metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-dihy­dr­oxy­benzoato-κ2O1,O1′)(nitrato-κ2O,O′)bis­­(1,10-phenanthroline-κ2N,N′)neodymium(III)

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: jin_hongxiao@yahoo.com.cn

(Received 12 October 2010; accepted 20 October 2010; online 30 October 2010)

In the mononuclear title complex, [Nd(C7H5O4)2(NO3)(C12H8N2)2], the NdIII atom is in a distorted bicapped square-anti­prismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen) ligands, four O atoms from two 2,6-dihy­droxy­benzoate (DHB) ligands and two O atoms from a nitrate anion. ππ stacking inter­actions between the phen and DHB ligands of adjacent complexes [centroid–centroid distances = 3.520 (6) and 3.798 (6) Å] stabilize the crystal structure. Intra­molecular O—H⋯O hydrogen bonds are observed in the DHB ligands.

Related literature

For applications of rare earth complexes, see: de Sa et al. (2000[Sa, G. F. de, Malta, O. L., Donega, C. D., Simas, A. M., Longo, R. L., Santa-Cruz, P. A. & da Silva, E. F. (2000). Coord. Chem. Rev. 196, 165-195.]). For related structures, see: Ma et al. (2010[Ma, P., Huang, M.-L. & Chen, K.-H. (2010). Acta Cryst. E66, m833.]); Yang et al. (2008[Yang, Q., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m757.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C7H5O4)2(NO3)(C12H8N2)2]

  • Mr = 872.89

  • Monoclinic, P 21 /c

  • a = 11.2359 (2) Å

  • b = 26.7878 (5) Å

  • c = 14.3710 (4) Å

  • β = 127.790 (2)°

  • V = 3418.24 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 298 K

  • 0.28 × 0.21 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini S Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.664, Tmax = 0.796

  • 18058 measured reflections

  • 6139 independent reflections

  • 4859 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.049

  • S = 0.95

  • 6139 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O1 2.5256 (17)
Nd1—O2 2.5991 (16)
Nd1—O5 2.5297 (18)
Nd1—O6 2.5325 (17)
Nd1—O9 2.6060 (17)
Nd1—O10 2.5573 (17)
Nd1—N1 2.673 (2)
Nd1—N2 2.651 (2)
Nd1—N3 2.628 (2)
Nd1—N4 2.603 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O1 0.82 1.86 2.581 (2) 147
O4—H27⋯O2 0.82 1.87 2.582 (3) 145
O7—H34⋯O6 0.82 1.87 2.592 (2) 146
O8—H38⋯O5 0.82 1.83 2.562 (3) 148

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Luminescent materials based on lanthanide complexes have been extensively studied owing to their unique structures and potential applications as luminescent polymer films, active optical fibers for data transmission and light-emitting devices (Ma et al., 2010; Sa et al., 2000; Yang et al., 2008). Herein, the title compound is synthesized and its crystal structure is reported.

The mononuclear structure of the title compound is shown in Fig. 1. The ten-coordinated geometry of the NdIII ion is completed by four 2,6-dihydroxybenzoate (DHB) O atoms, four phenanthroline N atoms and two nitrate O atoms. The complex forms a ten-coordinated distorted bicapped square antiprismatic structure (Fig. 2), in which the set of O6, O10, N4 and N1 and the set of O1, O5, N2 and N3 form two approximate square planes, respectively. The ninth coordinate atom O2 and tenth coordinate atom O9 are located above and under the two planes at the bicapped positions. The O2—Nd1–O9 bond angle is 175.69 (6)° close to 180°, which indicates the O2, Nd1 and O9 lying almost on a line and being regarded as an axis. Because the coordinate O2 and O9 atoms are excluded by O6, O10, N4 and N1 (formed the above plane) and O1, O5, N2 and N3 (formed the under plane), respectively, the bond distances of Nd1—O2 [2.5991 (16) Å] and Nd1—O9 [2.6060 (17) Å] are consumedly longer than the ones of Nd1—O1 [2.5256 (17) Å] and Nd1—O10 [2.5573 (17) Å].

In the crystal structure, ππ stacking interactions between the pyridine ring of phen and the benzene ring of DHB link the discrete mononuclear complexes into a two-dimensional layer (Fig. 3). The centroid–centroid distances between the rings are 3.520 (6) and 3.798 (6) Å, which obviously helps to stabilize the structure.

Related literature top

For applications of rare earth complexes, see: de Sa et al. (2000). For related structures, see: Ma et al. (2010); Yang et al. (2008).

Experimental top

All reagents are commercially available and of analytical grade. NdNO3.6H2O (0.219 g, 0.5 mmol), 2,6-dihydroxybenzoic acid (0.074 g, 0.5 mmol),1,10-phenanthroline (0.090 g, 0.5 mmol) and NaHCO3 (0.042 g, 0.5 mmol) were dissolved in water–ethanol solution (10 ml, 1:1). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Orange single crystals were obtained from the filtrate after 2 d.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxy)Ueq(C,O).

Structure description top

Luminescent materials based on lanthanide complexes have been extensively studied owing to their unique structures and potential applications as luminescent polymer films, active optical fibers for data transmission and light-emitting devices (Ma et al., 2010; Sa et al., 2000; Yang et al., 2008). Herein, the title compound is synthesized and its crystal structure is reported.

The mononuclear structure of the title compound is shown in Fig. 1. The ten-coordinated geometry of the NdIII ion is completed by four 2,6-dihydroxybenzoate (DHB) O atoms, four phenanthroline N atoms and two nitrate O atoms. The complex forms a ten-coordinated distorted bicapped square antiprismatic structure (Fig. 2), in which the set of O6, O10, N4 and N1 and the set of O1, O5, N2 and N3 form two approximate square planes, respectively. The ninth coordinate atom O2 and tenth coordinate atom O9 are located above and under the two planes at the bicapped positions. The O2—Nd1–O9 bond angle is 175.69 (6)° close to 180°, which indicates the O2, Nd1 and O9 lying almost on a line and being regarded as an axis. Because the coordinate O2 and O9 atoms are excluded by O6, O10, N4 and N1 (formed the above plane) and O1, O5, N2 and N3 (formed the under plane), respectively, the bond distances of Nd1—O2 [2.5991 (16) Å] and Nd1—O9 [2.6060 (17) Å] are consumedly longer than the ones of Nd1—O1 [2.5256 (17) Å] and Nd1—O10 [2.5573 (17) Å].

In the crystal structure, ππ stacking interactions between the pyridine ring of phen and the benzene ring of DHB link the discrete mononuclear complexes into a two-dimensional layer (Fig. 3). The centroid–centroid distances between the rings are 3.520 (6) and 3.798 (6) Å, which obviously helps to stabilize the structure.

For applications of rare earth complexes, see: de Sa et al. (2000). For related structures, see: Ma et al. (2010); Yang et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Coordination geometry around Nd.
[Figure 3] Fig. 3. Crystal packing of the title compound. Dashed lines denote ππ stacking interactions.
Bis(2,6-dihydroxybenzoato-κ2O1,O1')(nitrato- κ2O,O')bis(1,10-phenanthroline- κ2N,N')neodymium(III) top
Crystal data top
[Nd(C7H5O4)2(NO3)(C12H8N2)2]F(000) = 1748
Mr = 872.89Dx = 1.696 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11150 reflections
a = 11.2359 (2) Åθ = 2.9–29.1°
b = 26.7878 (5) ŵ = 1.59 mm1
c = 14.3710 (4) ÅT = 298 K
β = 127.790 (2)°Block, orange
V = 3418.24 (16) Å30.28 × 0.21 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra CCD
diffractometer
6139 independent reflections
Radiation source: Enhance (Mo) X-ray Source4859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 15.9149 pixels mm-1θmax = 25.2°, θmin = 2.9°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 3231
Tmin = 0.664, Tmax = 0.796l = 1715
18058 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.026P)2]
where P = (Fo2 + 2Fc2)/3
6139 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Nd(C7H5O4)2(NO3)(C12H8N2)2]V = 3418.24 (16) Å3
Mr = 872.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2359 (2) ŵ = 1.59 mm1
b = 26.7878 (5) ÅT = 298 K
c = 14.3710 (4) Å0.28 × 0.21 × 0.15 mm
β = 127.790 (2)°
Data collection top
Oxford Diffraction Gemini S Ultra CCD
diffractometer
6139 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
4859 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.796Rint = 0.023
18058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 0.95Δρmax = 0.38 e Å3
6139 reflectionsΔρmin = 0.37 e Å3
496 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.068277 (15)0.638621 (5)0.280312 (12)0.03184 (5)
O10.1545 (2)0.66194 (7)0.48337 (15)0.0445 (5)
O20.1118 (2)0.58179 (7)0.44526 (15)0.0458 (5)
O30.2418 (2)0.69710 (7)0.68349 (17)0.0597 (5)
H310.21820.69790.61700.090*
O40.1664 (3)0.52057 (7)0.60604 (19)0.0828 (8)
H270.15390.52880.54560.124*
O50.3377 (2)0.60803 (7)0.40378 (17)0.0521 (5)
O60.3064 (2)0.68871 (7)0.36811 (16)0.0441 (4)
O70.5201 (2)0.74239 (7)0.39922 (17)0.0535 (5)
H340.43520.73650.37810.080*
O80.5823 (3)0.56507 (8)0.4709 (2)0.0737 (6)
H380.49630.56740.44990.111*
O90.0412 (2)0.69978 (7)0.12734 (16)0.0471 (5)
O100.1513 (2)0.62994 (7)0.15044 (18)0.0525 (5)
O110.1319 (3)0.68609 (10)0.03319 (19)0.0831 (8)
N10.1692 (2)0.61789 (8)0.05894 (18)0.0349 (5)
N20.0231 (2)0.54467 (7)0.20773 (19)0.0375 (5)
N30.1856 (2)0.63390 (8)0.25221 (18)0.0381 (5)
N40.0620 (2)0.72232 (8)0.26242 (18)0.0360 (5)
N50.1082 (3)0.67266 (10)0.1013 (2)0.0478 (6)
C10.1163 (3)0.50855 (10)0.2787 (3)0.0454 (7)
H10.19140.51620.35750.055*
C20.1072 (4)0.45960 (10)0.2408 (3)0.0546 (8)
H20.17490.43550.29380.066*
C30.0000 (4)0.44770 (11)0.1275 (3)0.0511 (8)
H30.00640.41530.10140.061*
C40.1016 (3)0.48396 (10)0.0488 (3)0.0414 (7)
C50.0854 (3)0.53267 (9)0.0931 (2)0.0351 (6)
C60.1877 (3)0.57118 (9)0.0147 (2)0.0337 (6)
C70.3023 (3)0.55995 (10)0.1047 (2)0.0404 (7)
C80.3149 (4)0.51012 (12)0.1458 (3)0.0520 (8)
H80.39050.50250.22450.062*
C90.2196 (4)0.47427 (11)0.0729 (3)0.0501 (8)
H90.23040.44220.10210.060*
C100.3989 (3)0.59882 (12)0.1773 (2)0.0499 (8)
H100.47480.59300.25690.060*
C110.3823 (3)0.64493 (11)0.1319 (2)0.0467 (7)
H110.44760.67070.17900.056*
C120.2661 (3)0.65268 (10)0.0140 (2)0.0420 (7)
H120.25510.68450.01630.050*
C130.2459 (3)0.59062 (11)0.2495 (2)0.0474 (7)
H130.18720.56190.27380.057*
C140.3934 (4)0.58626 (13)0.2119 (3)0.0570 (8)
H140.43150.55530.21110.068*
C150.4805 (4)0.62816 (13)0.1762 (3)0.0583 (9)
H150.57940.62570.14960.070*
C160.4216 (3)0.67480 (11)0.1796 (2)0.0428 (7)
C170.2723 (3)0.67573 (10)0.2186 (2)0.0358 (6)
C180.2042 (3)0.72281 (9)0.2286 (2)0.0341 (6)
C190.2843 (3)0.76743 (10)0.2050 (2)0.0424 (7)
C200.4380 (3)0.76430 (12)0.1606 (2)0.0531 (8)
H200.49380.79350.13980.064*
C210.5034 (3)0.72081 (13)0.1482 (2)0.0568 (8)
H210.60370.72020.11880.068*
C220.2088 (4)0.81226 (11)0.2244 (2)0.0485 (7)
H220.25710.84250.21220.058*
C230.0669 (4)0.81185 (10)0.2605 (2)0.0495 (7)
H230.01570.84160.27490.059*
C240.0033 (3)0.76606 (10)0.2764 (2)0.0436 (7)
H240.09990.76620.29770.052*
C250.1535 (3)0.61801 (11)0.5154 (2)0.0372 (6)
C260.2018 (3)0.60945 (10)0.6361 (2)0.0355 (6)
C270.2063 (4)0.56095 (11)0.6757 (3)0.0512 (8)
C280.2554 (4)0.55331 (13)0.7898 (3)0.0643 (9)
H280.26030.52120.81640.077*
C290.2962 (4)0.59309 (13)0.8626 (3)0.0605 (9)
H290.32780.58760.93860.073*
C300.2920 (3)0.64062 (12)0.8275 (3)0.0543 (8)
H300.32130.66710.87940.065*
C310.2439 (3)0.64953 (10)0.7139 (2)0.0406 (7)
C320.3881 (3)0.65023 (11)0.4013 (2)0.0411 (7)
C330.5412 (3)0.65354 (10)0.4341 (2)0.0386 (6)
C340.5980 (3)0.69969 (11)0.4303 (2)0.0418 (7)
C350.7421 (3)0.70261 (13)0.4607 (2)0.0510 (8)
H350.78050.73300.45880.061*
C360.8260 (3)0.65970 (14)0.4937 (2)0.0580 (9)
H360.92220.66180.51450.070*
C370.7746 (3)0.61407 (14)0.4972 (3)0.0584 (8)
H370.83440.58580.51950.070*
C380.6316 (3)0.61079 (12)0.4670 (2)0.0515 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.03283 (8)0.02688 (8)0.03861 (8)0.00037 (7)0.02331 (7)0.00004 (7)
O10.0526 (12)0.0346 (11)0.0431 (11)0.0009 (10)0.0278 (10)0.0030 (10)
O20.0568 (13)0.0393 (11)0.0430 (11)0.0027 (10)0.0314 (10)0.0018 (10)
O30.0674 (15)0.0414 (13)0.0479 (12)0.0016 (11)0.0238 (11)0.0069 (11)
O40.146 (2)0.0402 (13)0.0605 (14)0.0189 (15)0.0625 (16)0.0032 (12)
O50.0407 (12)0.0417 (12)0.0685 (13)0.0049 (10)0.0307 (10)0.0136 (11)
O60.0354 (11)0.0367 (11)0.0588 (12)0.0021 (9)0.0282 (10)0.0007 (10)
O70.0435 (12)0.0499 (13)0.0683 (14)0.0004 (10)0.0349 (11)0.0067 (11)
O80.0554 (14)0.0518 (14)0.1003 (18)0.0167 (12)0.0408 (14)0.0153 (13)
O90.0530 (12)0.0367 (11)0.0562 (12)0.0017 (10)0.0359 (11)0.0040 (10)
O100.0614 (14)0.0442 (13)0.0665 (13)0.0032 (10)0.0467 (12)0.0047 (11)
O110.0840 (18)0.128 (2)0.0584 (14)0.0030 (16)0.0541 (14)0.0151 (15)
N10.0368 (12)0.0315 (12)0.0400 (12)0.0019 (11)0.0253 (11)0.0013 (11)
N20.0473 (14)0.0268 (12)0.0439 (14)0.0031 (11)0.0307 (12)0.0037 (11)
N30.0405 (13)0.0399 (14)0.0403 (12)0.0058 (11)0.0282 (11)0.0035 (11)
N40.0402 (13)0.0298 (12)0.0427 (12)0.0020 (10)0.0278 (11)0.0025 (10)
N50.0425 (14)0.0634 (18)0.0385 (14)0.0123 (13)0.0253 (12)0.0061 (13)
C10.0560 (19)0.0344 (17)0.0525 (18)0.0059 (15)0.0367 (16)0.0062 (14)
C20.075 (2)0.0324 (18)0.077 (2)0.0114 (16)0.057 (2)0.0138 (17)
C30.076 (2)0.0260 (16)0.078 (2)0.0052 (16)0.061 (2)0.0055 (16)
C40.0520 (18)0.0300 (16)0.0636 (19)0.0086 (14)0.0464 (17)0.0055 (15)
C50.0423 (16)0.0284 (15)0.0494 (17)0.0044 (13)0.0356 (15)0.0007 (13)
C60.0356 (15)0.0348 (16)0.0417 (15)0.0079 (12)0.0293 (13)0.0049 (13)
C70.0352 (15)0.0464 (18)0.0456 (17)0.0092 (14)0.0278 (14)0.0082 (15)
C80.0499 (19)0.055 (2)0.0563 (19)0.0194 (17)0.0352 (17)0.0196 (17)
C90.062 (2)0.0365 (17)0.072 (2)0.0207 (16)0.0507 (19)0.0218 (17)
C100.0322 (16)0.073 (2)0.0395 (16)0.0069 (15)0.0194 (14)0.0076 (16)
C110.0387 (16)0.055 (2)0.0450 (17)0.0062 (15)0.0249 (15)0.0064 (15)
C120.0457 (17)0.0394 (17)0.0452 (17)0.0054 (13)0.0301 (15)0.0009 (13)
C130.0514 (18)0.0438 (18)0.0537 (17)0.0093 (15)0.0356 (16)0.0020 (15)
C140.054 (2)0.061 (2)0.063 (2)0.0262 (18)0.0391 (18)0.0114 (18)
C150.0391 (17)0.091 (3)0.0480 (18)0.0172 (18)0.0284 (15)0.0110 (18)
C160.0323 (15)0.065 (2)0.0313 (14)0.0046 (15)0.0192 (13)0.0063 (14)
C170.0333 (15)0.0470 (17)0.0308 (14)0.0013 (13)0.0216 (13)0.0031 (13)
C180.0371 (15)0.0378 (16)0.0298 (14)0.0040 (13)0.0216 (12)0.0002 (12)
C190.0492 (18)0.0476 (18)0.0329 (15)0.0141 (15)0.0265 (14)0.0038 (14)
C200.0500 (19)0.063 (2)0.0458 (18)0.0210 (17)0.0289 (16)0.0048 (17)
C210.0353 (17)0.091 (3)0.0410 (17)0.0132 (18)0.0215 (15)0.0016 (18)
C220.065 (2)0.0362 (17)0.0453 (17)0.0148 (16)0.0344 (16)0.0031 (14)
C230.069 (2)0.0297 (16)0.0495 (17)0.0005 (15)0.0361 (17)0.0021 (14)
C240.0484 (17)0.0334 (17)0.0494 (17)0.0017 (14)0.0301 (15)0.0045 (14)
C250.0294 (14)0.0419 (17)0.0405 (16)0.0018 (13)0.0215 (13)0.0021 (14)
C260.0284 (14)0.0373 (16)0.0368 (15)0.0001 (12)0.0179 (12)0.0003 (13)
C270.062 (2)0.0481 (19)0.0456 (18)0.0102 (16)0.0344 (16)0.0044 (16)
C280.086 (3)0.060 (2)0.050 (2)0.013 (2)0.043 (2)0.0065 (18)
C290.066 (2)0.076 (2)0.0423 (18)0.0125 (19)0.0348 (17)0.0001 (19)
C300.0472 (18)0.068 (2)0.0433 (17)0.0009 (17)0.0252 (15)0.0125 (17)
C310.0290 (14)0.0433 (19)0.0424 (17)0.0017 (12)0.0183 (13)0.0021 (14)
C320.0361 (16)0.048 (2)0.0367 (15)0.0019 (14)0.0213 (13)0.0011 (13)
C330.0306 (14)0.0460 (17)0.0337 (15)0.0067 (13)0.0170 (13)0.0034 (13)
C340.0353 (15)0.0536 (19)0.0322 (14)0.0008 (14)0.0185 (13)0.0014 (14)
C350.0351 (17)0.078 (2)0.0401 (16)0.0053 (16)0.0234 (14)0.0009 (16)
C360.0356 (17)0.095 (3)0.0448 (18)0.0039 (19)0.0253 (15)0.0009 (18)
C370.0397 (18)0.078 (3)0.0521 (18)0.0230 (18)0.0255 (16)0.0069 (18)
C380.0462 (19)0.055 (2)0.0471 (17)0.0083 (16)0.0253 (15)0.0053 (16)
Geometric parameters (Å, º) top
Nd1—O12.5256 (17)C9—H90.9300
Nd1—O22.5991 (16)C10—C111.355 (4)
Nd1—O52.5297 (18)C10—H100.9300
Nd1—O62.5325 (17)C11—C121.382 (4)
Nd1—O92.6060 (17)C11—H110.9300
Nd1—O102.5573 (17)C12—H120.9300
Nd1—N12.673 (2)C13—C141.397 (4)
Nd1—N22.651 (2)C13—H130.9300
Nd1—N32.628 (2)C14—C151.366 (4)
Nd1—N42.603 (2)C14—H140.9300
O1—C251.266 (3)C15—C161.401 (4)
O2—C251.264 (3)C15—H150.9300
O3—C311.343 (3)C16—C171.406 (3)
O3—H310.8200C16—C211.435 (4)
O4—C271.350 (3)C17—C181.436 (3)
O4—H270.8200C18—C191.406 (3)
O5—C321.275 (3)C19—C221.396 (4)
O6—C321.264 (3)C19—C201.431 (4)
O7—C341.340 (3)C20—C211.330 (4)
O7—H340.8200C20—H200.9300
O8—C381.359 (3)C21—H210.9300
O8—H380.8200C22—C231.341 (4)
O9—N51.257 (3)C22—H220.9300
O10—N51.274 (3)C23—C241.399 (4)
O11—N51.215 (3)C23—H230.9300
N1—C121.324 (3)C24—H240.9300
N1—C61.360 (3)C25—C261.484 (3)
N2—C11.328 (3)C26—C271.407 (4)
N2—C51.357 (3)C26—C311.407 (3)
N3—C131.332 (3)C27—C281.388 (4)
N3—C171.364 (3)C28—C291.361 (4)
N4—C241.331 (3)C28—H280.9300
N4—C181.356 (3)C29—C301.359 (4)
C1—C21.399 (4)C29—H290.9300
C1—H10.9300C30—C311.390 (4)
C2—C31.342 (4)C30—H300.9300
C2—H20.9300C32—C331.481 (4)
C3—C41.394 (4)C33—C381.406 (4)
C3—H30.9300C33—C341.408 (4)
C4—C51.414 (3)C34—C351.396 (4)
C4—C91.429 (4)C35—C361.374 (4)
C5—C61.438 (3)C35—H350.9300
C6—C71.409 (4)C36—C371.366 (4)
C7—C101.401 (4)C36—H360.9300
C7—C81.431 (4)C37—C381.387 (4)
C8—C91.339 (4)C37—H370.9300
C8—H80.9300
O1—Nd1—O579.78 (6)N1—C6—C7121.9 (2)
O1—Nd1—O675.70 (6)N1—C6—C5118.3 (2)
O5—Nd1—O651.50 (6)C7—C6—C5119.8 (2)
O1—Nd1—O10144.32 (6)C10—C7—C6117.5 (2)
O5—Nd1—O1070.60 (6)C10—C7—C8123.4 (3)
O6—Nd1—O1070.45 (6)C6—C7—C8119.1 (3)
O1—Nd1—O250.70 (6)C9—C8—C7121.1 (3)
O5—Nd1—O272.24 (6)C9—C8—H8119.4
O6—Nd1—O2107.76 (6)C7—C8—H8119.4
O10—Nd1—O2131.55 (6)C8—C9—C4121.6 (3)
O1—Nd1—N472.27 (6)C8—C9—H9119.2
O5—Nd1—N4135.00 (7)C4—C9—H9119.2
O6—Nd1—N487.22 (6)C11—C10—C7120.2 (3)
O10—Nd1—N4116.16 (6)C11—C10—H10119.9
O2—Nd1—N4112.01 (6)C7—C10—H10119.9
O1—Nd1—O9125.66 (6)C10—C11—C12118.4 (3)
O5—Nd1—O9105.44 (6)C10—C11—H11120.8
O6—Nd1—O968.20 (6)C12—C11—H11120.8
O10—Nd1—O949.28 (6)N1—C12—C11124.4 (3)
O2—Nd1—O9175.69 (6)N1—C12—H12117.8
N4—Nd1—O966.89 (6)C11—C12—H12117.8
O1—Nd1—N378.54 (6)N3—C13—C14123.1 (3)
O5—Nd1—N3144.28 (6)N3—C13—H13118.5
O6—Nd1—N3144.89 (6)C14—C13—H13118.5
O10—Nd1—N3136.93 (7)C15—C14—C13119.0 (3)
O2—Nd1—N372.06 (6)C15—C14—H14120.5
N4—Nd1—N362.24 (6)C13—C14—H14120.5
O9—Nd1—N3110.26 (6)C14—C15—C16120.3 (3)
O1—Nd1—N2122.32 (6)C14—C15—H15119.8
O5—Nd1—N280.03 (7)C16—C15—H15119.8
O6—Nd1—N2126.03 (6)C15—C16—C17116.9 (3)
O10—Nd1—N272.20 (6)C15—C16—C21123.8 (3)
O2—Nd1—N271.72 (6)C17—C16—C21119.2 (3)
N4—Nd1—N2144.90 (7)N3—C17—C16123.0 (2)
O9—Nd1—N2111.70 (6)N3—C17—C18117.7 (2)
N3—Nd1—N288.03 (6)C16—C17—C18119.2 (2)
O1—Nd1—N1145.39 (6)N4—C18—C19122.2 (2)
O5—Nd1—N1131.30 (6)N4—C18—C17117.7 (2)
O6—Nd1—N1133.02 (6)C19—C18—C17120.0 (2)
O10—Nd1—N169.93 (6)C22—C19—C18117.5 (3)
O2—Nd1—N1117.17 (6)C22—C19—C20124.0 (3)
N4—Nd1—N188.32 (6)C18—C19—C20118.4 (3)
O9—Nd1—N167.12 (6)C21—C20—C19121.9 (3)
N3—Nd1—N167.01 (6)C21—C20—H20119.1
N2—Nd1—N161.55 (7)C19—C20—H20119.1
O1—Nd1—C3279.81 (6)C20—C21—C16121.0 (3)
O5—Nd1—C3226.09 (6)C20—C21—H21119.5
O6—Nd1—C3225.84 (6)C16—C21—H21119.5
O10—Nd1—C3264.82 (7)C23—C22—C19120.2 (3)
O2—Nd1—C3292.54 (7)C23—C22—H22119.9
N4—Nd1—C32112.52 (7)C19—C22—H22119.9
O9—Nd1—C3284.22 (7)C22—C23—C24119.2 (3)
N3—Nd1—C32158.25 (7)C22—C23—H23120.4
N2—Nd1—C32101.91 (7)C24—C23—H23120.4
N1—Nd1—C32134.73 (6)N4—C24—C23123.0 (3)
O1—Nd1—C2525.31 (7)N4—C24—H24118.5
O5—Nd1—C2574.12 (6)C23—C24—H24118.5
O6—Nd1—C2591.50 (6)O2—C25—O1120.3 (2)
O10—Nd1—C25144.35 (7)O2—C25—C26120.3 (2)
O2—Nd1—C2525.39 (6)O1—C25—C26119.4 (2)
N4—Nd1—C2592.44 (7)O2—C25—Nd161.82 (13)
O9—Nd1—C25150.88 (7)O1—C25—Nd158.49 (13)
N3—Nd1—C2574.13 (6)C26—C25—Nd1177.36 (19)
N2—Nd1—C2597.04 (7)C27—C26—C31118.2 (2)
N1—Nd1—C25135.42 (6)C27—C26—C25120.8 (2)
C32—Nd1—C2585.39 (7)C31—C26—C25121.0 (2)
C25—O1—Nd196.19 (15)O4—C27—C28118.0 (3)
C25—O2—Nd192.78 (15)O4—C27—C26121.8 (2)
C31—O3—H31109.5C28—C27—C26120.2 (3)
C27—O4—H27109.5C29—C28—C27119.7 (3)
C32—O5—Nd193.14 (16)C29—C28—H28120.1
C32—O6—Nd193.28 (15)C27—C28—H28120.1
C34—O7—H34109.5C30—C29—C28122.0 (3)
C38—O8—H38109.5C30—C29—H29119.0
N5—O9—Nd196.10 (15)C28—C29—H29119.0
N5—O10—Nd197.96 (13)C29—C30—C31119.8 (3)
C12—N1—C6117.5 (2)C29—C30—H30120.1
C12—N1—Nd1122.17 (17)C31—C30—H30120.1
C6—N1—Nd1120.16 (16)O3—C31—C30117.5 (3)
C1—N2—C5117.3 (2)O3—C31—C26122.3 (2)
C1—N2—Nd1121.25 (17)C30—C31—C26120.1 (3)
C5—N2—Nd1121.03 (16)O6—C32—O5120.1 (2)
C13—N3—C17117.7 (2)O6—C32—C33120.3 (2)
C13—N3—Nd1122.11 (18)O5—C32—C33119.6 (2)
C17—N3—Nd1119.16 (15)O6—C32—Nd160.87 (13)
C24—N4—C18117.7 (2)O5—C32—Nd160.78 (14)
C24—N4—Nd1121.24 (17)C33—C32—Nd1165.83 (17)
C18—N4—Nd1120.79 (16)C38—C33—C34118.4 (2)
O11—N5—O9122.4 (3)C38—C33—C32121.1 (3)
O11—N5—O10121.1 (3)C34—C33—C32120.4 (2)
O9—N5—O10116.6 (2)O7—C34—C35116.9 (3)
N2—C1—C2123.3 (3)O7—C34—C33122.9 (2)
N2—C1—H1118.3C35—C34—C33120.2 (3)
C2—C1—H1118.3C36—C35—C34118.7 (3)
C3—C2—C1119.5 (3)C36—C35—H35120.7
C3—C2—H2120.3C34—C35—H35120.7
C1—C2—H2120.3C37—C36—C35123.0 (3)
C2—C3—C4119.9 (3)C37—C36—H36118.5
C2—C3—H3120.0C35—C36—H36118.5
C4—C3—H3120.0C36—C37—C38118.7 (3)
C3—C4—C5117.5 (3)C36—C37—H37120.7
C3—C4—C9123.4 (3)C38—C37—H37120.7
C5—C4—C9119.1 (3)O8—C38—C37117.9 (3)
N2—C5—C4122.5 (3)O8—C38—C33121.3 (3)
N2—C5—C6118.2 (2)C37—C38—C33120.9 (3)
C4—C5—C6119.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O10.821.862.581 (2)147
O4—H27···O20.821.872.582 (3)145
O7—H34···O60.821.872.592 (2)146
O8—H38···O50.821.832.562 (3)148

Experimental details

Crystal data
Chemical formula[Nd(C7H5O4)2(NO3)(C12H8N2)2]
Mr872.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.2359 (2), 26.7878 (5), 14.3710 (4)
β (°) 127.790 (2)
V3)3418.24 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.28 × 0.21 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini S Ultra CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.664, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
18058, 6139, 4859
Rint0.023
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.049, 0.95
No. of reflections6139
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.37

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 1999).

Selected geometric parameters (Å, º) top
Nd1—O12.5256 (17)Nd1—O102.5573 (17)
Nd1—O22.5991 (16)Nd1—N12.673 (2)
Nd1—O52.5297 (18)Nd1—N22.651 (2)
Nd1—O62.5325 (17)Nd1—N32.628 (2)
Nd1—O92.6060 (17)Nd1—N42.603 (2)
O2—Nd1—O9175.69 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O10.821.862.581 (2)147
O4—H27···O20.821.872.582 (3)145
O7—H34···O60.821.872.592 (2)146
O8—H38···O50.821.832.562 (3)148
 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project No. 2010 Y4100495).

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMa, P., Huang, M.-L. & Chen, K.-H. (2010). Acta Cryst. E66, m833.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSa, G. F. de, Malta, O. L., Donega, C. D., Simas, A. M., Longo, R. L., Santa-Cruz, P. A. & da Silva, E. F. (2000). Coord. Chem. Rev. 196, 165–195.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Q., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m757.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds