metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­phenyl­arsonium) di-μ-hy­droxido-bis­­[(nitrilo­tri­acetato)­cobalt(III)] octa­hydrate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and bDepartment of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, England
*Correspondence e-mail: visserhg.sci@mail.uovs.ac.za

(Received 9 September 2010; accepted 29 September 2010; online 13 October 2010)

In the title compound, (C24H20As)2[Co2(C6H6NO6)2(OH)2]·8H2O, the CoIII atom in the binuclear centrosymmetric anion is octa­hedrally surrounded by one N atom and three O atoms of the tetra­dentate nitrilo­triacetate ligand and two μ-hydroxide ligands. The crystal packing is controlled by C—H⋯O and O—H⋯O hydrogen-bonding inter­actions. The crystal employed in this study proved to be a two-component twin around (0[\overline 1]1).

Related literature

For synthetic background, related structures and kinetics, see: Mori et al. (1958[Mori, M., Shibata, M., Kyuno, E. & Okubo, Y. (1958). Bull. Chem. Soc. Jpn, 31, 940-947.]); Visser et al. (1997[Visser, H. G., Purcell, W., Basson, S. S. & Claassen, Q. (1997). Polyhedron, 16, 2851-2854.], 1999[Visser, H. G., Purcell, W. & Basson, S. S. (1999). Polyhedron, 18, 2795-2799.], 2001[Visser, H. G., Purcell, W. & Basson, S. S. (2001). Polyhedron, 20, 185-190.], 2002[Visser, H. G., Purcell, W. & Basson, S. S. (2002). Transition Met. Chem. 27, 461-465.], 2003[Visser, H. G., Purcell, W. & Basson, S. S. (2003). Transition Met. Chem. 28, 235-240.]). For twinning, which was resolved using the program ROTAX, see: Cooper et al. (2002[Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168-174.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H20As)2[Co2(C6H6NO6)2(OH)2]·8H2O

  • Mr = 1438.88

  • Triclinic, [P \overline 1]

  • a = 7.328 (5) Å

  • b = 14.491 (5) Å

  • c = 16.564 (5) Å

  • α = 113.555 (5)°

  • β = 97.040 (5)°

  • γ = 101.152 (5)°

  • V = 1542.4 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 100 K

  • 0.44 × 0.19 × 0.03 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.687, Tmax = 0.950

  • 23209 measured reflections

  • 23223 independent reflections

  • 20726 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.098

  • S = 0.93

  • 23223 reflections

  • 430 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 1.9027 (11)
Co1—O3 1.8903 (11)
Co1—O5 1.8806 (11)
Co1—O7 1.8915 (11)
Co1—O7i 1.8994 (11)
Co1—N1 1.9312 (13)
Symmetry code: (i) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O4ii 0.97 2.49 3.239 (2) 134
C13—H13⋯O6iii 0.93 2.39 3.1207 (19) 135
C14—H14⋯O6iv 0.93 2.55 3.146 (3) 123
C15—H15⋯O5iv 0.93 2.58 3.313 (3) 136
C23—H23⋯O7 0.93 2.56 3.4034 (19) 150
C52—H2⋯O9v 0.93 2.53 3.386 (2) 153
O7—H7⋯O4vi 0.77 (2) 2.00 (2) 2.740 (2) 162 (2)
O8—H8A⋯O10vii 0.82 (2) 1.94 (2) 2.758 (2) 178 (2)
O8—H8B⋯O2 0.78 (2) 1.96 (2) 2.7329 (17) 171 (2)
O9—H9A⋯O8 0.80 (2) 2.25 (2) 3.045 (2) 170 (2)
O9—H9B⋯O8viii 0.82 (2) 1.92 (2) 2.7290 (19) 169 (3)
O10—H10B⋯O11 0.76 (2) 2.09 (2) 2.8483 (18) 174 (2)
O10—H10C⋯O9ix 0.82 (2) 1.95 (2) 2.771 (2) 175 (2)
O11—H11A⋯O4iii 0.76 (2) 2.22 (2) 2.9542 (16) 164 (2)
O11—H11B⋯O2ix 0.89 (2) 2.02 (2) 2.905 (2) 172 (2)
Symmetry codes: (ii) -x+2, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z; (v) x, y-1, z-1; (vi) x-1, y, z; (vii) x+1, y+1, z; (viii) -x+1, -y+2, -z+2; (ix) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title complex, (AsC24H20)2[Co(C6H6N)(µ-OH)]2.8(H2O), forms a part of an ongoing investigation of the structural and kinetic behaviour of CoIII-nitrilotriacetato compounds (Visser et al., (1997, 1999, 2001, 2002, 2003). The CoIII atom is octahedrally surrounded by one N atom and three O atoms of the tetradentate nitrilotriacetato ligand and two µ-hydroxo ligands (Fig. 1). The Co–O bond distances which vary between 1.8806 (11) and 1.9027 (11) Å and the Co–N1 distance of 1.9312 (13) Å fall well within the normal range (Table 1). The octahedron around the Co atom is only slighlty distorted. The crystal packing is controlled by C—H–O and O—H–O hydrogen bonding interactions (Table 2), creating a three dimensional network.

Related literature top

For synthetic background, related structures and kinetics, see: Mori et al. (1958); Visser et al. (1997, 1999, 2001, 2002, 2003). Twinning which was resolved using the programs ROTAX, see: Cooper et al. (2002).

Experimental top

The title compound was prepared similar to the method described by Mori et al. (1958). CoCl2.6H2O (5 g, 21 mmol) and nitrilotriacetic acid (4 g, 21 mmol) was added to a KHCO3 solution (25 cm3, 2.5 M). H2O2 (1 ml, 30%) was added to this solution and the mixture was placed on an ice bath. After 5 h a purple precipitate separated out. The precipitate was filtered and washed several times with cold water. The product was then redissolved in hot water after which an excess of tetraphenylarsonium was added. Purple crystals of the title compound were obtained after several days.

Refinement top

The methyl and aromatic H atoms were placed in geometrically idealized positions (C—H = 0.93–0.96 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The hydrogen atoms of the aqua solvent molecules were obtained from the difference Fourier map. Despite appearing (at least visually) to be single, the crystal employed in this study proved to be a two-component twin around (0 -1 1). Twinning which was resolved using the programs ROTAX (Cooper et al., 2002) and Make HKLF5 (Farrugia, 1999) with a final minor component of 0.0712 (4).

Structure description top

The title complex, (AsC24H20)2[Co(C6H6N)(µ-OH)]2.8(H2O), forms a part of an ongoing investigation of the structural and kinetic behaviour of CoIII-nitrilotriacetato compounds (Visser et al., (1997, 1999, 2001, 2002, 2003). The CoIII atom is octahedrally surrounded by one N atom and three O atoms of the tetradentate nitrilotriacetato ligand and two µ-hydroxo ligands (Fig. 1). The Co–O bond distances which vary between 1.8806 (11) and 1.9027 (11) Å and the Co–N1 distance of 1.9312 (13) Å fall well within the normal range (Table 1). The octahedron around the Co atom is only slighlty distorted. The crystal packing is controlled by C—H–O and O—H–O hydrogen bonding interactions (Table 2), creating a three dimensional network.

For synthetic background, related structures and kinetics, see: Mori et al. (1958); Visser et al. (1997, 1999, 2001, 2002, 2003). Twinning which was resolved using the programs ROTAX, see: Cooper et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SIR97 (Altomare et al., 1999); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compund (50% probability displacement ellipsoids). Hydrogen atoms and solvent water molecules omitted for clarity.
Bis(tetraphenylarsonium) di-µ-hydroxido-bis[(nitrilotriacetato)cobalt(III)] octahydrate top
Crystal data top
(C24H20As)2[Co2(C6H6NO6)2(OH)2]·8H2OZ = 1
Mr = 1438.88F(000) = 740
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.328 (5) ÅCell parameters from 9875 reflections
b = 14.491 (5) Åθ = 2.5–28.3°
c = 16.564 (5) ŵ = 1.68 mm1
α = 113.555 (5)°T = 100 K
β = 97.040 (5)°Plate, purple
γ = 101.152 (5)°0.44 × 0.19 × 0.03 mm
V = 1542.4 (13) Å3
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
23223 independent reflections
Radiation source: sealed tube20726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.6°
phi and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1717
Tmin = 0.687, Tmax = 0.950l = 1919
23209 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.5465P]
where P = (Fo2 + 2Fc2)/3
23223 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 0.41 e Å3
10 restraintsΔρmin = 0.36 e Å3
Crystal data top
(C24H20As)2[Co2(C6H6NO6)2(OH)2]·8H2Oγ = 101.152 (5)°
Mr = 1438.88V = 1542.4 (13) Å3
Triclinic, P1Z = 1
a = 7.328 (5) ÅMo Kα radiation
b = 14.491 (5) ŵ = 1.68 mm1
c = 16.564 (5) ÅT = 100 K
α = 113.555 (5)°0.44 × 0.19 × 0.03 mm
β = 97.040 (5)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
23223 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
20726 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.950Rint = 0.030
23209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03010 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.41 e Å3
23223 reflectionsΔρmin = 0.36 e Å3
430 parameters
Special details top

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 100(K) under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream and data were collected at this temperature.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As0.39743 (2)0.447716 (10)0.212481 (9)0.01293 (5)
Co10.52032 (3)0.909913 (13)0.511641 (11)0.00933 (6)
O50.37750 (13)0.76948 (7)0.46088 (6)0.0136 (2)
O60.37392 (15)0.61846 (7)0.46771 (7)0.0226 (2)
O30.67319 (13)0.87442 (7)0.42572 (6)0.0118 (2)
O70.35509 (14)0.94527 (7)0.43838 (6)0.0103 (2)
C250.0013 (2)0.57427 (12)0.12621 (10)0.0239 (4)
H250.11440.54860.08270.029*
C220.3389 (2)0.65222 (11)0.25432 (9)0.0183 (3)
H220.45370.67830.29690.022*
C240.0660 (2)0.68072 (12)0.18135 (10)0.0249 (4)
H240.00290.72610.17540.030*
N10.69776 (16)0.87921 (8)0.58731 (7)0.0111 (2)
C440.6324 (2)0.27716 (12)0.04076 (10)0.0270 (4)
H440.67760.24130.09120.032*
C540.0652 (2)0.19678 (11)0.24101 (10)0.0223 (4)
H40.15890.14720.24590.027*
C130.7874 (2)0.53345 (10)0.45190 (9)0.0159 (3)
H130.79720.51650.50050.019*
C110.6130 (2)0.51328 (10)0.31153 (9)0.0141 (3)
C160.7629 (2)0.58563 (10)0.30779 (9)0.0171 (3)
H360.75380.60280.25930.021*
C120.6230 (2)0.48623 (10)0.38328 (9)0.0145 (3)
H120.52220.43780.38540.017*
C30.8420 (2)0.87705 (10)0.45975 (9)0.0114 (3)
C550.0350 (2)0.30323 (11)0.29762 (9)0.0189 (3)
H50.10830.32440.34030.023*
C60.6159 (2)0.76932 (10)0.57216 (9)0.0168 (3)
H6B0.57950.76980.62670.020*
H6A0.71290.73170.56030.020*
C230.2356 (2)0.71896 (12)0.24507 (10)0.0241 (4)
H230.28050.79030.28200.029*
C50.4429 (2)0.71259 (11)0.49372 (9)0.0150 (3)
C40.8820 (2)0.89285 (11)0.55782 (9)0.0136 (3)
H4B0.94680.84250.56310.016*
H4A0.96410.96240.59620.016*
C510.2135 (2)0.34422 (10)0.22566 (9)0.0141 (3)
C210.2698 (2)0.54575 (11)0.19945 (9)0.0155 (3)
C460.6374 (2)0.33354 (11)0.11640 (10)0.0209 (3)
H460.68680.33650.17210.025*
C140.9360 (2)0.60521 (11)0.44813 (9)0.0169 (3)
H141.04510.63620.49450.020*
C530.0440 (2)0.16579 (11)0.17818 (10)0.0229 (4)
H30.02340.09510.14100.028*
C450.7061 (2)0.28103 (11)0.04135 (10)0.0258 (4)
H450.80170.24850.04650.031*
C150.9256 (2)0.63202 (10)0.37639 (9)0.0170 (3)
H151.02660.68050.37450.020*
C520.1852 (2)0.23883 (11)0.16938 (9)0.0190 (3)
H20.25870.21750.12690.023*
C560.1045 (2)0.37675 (11)0.28960 (9)0.0163 (3)
H210.12520.44750.32680.020*
C410.4944 (2)0.38168 (10)0.10790 (9)0.0165 (3)
C420.4214 (2)0.37872 (12)0.02556 (10)0.0243 (4)
H420.32650.41150.02010.029*
C260.0983 (2)0.50630 (11)0.13542 (10)0.0195 (3)
H270.05160.43480.09930.023*
C430.4924 (3)0.32580 (12)0.04900 (10)0.0322 (4)
H430.44480.32330.10470.039*
O10.38813 (13)0.94103 (7)0.60717 (6)0.0128 (2)
O40.97100 (13)0.86981 (7)0.41750 (6)0.0142 (2)
O20.45349 (15)1.00672 (8)0.75721 (6)0.0219 (2)
C10.4993 (2)0.96884 (10)0.68350 (9)0.0144 (3)
C20.7004 (2)0.95505 (11)0.68087 (9)0.0143 (3)
H2A0.79021.02160.69670.017*
H2B0.73950.92880.72380.017*
O80.68108 (17)1.03630 (9)0.91382 (8)0.0247 (3)
O110.17288 (17)0.12264 (9)0.75373 (7)0.0268 (3)
O90.33579 (19)1.08138 (10)0.99202 (9)0.0304 (3)
O100.04230 (18)0.13286 (10)0.91136 (8)0.0327 (3)
H9B0.315 (4)1.0439 (17)1.0176 (15)0.079 (9)*
H8B0.616 (3)1.0211 (15)0.8671 (13)0.056 (5)*
H8A0.789 (3)1.0632 (15)0.9127 (13)0.056 (5)*
H9A0.430 (3)1.0771 (13)0.9721 (12)0.035 (4)*
H10B0.069 (3)0.1294 (14)0.8674 (12)0.047 (4)*
H11A0.157 (3)0.1295 (14)0.7106 (12)0.044 (4)*
H11B0.265 (3)0.0912 (13)0.7531 (12)0.044 (4)*
H70.254 (3)0.9294 (13)0.4445 (11)0.035 (4)*
H10C0.126 (3)0.1179 (14)0.9378 (12)0.047 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As0.01200 (8)0.01345 (9)0.01245 (8)0.00238 (6)0.00164 (6)0.00552 (6)
Co10.00692 (10)0.01049 (10)0.01102 (10)0.00240 (8)0.00233 (8)0.00496 (8)
O50.0106 (5)0.0127 (5)0.0169 (5)0.0017 (4)0.0024 (4)0.0068 (4)
O60.0148 (6)0.0148 (5)0.0392 (6)0.0025 (5)0.0063 (5)0.0133 (5)
O30.0095 (5)0.0139 (5)0.0123 (5)0.0044 (4)0.0034 (4)0.0051 (4)
O70.0070 (5)0.0105 (5)0.0128 (5)0.0014 (4)0.0021 (4)0.0049 (4)
C250.0205 (9)0.0330 (9)0.0250 (8)0.0095 (8)0.0061 (7)0.0180 (7)
C220.0254 (9)0.0190 (8)0.0117 (7)0.0051 (7)0.0077 (7)0.0071 (6)
C240.0349 (10)0.0310 (9)0.0272 (9)0.0213 (8)0.0195 (8)0.0217 (8)
N10.0099 (6)0.0112 (6)0.0125 (6)0.0030 (5)0.0024 (5)0.0055 (5)
C440.0320 (10)0.0193 (8)0.0241 (9)0.0003 (7)0.0169 (8)0.0040 (7)
C540.0172 (8)0.0223 (8)0.0296 (9)0.0005 (7)0.0019 (7)0.0170 (7)
C130.0173 (8)0.0187 (8)0.0146 (7)0.0092 (7)0.0038 (6)0.0081 (6)
C110.0154 (8)0.0130 (7)0.0114 (7)0.0048 (6)0.0026 (6)0.0025 (6)
C160.0192 (8)0.0176 (8)0.0157 (7)0.0060 (7)0.0055 (6)0.0073 (6)
C120.0121 (7)0.0133 (7)0.0180 (7)0.0038 (6)0.0040 (6)0.0061 (6)
C30.0112 (7)0.0058 (7)0.0145 (7)0.0004 (6)0.0017 (6)0.0029 (6)
C550.0159 (8)0.0254 (8)0.0187 (8)0.0059 (7)0.0042 (6)0.0126 (7)
C60.0175 (8)0.0154 (7)0.0226 (8)0.0044 (6)0.0054 (7)0.0130 (6)
C230.0397 (11)0.0175 (8)0.0191 (8)0.0104 (8)0.0139 (8)0.0087 (7)
C50.0123 (8)0.0153 (8)0.0208 (8)0.0049 (6)0.0104 (6)0.0086 (6)
C40.0095 (7)0.0154 (7)0.0174 (7)0.0045 (6)0.0034 (6)0.0079 (6)
C510.0119 (7)0.0157 (7)0.0143 (7)0.0012 (6)0.0009 (6)0.0084 (6)
C210.0170 (8)0.0178 (7)0.0153 (7)0.0051 (6)0.0065 (6)0.0097 (6)
C460.0171 (8)0.0211 (8)0.0179 (8)0.0033 (7)0.0000 (7)0.0040 (6)
C140.0126 (8)0.0173 (8)0.0159 (7)0.0052 (6)0.0007 (6)0.0025 (6)
C530.0237 (9)0.0139 (8)0.0257 (8)0.0011 (7)0.0013 (7)0.0061 (7)
C450.0191 (9)0.0192 (8)0.0321 (9)0.0040 (7)0.0078 (7)0.0042 (7)
C150.0145 (8)0.0152 (7)0.0211 (8)0.0043 (6)0.0079 (6)0.0066 (6)
C520.0184 (8)0.0189 (8)0.0190 (8)0.0069 (7)0.0052 (7)0.0064 (6)
C560.0182 (8)0.0139 (7)0.0144 (7)0.0053 (6)0.0014 (6)0.0040 (6)
C410.0154 (8)0.0140 (7)0.0164 (7)0.0001 (6)0.0046 (6)0.0046 (6)
C420.0298 (10)0.0277 (9)0.0204 (8)0.0116 (8)0.0080 (7)0.0131 (7)
C260.0191 (8)0.0184 (8)0.0212 (8)0.0043 (7)0.0049 (7)0.0091 (6)
C430.0478 (12)0.0314 (9)0.0189 (8)0.0078 (9)0.0119 (8)0.0125 (7)
O10.0102 (5)0.0159 (5)0.0142 (5)0.0039 (4)0.0042 (4)0.0078 (4)
O40.0097 (5)0.0163 (5)0.0160 (5)0.0031 (4)0.0051 (4)0.0058 (4)
O20.0205 (6)0.0339 (6)0.0144 (5)0.0131 (5)0.0085 (5)0.0096 (5)
C10.0147 (8)0.0144 (7)0.0164 (8)0.0031 (6)0.0041 (6)0.0092 (6)
C20.0142 (8)0.0177 (7)0.0119 (7)0.0054 (6)0.0034 (6)0.0065 (6)
O80.0244 (7)0.0317 (7)0.0205 (6)0.0069 (6)0.0048 (5)0.0142 (5)
O110.0276 (7)0.0400 (7)0.0196 (6)0.0191 (6)0.0096 (5)0.0141 (6)
O90.0297 (7)0.0379 (7)0.0403 (7)0.0168 (6)0.0195 (6)0.0267 (6)
O100.0264 (7)0.0510 (8)0.0320 (7)0.0129 (6)0.0107 (6)0.0267 (7)
Geometric parameters (Å, º) top
As—C111.9049 (15)C3—O31.2816 (18)
As—C211.9102 (15)C3—C41.5288 (19)
As—C511.9145 (15)C55—C561.387 (2)
As—C411.9134 (15)C55—H50.9300
Co1—O51.8806 (11)C6—C51.520 (2)
Co1—O11.9027 (11)C6—H6B0.9700
Co1—O31.8903 (11)C6—H6A0.9700
Co1—O51.8806 (11)C23—H230.9300
Co1—O31.8903 (11)C5—O61.2295 (16)
Co1—O71.8915 (11)C5—O51.2855 (17)
Co1—O71.8915 (11)C4—H4B0.9700
Co1—O7i1.8994 (11)C4—H4A0.9700
Co1—N11.9312 (13)C51—C561.391 (2)
Co1—Co1i2.8516 (10)C51—C521.3916 (19)
O5—C51.2855 (17)C21—C261.394 (2)
O6—C51.2295 (16)C46—C411.389 (2)
O3—C31.2816 (18)C46—C451.387 (2)
O7—Co1i1.8994 (11)C46—H460.9300
O7—H70.765 (18)C14—C151.3881 (19)
C25—C261.377 (2)C14—H140.9300
C25—C241.388 (2)C53—C521.396 (2)
C25—H250.9300C53—H30.9300
C22—C231.381 (2)C45—H450.9300
C22—C211.388 (2)C15—H150.9300
C22—H220.9300C52—H20.9300
C24—C231.382 (2)C56—H210.9300
C24—H240.9300C41—C421.383 (2)
N1—C41.4956 (19)C42—C431.392 (2)
N1—C61.4943 (17)C42—H420.9300
N1—C21.4941 (17)C26—H270.9300
C44—C431.375 (3)C43—H430.9300
C44—C451.375 (2)O1—C11.2799 (16)
C44—H440.9300O2—C11.2415 (17)
C54—C531.376 (2)C1—O21.2415 (17)
C54—C551.403 (2)C1—C21.528 (2)
C54—H40.9300C2—H2A0.9700
C13—C141.379 (2)C2—H2B0.9700
C13—C121.391 (2)O8—H8B0.780 (19)
C13—H130.9300O8—H8A0.82 (2)
C11—C121.3906 (19)O11—H11A0.758 (17)
C11—C161.390 (2)O11—H11B0.886 (19)
C16—C151.383 (2)O9—H9B0.82 (2)
C16—H360.9300O9—H9A0.800 (19)
C12—H120.9300O10—H10B0.762 (18)
C3—O41.2396 (18)O10—H10C0.822 (18)
C3—O41.2396 (18)
C11—As—C21112.01 (6)O4—C3—O3122.95 (13)
C11—As—C51111.91 (6)O4—C3—O3122.95 (13)
C21—As—C51107.22 (7)O4—C3—O3122.95 (13)
C11—As—C41105.75 (7)O4—C3—C4120.09 (12)
C21—As—C41110.79 (6)O4—C3—C4120.09 (12)
C51—As—C41109.18 (6)O3—C3—C4116.94 (12)
O5—Co1—O389.83 (5)O3—C3—C4116.94 (12)
O5—Co1—O389.83 (5)C56—C55—C54119.66 (15)
O5—Co1—O389.83 (5)C56—C55—H5120.2
O5—Co1—O389.83 (5)C54—C55—H5120.2
O5—Co1—O793.60 (5)N1—C6—C5112.41 (11)
O5—Co1—O793.60 (5)N1—C6—H6B109.1
O3—Co1—O792.04 (5)C5—C6—H6B109.1
O3—Co1—O792.04 (5)N1—C6—H6A109.1
O5—Co1—O793.60 (5)C5—C6—H6A109.1
O5—Co1—O793.60 (5)H6B—C6—H6A107.9
O3—Co1—O792.04 (5)C24—C23—C22120.60 (14)
O3—Co1—O792.04 (5)C24—C23—H23119.7
O7—Co1—O70.00 (5)C22—C23—H23119.7
O5—Co1—O7i175.18 (4)O6—C5—O5125.03 (13)
O5—Co1—O7i175.18 (4)O6—C5—O5125.03 (13)
O3—Co1—O7i93.03 (5)O6—C5—O5125.03 (13)
O3—Co1—O7i93.03 (5)O6—C5—O5125.03 (13)
O7—Co1—O7i82.43 (5)O6—C5—C6119.13 (12)
O7—Co1—O7i82.43 (5)O6—C5—C6119.13 (12)
O5—Co1—O189.72 (5)O5—C5—C6115.82 (12)
O5—Co1—O189.72 (5)O5—C5—C6115.82 (12)
O3—Co1—O1172.72 (4)N1—C4—C3109.35 (11)
O3—Co1—O1172.72 (4)N1—C4—H4B109.8
O7—Co1—O195.25 (6)C3—C4—H4B109.8
O7—Co1—O195.25 (6)N1—C4—H4A109.8
O7i—Co1—O187.93 (4)C3—C4—H4A109.8
O5—Co1—N188.78 (5)H4B—C4—H4A108.3
O5—Co1—N188.78 (5)C56—C51—C52121.13 (13)
O3—Co1—N187.07 (6)C56—C51—As118.76 (10)
O3—Co1—N187.07 (6)C52—C51—As120.06 (11)
O7—Co1—N1177.45 (4)C22—C21—C26120.58 (14)
O7—Co1—N1177.45 (4)C22—C21—As121.78 (11)
O7i—Co1—N195.23 (5)C26—C21—As117.57 (11)
O1—Co1—N185.65 (6)C41—C46—C45119.64 (14)
O5—Co1—Co1i134.86 (4)C41—C46—H46120.2
O5—Co1—Co1i134.86 (4)C45—C46—H46120.2
O3—Co1—Co1i93.37 (3)C13—C14—C15121.14 (13)
O3—Co1—Co1i93.37 (3)C13—C14—H14119.4
O7—Co1—Co1i41.32 (3)C15—C14—H14119.4
O7—Co1—Co1i41.32 (3)C54—C53—C52121.04 (14)
O7i—Co1—Co1i41.11 (4)C54—C53—H3119.5
O1—Co1—Co1i92.10 (3)C52—C53—H3119.5
N1—Co1—Co1i136.33 (3)C44—C45—C46119.77 (16)
C5—O5—Co1115.09 (9)C44—C45—H45120.1
C3—O3—Co1113.20 (9)C46—C45—H45120.1
Co1—O7—Co1i97.57 (5)C16—C15—C14119.09 (14)
Co1—O7—H7108.2 (13)C16—C15—H15120.5
Co1i—O7—H7117.9 (13)C14—C15—H15120.5
C26—C25—C24120.49 (15)C53—C52—C51118.51 (15)
C26—C25—H25119.8C53—C52—H2120.7
C24—C25—H25119.8C51—C52—H2120.7
C23—C22—C21119.29 (14)C55—C56—C51119.68 (13)
C23—C22—H22120.4C55—C56—H21120.2
C21—C22—H22120.4C51—C56—H21120.2
C23—C24—C25119.74 (14)C46—C41—C42120.64 (14)
C23—C24—H24120.1C46—C41—As117.79 (11)
C25—C24—H24120.1C42—C41—As121.54 (12)
C4—N1—C6112.32 (10)C41—C42—C43118.91 (16)
C4—N1—C2115.56 (11)C41—C42—H42120.5
C6—N1—C2111.17 (10)C43—C42—H42120.5
C4—N1—Co1106.22 (8)C25—C26—C21119.29 (14)
C6—N1—Co1107.09 (8)C25—C26—H27120.4
C2—N1—Co1103.62 (9)C21—C26—H27120.4
C43—C44—C45120.61 (15)C44—C43—C42120.42 (15)
C43—C44—H44119.7C44—C43—H43119.8
C45—C44—H44119.7C42—C43—H43119.8
C53—C54—C55119.99 (14)C1—O1—Co1111.85 (10)
C53—C54—H4120.0O2—C1—O1123.92 (14)
C55—C54—H4120.0O2—C1—O1123.92 (14)
C14—C13—C12120.32 (13)O2—C1—C2119.79 (12)
C14—C13—H13119.8O2—C1—C2119.79 (12)
C12—C13—H13119.8O1—C1—C2116.28 (12)
C12—C11—C16121.26 (13)N1—C2—C1108.05 (11)
C12—C11—As120.89 (11)N1—C2—H2A110.1
C16—C11—As117.79 (10)C1—C2—H2A110.1
C15—C16—C11119.81 (13)N1—C2—H2B110.1
C15—C16—H36120.1C1—C2—H2B110.1
C11—C16—H36120.1H2A—C2—H2B108.4
C13—C12—C11118.38 (13)H8B—O8—H8A107 (2)
C13—C12—H12120.8H11A—O11—H11B108 (2)
C11—C12—H12120.8H9B—O9—H9A112 (2)
O4—C3—O3122.95 (13)H10B—O10—H10C107 (2)
O3—Co1—O5—C588.39 (10)N1—C6—C5—O59.19 (18)
O3—Co1—O5—C588.39 (10)N1—C6—C5—O59.19 (18)
O7—Co1—O5—C5179.58 (10)C6—N1—C4—C391.91 (12)
O7—Co1—O5—C5179.58 (10)C2—N1—C4—C3139.11 (11)
O1—Co1—O5—C584.34 (10)Co1—N1—C4—C324.85 (12)
N1—Co1—O5—C51.32 (10)O4—C3—C4—N1169.55 (11)
Co1i—Co1—O5—C5177.02 (8)O4—C3—C4—N1169.55 (11)
O5—Co1—O3—C3107.97 (9)O3—C3—C4—N112.06 (16)
O5—Co1—O3—C3107.97 (9)O3—C3—C4—N112.06 (16)
O7—Co1—O3—C3158.44 (9)C11—As—C51—C5672.54 (12)
O7—Co1—O3—C3158.44 (9)C21—As—C51—C5650.66 (12)
O7i—Co1—O3—C375.91 (9)C41—As—C51—C56170.74 (11)
N1—Co1—O3—C319.18 (9)C11—As—C51—C52110.07 (12)
Co1i—Co1—O3—C3117.09 (8)C21—As—C51—C52126.73 (11)
O5—Co1—O7—Co1i177.26 (4)C41—As—C51—C526.65 (13)
O5—Co1—O7—Co1i177.26 (4)C23—C22—C21—C260.2 (2)
O3—Co1—O7—Co1i92.78 (5)C23—C22—C21—As176.62 (11)
O3—Co1—O7—Co1i92.78 (5)C11—As—C21—C223.51 (14)
O1—Co1—O7—Co1i87.20 (5)C51—As—C21—C22126.65 (12)
O5—Co1—N1—C4114.14 (8)C41—As—C21—C22114.30 (12)
O5—Co1—N1—C4114.14 (8)C11—As—C21—C26173.39 (11)
O3—Co1—N1—C424.25 (8)C51—As—C21—C2650.25 (13)
O3—Co1—N1—C424.25 (8)C41—As—C21—C2668.80 (13)
O7i—Co1—N1—C468.53 (8)C55—C54—C53—C520.2 (2)
O1—Co1—N1—C4156.04 (8)C43—C44—C45—C460.7 (2)
Co1i—Co1—N1—C467.56 (9)C41—C46—C45—C440.1 (2)
O5—Co1—N1—C66.07 (8)C56—C51—C52—C530.2 (2)
O5—Co1—N1—C66.07 (8)As—C51—C52—C53177.17 (11)
O3—Co1—N1—C695.97 (9)C54—C55—C56—C510.1 (2)
O3—Co1—N1—C695.97 (9)C52—C51—C56—C550.1 (2)
O7i—Co1—N1—C6171.26 (8)As—C51—C56—C55177.30 (10)
O1—Co1—N1—C683.74 (9)C45—C46—C41—C420.7 (2)
Co1i—Co1—N1—C6172.23 (7)C45—C46—C41—As177.33 (11)
O5—Co1—N1—C2123.66 (9)C11—As—C41—C4639.24 (12)
O5—Co1—N1—C2123.66 (9)C21—As—C41—C46160.81 (11)
O3—Co1—N1—C2146.44 (8)C51—As—C41—C4681.33 (12)
O3—Co1—N1—C2146.44 (8)C11—As—C41—C42142.74 (12)
O7i—Co1—N1—C253.67 (9)C21—As—C41—C4221.17 (13)
O1—Co1—N1—C233.85 (8)C51—As—C41—C4296.69 (13)
Co1i—Co1—N1—C254.64 (10)C46—C41—C42—C430.6 (2)
C21—As—C11—C12119.23 (12)As—C41—C42—C43177.37 (12)
C51—As—C11—C121.21 (14)C24—C25—C26—C211.4 (2)
C41—As—C11—C12119.99 (12)C22—C21—C26—C250.8 (2)
C21—As—C11—C1663.40 (13)As—C21—C26—C25177.78 (11)
C51—As—C11—C16176.16 (11)C45—C44—C43—C420.8 (2)
C41—As—C11—C1657.38 (13)C41—C42—C43—C440.1 (2)
As—C11—C16—C15177.37 (11)O5—Co1—O1—C1114.55 (9)
As—C11—C12—C13177.29 (10)O5—Co1—O1—C1114.55 (9)
Co1—O3—C3—O4170.26 (10)O7—Co1—O1—C1151.86 (9)
Co1—O3—C3—O4170.26 (10)O7—Co1—O1—C1151.86 (9)
Co1—O3—C3—C48.08 (14)O7i—Co1—O1—C169.66 (9)
C53—C54—C55—C560.3 (2)N1—Co1—O1—C125.75 (9)
C4—N1—C6—C5106.93 (13)Co1i—Co1—O1—C1110.57 (8)
C2—N1—C6—C5121.84 (13)Co1—O1—C1—O2169.64 (11)
Co1—N1—C6—C59.30 (13)Co1—O1—C1—O2169.64 (11)
C25—C24—C23—C220.1 (2)Co1—O1—C1—C29.27 (14)
C21—C22—C23—C240.6 (2)C4—N1—C2—C1151.43 (11)
Co1—O5—C5—O6177.51 (11)C6—N1—C2—C179.03 (13)
Co1—O5—C5—O6177.51 (11)Co1—N1—C2—C135.68 (12)
Co1—O5—C5—C64.07 (15)O2—C1—C2—N1162.19 (12)
N1—C6—C5—O6172.29 (12)O2—C1—C2—N1162.19 (12)
N1—C6—C5—O6172.29 (12)O1—C1—C2—N118.86 (16)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O4ii0.972.493.239 (2)134
C13—H13···O6iii0.932.393.1207 (19)135
C14—H14···O6iv0.932.553.146 (3)123
C15—H15···O5iv0.932.583.313 (3)136
C23—H23···O70.932.563.4034 (19)150
C52—H2···O9v0.932.533.386 (2)153
O7—H7···O4vi0.77 (2)2.00 (2)2.740 (2)162 (2)
O8—H8A···O10vii0.82 (2)1.94 (2)2.758 (2)178 (2)
O8—H8B···O20.78 (2)1.96 (2)2.7329 (17)171 (2)
O9—H9A···O80.80 (2)2.25 (2)3.045 (2)170 (2)
O9—H9B···O8viii0.82 (2)1.92 (2)2.7290 (19)169 (3)
O10—H10B···O110.76 (2)2.09 (2)2.8483 (18)174 (2)
O10—H10C···O9ix0.82 (2)1.95 (2)2.771 (2)175 (2)
O11—H11A···O4iii0.76 (2)2.22 (2)2.9542 (16)164 (2)
O11—H11B···O2ix0.89 (2)2.02 (2)2.905 (2)172 (2)
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y1, z1; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x+1, y+2, z+2; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula(C24H20As)2[Co2(C6H6NO6)2(OH)2]·8H2O
Mr1438.88
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.328 (5), 14.491 (5), 16.564 (5)
α, β, γ (°)113.555 (5), 97.040 (5), 101.152 (5)
V3)1542.4 (13)
Z1
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.44 × 0.19 × 0.03
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.687, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
23209, 23223, 20726
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.098, 0.93
No. of reflections23223
No. of parameters430
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXL97 (Sheldrick, 2008), SIR97 (Altomare et al., 1999), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—O11.9027 (11)Co1—O71.8915 (11)
Co1—O31.8903 (11)Co1—O7i1.8994 (11)
Co1—O51.8806 (11)Co1—N11.9312 (13)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O4ii0.972.493.239 (2)133.6
C13—H13···O6iii0.932.393.1207 (19)135.4
C14—H14···O6iv0.932.553.146 (3)122.6
C15—H15···O5iv0.932.583.313 (3)135.9
C23—H23···O70.932.563.4034 (19)150.2
C52—H2···O9v0.932.533.386 (2)152.6
O7—H7···O4vi0.765 (18)2.003 (18)2.740 (2)161.7 (18)
O8—H8A···O10vii0.82 (2)1.94 (2)2.758 (2)178 (2)
O8—H8B···O20.780 (19)1.960 (19)2.7329 (17)171 (2)
O9—H9A···O80.800 (19)2.254 (19)3.045 (2)170.0 (17)
O9—H9B···O8viii0.82 (2)1.92 (2)2.7290 (19)169 (3)
O10—H10B···O110.762 (18)2.090 (18)2.8483 (18)174 (2)
O10—H10C···O9ix0.822 (18)1.952 (19)2.771 (2)175 (2)
O11—H11A···O4iii0.758 (17)2.218 (17)2.9542 (16)164 (2)
O11—H11B···O2ix0.886 (19)2.024 (19)2.905 (2)172.1 (17)
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y1, z1; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x+1, y+2, z+2; (ix) x, y1, z.
 

Acknowledgements

The UFS is gratefully acknowledged for funding. JKC acknowledges the Marie Curie IIF scheme of the 7th EU Framework Program

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMori, M., Shibata, M., Kyuno, E. & Okubo, Y. (1958). Bull. Chem. Soc. Jpn, 31, 940–947.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVisser, H. G., Purcell, W. & Basson, S. S. (1999). Polyhedron, 18, 2795–2799.  Web of Science CSD CrossRef CAS Google Scholar
First citationVisser, H. G., Purcell, W. & Basson, S. S. (2001). Polyhedron, 20, 185–190.  Web of Science CSD CrossRef CAS Google Scholar
First citationVisser, H. G., Purcell, W. & Basson, S. S. (2002). Transition Met. Chem. 27, 461–465.  Web of Science CrossRef CAS Google Scholar
First citationVisser, H. G., Purcell, W. & Basson, S. S. (2003). Transition Met. Chem. 28, 235–240.  Web of Science CrossRef CAS Google Scholar
First citationVisser, H. G., Purcell, W., Basson, S. S. & Claassen, Q. (1997). Polyhedron, 16, 2851–2854.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds