-going structural studies of sulfonamides (Sharif et al., 2010; Khan et al., 2010), of interest owing to their biological properties (Korolkovas, 1988; Mandell & Sande, 1992).

With reference to the benzene ring in (I), Fig. 1, the O2 atom lies in the plane [the O2—S1—C1—C2 torsion angle = -178.7 (2) °] but the O1 atom lies out of the plane [O1—S1—C1—C2 = -49.4 (3) °]. The amine group lies to the opposite side of the plane to the O1 atom and occupies a position almost perpendicular to it [C1—S1—N1—C7 = 70.2 (2) °]. Within the amine residue, the carboxylic acid group is co-planar with the amine-N1 [N1—C7—C11—O4 = -1.6 (4) °], and is folded to be orientated over the benzene ring with the carbonyl-O4 atom closest to it.

In the crystal packing, the hydroxyl-O3 group forms both donor and acceptor interactions, the former to a symmetry related carbonyl-O4 and the latter with a symmetry related amine-N1—H atom, Table 1. These lead to a linear supramolecular chain, Fig. 2, aligned along the a axis and mediated by an 11-membered {···OH···OCOH···OC2NH} synthon; the chain is further stabilized by a C7—H7···O1 contact, Table 1. Chains are held in the crystal structure by C—H···O contacts, Fig. 3 and Table 1.

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2010); Khan et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along the a axis in (I). The O–H···O and N–H···O hydrogen bonds are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. View in projection down the a axis of the unit-cell contents for (I). The O–H···O, N–H···O and C—H···O contacts are shown as orange, blue and pink dashed lines, respectively.
2-(2,5-Dichlorobenzenesulfonamido)-3-methylbutanoic acid top
Crystal data top
C11H13Cl2NO4SF(000) = 672
Mr = 326.18Dx = 1.451 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4852 reflections
a = 5.4584 (2) Åθ = 2.6–25.1°
b = 14.0623 (6) ŵ = 0.58 mm1
c = 19.4545 (8) ÅT = 293 K
V = 1493.28 (10) Å3Prism, colourless
Z = 40.19 × 0.13 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
3405 independent reflections
Radiation source: fine-focus sealed tube2876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 57
Tmin = 0.805, Tmax = 0.921k = 1818
14542 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0887P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3405 reflectionsΔρmax = 0.61 e Å3
180 parametersΔρmin = 0.51 e Å3
2 restraintsAbsolute structure: Flack (1983), 1415 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (8)
Crystal data top
C11H13Cl2NO4SV = 1493.28 (10) Å3
Mr = 326.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4584 (2) ŵ = 0.58 mm1
b = 14.0623 (6) ÅT = 293 K
c = 19.4545 (8) Å0.19 × 0.13 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
3405 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2876 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.921Rint = 0.040
14542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127Δρmax = 0.61 e Å3
S = 1.00Δρmin = 0.51 e Å3
3405 reflectionsAbsolute structure: Flack (1983), 1415 Friedel pairs
180 parametersAbsolute structure parameter: 0.09 (8)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36922 (17)0.23427 (6)0.14486 (5)0.0617 (3)
Cl21.2300 (2)0.15728 (10)0.34471 (6)0.0952 (4)
S10.59333 (11)0.01761 (4)0.15989 (3)0.03515 (17)
O10.3334 (3)0.01414 (15)0.16803 (12)0.0491 (5)
O20.7383 (4)0.06093 (14)0.18173 (11)0.0485 (5)
O31.1937 (3)0.12919 (13)0.00395 (12)0.0465 (5)
H3O1.231 (8)0.1812 (14)0.0118 (19)0.070*
O40.8427 (4)0.19737 (14)0.03380 (13)0.0554 (6)
N10.6435 (4)0.03271 (15)0.07885 (11)0.0359 (5)
H1N0.528 (4)0.0668 (18)0.0625 (15)0.043*
C10.7060 (5)0.11804 (19)0.20583 (13)0.0375 (6)
C20.6085 (6)0.2087 (2)0.19980 (15)0.0475 (7)
C30.6997 (8)0.2826 (2)0.23875 (19)0.0671 (10)
H30.63160.34300.23480.080*
C40.8904 (8)0.2675 (3)0.28335 (19)0.0740 (12)
H40.95260.31720.30960.089*
C50.9879 (7)0.1778 (3)0.28870 (16)0.0615 (10)
C60.8996 (5)0.1019 (2)0.25120 (14)0.0453 (6)
H60.96730.04160.25600.054*
C70.8902 (5)0.02917 (16)0.05012 (13)0.0336 (5)
H71.00250.00630.08580.040*
C80.9042 (6)0.0395 (2)0.01197 (18)0.0525 (8)
H81.07410.03920.02830.063*
C90.7472 (9)0.0072 (3)0.0703 (2)0.0855 (13)
H9A0.77670.04680.10970.128*
H9B0.78600.05760.08150.128*
H9C0.57780.01170.05740.128*
C100.8466 (11)0.1396 (2)0.0105 (3)0.103 (2)
H10A0.68060.14260.02660.155*
H10B0.95590.15780.04680.155*
H10C0.86660.18210.02780.155*
C110.9694 (5)0.12818 (16)0.02879 (14)0.0352 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0687 (5)0.0524 (4)0.0638 (5)0.0192 (4)0.0005 (4)0.0038 (4)
Cl20.0659 (6)0.1600 (11)0.0597 (6)0.0443 (7)0.0190 (5)0.0070 (7)
S10.0295 (3)0.0337 (3)0.0422 (3)0.0026 (2)0.0021 (3)0.0031 (3)
O10.0314 (9)0.0567 (11)0.0593 (13)0.0080 (9)0.0077 (9)0.0015 (10)
O20.0518 (11)0.0383 (10)0.0553 (12)0.0021 (9)0.0007 (10)0.0110 (8)
O30.0367 (10)0.0367 (10)0.0661 (13)0.0051 (8)0.0044 (10)0.0114 (9)
O40.0589 (13)0.0357 (9)0.0717 (15)0.0117 (9)0.0111 (11)0.0116 (10)
N10.0282 (11)0.0421 (11)0.0375 (12)0.0024 (9)0.0012 (9)0.0013 (9)
C10.0346 (13)0.0432 (14)0.0347 (13)0.0069 (11)0.0054 (11)0.0010 (11)
C20.0564 (19)0.0437 (14)0.0423 (16)0.0038 (15)0.0099 (14)0.0035 (11)
C30.097 (3)0.0490 (17)0.055 (2)0.0171 (19)0.011 (2)0.0090 (15)
C40.093 (3)0.074 (2)0.055 (2)0.042 (2)0.002 (2)0.0117 (18)
C50.0509 (19)0.094 (3)0.0393 (16)0.0319 (18)0.0020 (15)0.0026 (17)
C60.0367 (14)0.0618 (16)0.0375 (14)0.0073 (14)0.0050 (12)0.0050 (12)
C70.0283 (12)0.0323 (11)0.0402 (13)0.0020 (10)0.0001 (10)0.0013 (10)
C80.0497 (17)0.0456 (15)0.0623 (19)0.0054 (14)0.0187 (16)0.0146 (13)
C90.086 (3)0.115 (3)0.056 (2)0.018 (3)0.005 (2)0.036 (2)
C100.150 (5)0.0403 (17)0.119 (4)0.019 (2)0.050 (4)0.026 (2)
C110.0336 (13)0.0321 (12)0.0399 (13)0.0004 (10)0.0042 (11)0.0024 (10)
Geometric parameters (Å, º) top
Cl1—C21.725 (3)C4—C51.372 (6)
Cl2—C51.737 (4)C4—H40.9300
S1—O21.424 (2)C5—C61.380 (5)
S1—O11.4286 (19)C6—H60.9300
S1—N11.614 (2)C7—C111.516 (3)
S1—C11.781 (3)C7—C81.549 (4)
O3—C111.317 (3)C7—H70.9800
O3—H3o0.82 (3)C8—C91.494 (6)
O4—C111.197 (3)C8—C101.506 (5)
N1—C71.459 (3)C8—H80.9800
N1—H1n0.853 (10)C9—H9A0.9600
C1—C21.387 (4)C9—H9B0.9600
C1—C61.395 (4)C9—H9C0.9600
C2—C31.379 (5)C10—H10A0.9600
C3—C41.372 (6)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
O2—S1—O1119.51 (12)N1—C7—C11109.66 (19)
O2—S1—N1107.41 (12)N1—C7—C8111.5 (2)
O1—S1—N1106.34 (13)C11—C7—C8110.2 (2)
O2—S1—C1105.87 (13)N1—C7—H7108.5
O1—S1—C1108.33 (13)C11—C7—H7108.5
N1—S1—C1109.10 (12)C8—C7—H7108.5
C11—O3—H3O112 (3)C9—C8—C10112.6 (4)
C7—N1—S1121.76 (17)C9—C8—C7112.0 (3)
C7—N1—H1N124 (2)C10—C8—C7110.3 (3)
S1—N1—H1N108 (2)C9—C8—H8107.2
C2—C1—C6119.6 (3)C10—C8—H8107.2
C2—C1—S1123.7 (2)C7—C8—H8107.2
C6—C1—S1116.8 (2)C8—C9—H9A109.5
C3—C2—C1120.5 (3)C8—C9—H9B109.5
C3—C2—Cl1117.2 (3)H9A—C9—H9B109.5
C1—C2—Cl1122.3 (2)C8—C9—H9C109.5
C4—C3—C2120.3 (4)H9A—C9—H9C109.5
C4—C3—H3119.8H9B—C9—H9C109.5
C2—C3—H3119.8C8—C10—H10A109.5
C3—C4—C5119.0 (3)C8—C10—H10B109.5
C3—C4—H4120.5H10A—C10—H10B109.5
C5—C4—H4120.5C8—C10—H10C109.5
C6—C5—C4122.3 (3)H10A—C10—H10C109.5
C6—C5—Cl2118.0 (3)H10B—C10—H10C109.5
C4—C5—Cl2119.7 (3)O4—C11—O3123.9 (2)
C5—C6—C1118.3 (3)O4—C11—C7124.0 (2)
C5—C6—H6120.9O3—C11—C7112.0 (2)
C1—C6—H6120.9
O2—S1—N1—C744.1 (2)C3—C4—C5—C60.6 (6)
O1—S1—N1—C7173.12 (18)C3—C4—C5—Cl2179.8 (3)
C1—S1—N1—C770.2 (2)C4—C5—C6—C10.8 (5)
O2—S1—C1—C2178.7 (2)Cl2—C5—C6—C1179.6 (2)
O1—S1—C1—C249.4 (3)C2—C1—C6—C50.1 (4)
N1—S1—C1—C266.0 (3)S1—C1—C6—C5178.7 (2)
O2—S1—C1—C60.2 (2)S1—N1—C7—C11108.9 (2)
O1—S1—C1—C6129.1 (2)S1—N1—C7—C8128.8 (2)
N1—S1—C1—C6115.5 (2)N1—C7—C8—C963.4 (3)
C6—C1—C2—C30.7 (4)C11—C7—C8—C958.6 (3)
S1—C1—C2—C3177.8 (3)N1—C7—C8—C1062.8 (4)
C6—C1—C2—Cl1180.0 (2)C11—C7—C8—C10175.2 (3)
S1—C1—C2—Cl11.6 (4)N1—C7—C11—O41.6 (4)
C1—C2—C3—C40.8 (5)C8—C7—C11—O4121.4 (3)
Cl1—C2—C3—C4179.8 (3)N1—C7—C11—O3178.5 (2)
C2—C3—C4—C50.2 (6)C8—C7—C11—O358.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O4i0.82 (3)1.86 (2)2.674 (3)171 (3)
N1—H1n···O3ii0.85 (2)2.32 (2)3.161 (3)167 (3)
C7—H7···O1iii0.982.423.341 (3)157
C4—H4···O2iv0.932.413.223 (5)146
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13Cl2NO4S
Mr326.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.4584 (2), 14.0623 (6), 19.4545 (8)
V3)1493.28 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.19 × 0.13 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.805, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
14542, 3405, 2876
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.127, 1.00
No. of reflections3405
No. of parameters180
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.51
Absolute structureFlack (1983), 1415 Friedel pairs
Absolute structure parameter0.09 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O4i0.82 (3)1.86 (2)2.674 (3)171 (3)
N1—H1n···O3ii0.85 (2)2.32 (2)3.161 (3)167 (3)
C7—H7···O1iii0.982.423.341 (3)157
C4—H4···O2iv0.932.413.223 (5)146
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Batool, S., Mumtaz, A. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed, pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed, pp. 1047–1057. Singapore: McGraw-Hill.  Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds