organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Bis(3-butylimidazolium-1-ylmethyl)toluene bis­(hexa­fluorophosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 September 2010; accepted 7 October 2010; online 13 October 2010)

In the title compound [systematic name: 3,3′-Dibutyl-1,1′-(5-methyl-m-phenyl­enedimethyl­ene)diimidazol-1-ium bis­(hexa­fluoridophosphate)], C23H34N42+·2PF6, the imidazole rings are inclined at angles of 68.06 (7) and 75.05 (8)° with respect to the central benzene ring. In the crystal, mol­ecules are linked into one-dimensional columns along [010] via weak inter­molecular C—H⋯F hydrogen bonds. The crystal structure is further consolidated by weak C—H⋯π(arene) inter­actions. One of the n-butyl groups is disordered over two sites with refined occupancies of 0.694 (5) and 0.306 (5). In addition, four of the F atoms of one of the PF6 cations are disordered over two sites with occupancies of 0.64 (3) and 0.36 (3).

Related literature

For general background to imidazoline-2-ylidenes, see: Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]). For the organometallic and coordin­ation chemistry of N-heterocyclic carbene ligands, see: Chen et al. (2002[Chen, W., Wu, B. & Matsumoto, K. (2002). J. Organomet. Chem. 654, 233-236.]); Zhou et al. (2008[Zhou, Y., Zhang, X., Chen, W. & Qiu, H. (2008). J. Organomet. Chem. 693, 205-215.]); Hahn & Jahnke (2008[Hahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. Engl. 47, 3122-3172.]); Danopoulos et al. (2007[Danopoulos, A. A., Tsoureas, N., Macgregor, S. A. & Smith, C. (2007). Organometallics, 26, 253-263.]); Bourissou et al. (2000[Bourissou, D., Guerret, O., Gabbai, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39-91.]); McGuinness & Cavell (2000[McGuinness, D. S. & Cavell, K. J. (2000). Organometallics, 19, 741-748.]); Garrison et al. (2001[Garrison, J. C., Simons, R. S., Talley, J. M., Wesdemiotis, C., Tessier, C. A. & Youngs, W. J. (2001). Organometallics, 20, 1276-1278.]). For catalytic studies related to organic synthesis, see: Cavell & McGuinness (2004[Cavell, K. J. & McGuinness, D. S. (2004). Coord. Chem. Rev. 248, 671-681.]); Liu et al. (2007[Liu, Q.-X., Zhao, X.-J., Wu, X.-M., Guo, J.-H. & Wang, X.-G. (2007). J. Organomet. Chem. 692, 5671-5679.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H34N42+·2PF6

  • Mr = 656.48

  • Monoclinic, P 21 /c

  • a = 9.6207 (1) Å

  • b = 11.1801 (1) Å

  • c = 27.9277 (3) Å

  • β = 102.416 (1)°

  • V = 2933.66 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.49 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.967

  • 45569 measured reflections

  • 10399 independent reflections

  • 7294 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.03

  • 10399 reflections

  • 448 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯F4 0.93 2.42 3.0154 (16) 121
C8—H8A⋯F5 0.93 2.39 3.2700 (16) 157
C16—H16A⋯F3 0.93 2.31 3.1941 (16) 160
C16—H16A⋯F4 0.93 2.45 3.1677 (16) 134
C21A—H21B⋯F4 0.97 2.49 3.196 (2) 130
C3—H3A⋯F12i 0.93 2.44 3.3147 (16) 157
C5—H5A⋯F9Aii 0.93 2.55 3.420 (8) 156
C7—H7A⋯F10Aii 0.97 2.51 3.427 (6) 158
C9—H9A⋯F12iii 0.93 2.48 3.2805 (17) 144
C12—H12A⋯F3iv 0.97 2.53 3.3358 (18) 140
C18—H18A⋯F8Av 0.93 2.38 3.148 (11) 140
C22A—H22CCg1vi 0.96 2.76 3.535 (3) 138
C23—H23BCg1vii 0.96 2.59 3.487 (2) 155
C22B—H22ECg1vi 0.96 2.86 3.637 (8) 139
Symmetry codes: (i) x-1, y+1, z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+2; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+2, -z+2; (vi) x+1, y, z; (vii) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Since the discovery of stable imidazoline-2-ylidenes, which were isolated and structurally characterized by Arduengo et al. (1991), the organometallic and coordination chemistry of N-heterocyclic carbene (NHC) ligands have been receiving great attention in recent years and much interest has been generated in the chemistry of the metal complexes of these ligands (Chen et al., 2002; Zhou et al., 2008). NHC carbene, a strong σ-donor and a weak π-acceptor, strongly interacts with different transitions metals in various oxidation states (Hahn & Jahnke, 2008; Danopoulos et al., 2007). Heterocyclic carbenes derived from imidazolium ions form complexes with many transition metals; heterocyclic carbene complexes of Pd, Ni, Pt, Rh, Ru, Ag and Au have been reported (Bourissou et al., 2000; McGuinness & Cavell, 2000; Garrison et al., 2001). Extensive catalytic studies on the application to organic synthesis have also been reported (Cavell & McGuinness, 2004; Liu et al., 2007).

The title molecule (Fig. 1) consists of a 3,5-bis(3-butylimidazolium-1- ylmethyl)toluene cation and two hexafluorophosphate anions. Bond lengths (Allen et al., 1987) and angles are within normal ranges.The phenyl ring (C1-C6) is inclined at angles of 68.06 (7) and 75.05 (8) ° with respect to the N1/N2/C8/C9/C10 and N3/N4/C16/C17/C18 imidazole rings. The butyl group (C19-C22) of the cation and four fluorine atoms (F7-F10) of the hexafluorophosphate anion are disordered over two positions with refined site-occupancies of 0.694 (5) : 0.306 (5) and 0.64 (3) : 0.36 (3), respectively.

In the crystal structure, (Fig. 2), the molecules are linked into one-dimensional columns along [010] via intermolecular C–H···F hydrogen bonds (Table 1). The crystal structure is further consolidated by C–H···Cg1 (Table 1) interactions, Cg1 is the centroid of C1-C6 phenyl ring.

Related literature top

For general background to imidazoline-2-ylidenes, see: Arduengo et al. (1991). For the organometallic and coordination chemistry of N-heterocyclic carbene ligands, see: Chen et al. (2002); Zhou et al. (2008); Hahn & Jahnke (2008); Danopoulos et al. (2007); Bourissou et al. (2000); McGuinness & Cavell (2000); Garrison et al. (2001). For catalytic studies related to organic synthesis, see: Cavell & McGuinness (2004); Liu et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987).

For related literature, see: Bourissou et al. (2000).

Experimental top

N-butylimidazole (0.9 g, 7.2 mmol) was added to a stirred solution of 3,5-bis(bromomethyl)toluene (1.0 g, 3.6 mmol) in 20 ml of 1,4-dioxane. The mixture was refluxed at 373 K for 24 h. The sticky product was isolated by decantation and washed with fresh 1,4-dioxane (2 x 5 ml) and diethyl ether (2 x 3 ml). The resulting bromide salt was converted directly to its hexafluorophosphate salt by metathesis reaction using KPF6 (1.3 g, 7.2 mmol) in 20 ml of methanol. The colourless precipitate formed was collected and washed with distilled water (2 x 5 ml), and then recrystallized from acetonitrile to give colourless crystals. Yield: 1.9 g (79%), m. p.: 369-371 K. Crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the salt solution in acetonitrile at 281 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. Butyl group (C19-C22) of cation and four fluorine atoms (F7-F10) of the hexafluorophosphate anion are disordered over two positions with refined site-occupancies of 0.694 (5) : 0.306 (5) and 0.64 (3) : 0.36 (3), respectively.

Structure description top

Since the discovery of stable imidazoline-2-ylidenes, which were isolated and structurally characterized by Arduengo et al. (1991), the organometallic and coordination chemistry of N-heterocyclic carbene (NHC) ligands have been receiving great attention in recent years and much interest has been generated in the chemistry of the metal complexes of these ligands (Chen et al., 2002; Zhou et al., 2008). NHC carbene, a strong σ-donor and a weak π-acceptor, strongly interacts with different transitions metals in various oxidation states (Hahn & Jahnke, 2008; Danopoulos et al., 2007). Heterocyclic carbenes derived from imidazolium ions form complexes with many transition metals; heterocyclic carbene complexes of Pd, Ni, Pt, Rh, Ru, Ag and Au have been reported (Bourissou et al., 2000; McGuinness & Cavell, 2000; Garrison et al., 2001). Extensive catalytic studies on the application to organic synthesis have also been reported (Cavell & McGuinness, 2004; Liu et al., 2007).

The title molecule (Fig. 1) consists of a 3,5-bis(3-butylimidazolium-1- ylmethyl)toluene cation and two hexafluorophosphate anions. Bond lengths (Allen et al., 1987) and angles are within normal ranges.The phenyl ring (C1-C6) is inclined at angles of 68.06 (7) and 75.05 (8) ° with respect to the N1/N2/C8/C9/C10 and N3/N4/C16/C17/C18 imidazole rings. The butyl group (C19-C22) of the cation and four fluorine atoms (F7-F10) of the hexafluorophosphate anion are disordered over two positions with refined site-occupancies of 0.694 (5) : 0.306 (5) and 0.64 (3) : 0.36 (3), respectively.

In the crystal structure, (Fig. 2), the molecules are linked into one-dimensional columns along [010] via intermolecular C–H···F hydrogen bonds (Table 1). The crystal structure is further consolidated by C–H···Cg1 (Table 1) interactions, Cg1 is the centroid of C1-C6 phenyl ring.

For general background to imidazoline-2-ylidenes, see: Arduengo et al. (1991). For the organometallic and coordination chemistry of N-heterocyclic carbene ligands, see: Chen et al. (2002); Zhou et al. (2008); Hahn & Jahnke (2008); Danopoulos et al. (2007); Bourissou et al. (2000); McGuinness & Cavell (2000); Garrison et al. (2001). For catalytic studies related to organic synthesis, see: Cavell & McGuinness (2004); Liu et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987).

For related literature, see: Bourissou et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Both disorder components are shown.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the b axis. Only the major disorder component is shown. Intermolecular hydrogen bonds are shown in dashed lines.
3,3'-Dibutyl-1,1'-(5-methyl-m-phenylenedimethylene)diimidazol-1-ium bis(hexafluoridophosphate) top
Crystal data top
C23H34N42+·2PF6F(000) = 1352
Mr = 656.48Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9893 reflections
a = 9.6207 (1) Åθ = 2.2–32.2°
b = 11.1801 (1) ŵ = 0.25 mm1
c = 27.9277 (3) ÅT = 100 K
β = 102.416 (1)°Block, colourless
V = 2933.66 (5) Å30.49 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10399 independent reflections
Radiation source: fine-focus sealed tube7294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 32.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.890, Tmax = 0.967k = 1516
45569 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.5709P]
where P = (Fo2 + 2Fc2)/3
10399 reflections(Δ/σ)max = 0.001
448 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H34N42+·2PF6V = 2933.66 (5) Å3
Mr = 656.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6207 (1) ŵ = 0.25 mm1
b = 11.1801 (1) ÅT = 100 K
c = 27.9277 (3) Å0.49 × 0.20 × 0.14 mm
β = 102.416 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10399 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7294 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.967Rint = 0.040
45569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
10399 reflectionsΔρmin = 0.26 e Å3
448 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.04726 (12)0.72856 (9)0.87680 (4)0.0197 (2)
N20.25427 (13)0.70746 (10)0.85917 (4)0.0242 (2)
N30.01110 (12)1.25423 (9)0.87615 (4)0.0192 (2)
N40.22616 (13)1.27303 (12)0.86629 (5)0.0289 (3)
C10.12271 (14)0.98508 (11)0.87153 (5)0.0201 (3)
H1A0.10790.98560.83970.024*
C20.14332 (14)1.09268 (11)0.89438 (5)0.0203 (2)
C30.16796 (15)1.09046 (12)0.94182 (5)0.0241 (3)
H3A0.18241.16200.95700.029*
C40.17140 (17)0.98323 (12)0.96688 (6)0.0262 (3)
C50.14902 (16)0.87688 (12)0.94368 (5)0.0257 (3)
H5A0.15060.80470.96010.031*
C60.12428 (14)0.87685 (11)0.89618 (5)0.0209 (3)
C70.10445 (14)0.75962 (12)0.87112 (5)0.0230 (3)
H7A0.15240.69630.88500.028*
H7B0.14800.76570.83650.028*
C80.12152 (15)0.74404 (12)0.84230 (5)0.0219 (3)
H8A0.08610.77550.81120.026*
C90.13609 (16)0.67800 (12)0.91727 (5)0.0258 (3)
H9A0.11150.65710.94660.031*
C100.26525 (16)0.66465 (13)0.90628 (5)0.0272 (3)
H10A0.34620.63270.92650.033*
C110.36527 (17)0.70733 (14)0.83004 (6)0.0322 (3)
H11A0.45180.74180.84950.039*
H11B0.33450.75730.80130.039*
C120.39714 (16)0.58281 (14)0.81384 (6)0.0296 (3)
H12A0.30860.54320.79910.035*
H12B0.44300.53660.84230.035*
C130.4934 (2)0.58630 (18)0.77702 (8)0.0466 (5)
H13A0.45060.63730.74970.056*
H13B0.58430.62100.79260.056*
C140.5180 (2)0.4634 (2)0.75778 (8)0.0551 (5)
H14A0.57790.47000.73450.083*
H14B0.42830.42890.74210.083*
H14C0.56330.41330.78450.083*
C150.13694 (14)1.21063 (12)0.86830 (5)0.0223 (3)
H15A0.17521.20040.83350.027*
H15B0.19491.26930.88050.027*
C160.09876 (15)1.22892 (12)0.84694 (5)0.0222 (3)
H16A0.07471.18690.81760.027*
C170.08522 (17)1.31852 (12)0.91586 (5)0.0270 (3)
H17A0.04931.34820.94190.032*
C180.21968 (18)1.32975 (14)0.90954 (6)0.0323 (3)
H18A0.29421.36860.93050.039*
C19A0.3539 (4)1.2443 (3)0.84464 (16)0.0311 (7)0.694 (5)
H19A0.40581.31750.84180.047*0.694 (5)
H19B0.32141.21170.81200.047*0.694 (5)
C20A0.4534 (3)1.1550 (2)0.87594 (12)0.0333 (7)0.694 (5)
H20A0.48751.18940.90820.040*0.694 (5)
H20B0.53521.14280.86140.040*0.694 (5)
C21A0.3866 (2)1.0333 (2)0.88191 (8)0.0271 (6)0.694 (5)
H21A0.30071.04510.89420.041*0.694 (5)
H21B0.36000.99500.85010.041*0.694 (5)
C22A0.4863 (3)0.9528 (3)0.91641 (12)0.0333 (6)0.694 (5)
H22A0.43740.88060.92150.040*0.694 (5)
H22B0.51850.99280.94720.040*0.694 (5)
H22C0.56660.93350.90250.040*0.694 (5)
C19B0.3518 (10)1.2886 (6)0.8487 (4)0.0292 (15)0.306 (5)
H19C0.41961.33840.87070.044*0.306 (5)
H19D0.33161.32430.81630.044*0.306 (5)
C20B0.4073 (6)1.1615 (5)0.8473 (2)0.0280 (13)0.306 (5)
H20C0.49351.16320.83460.034*0.306 (5)
H20D0.33721.11450.82490.034*0.306 (5)
C21B0.4395 (6)1.1003 (5)0.8976 (2)0.0306 (14)0.306 (5)
H21C0.52221.13730.91830.046*0.306 (5)
H21D0.35941.11080.91310.046*0.306 (5)
C22B0.4668 (8)0.9706 (7)0.8925 (4)0.049 (2)0.306 (5)
H22D0.47430.93200.92370.058*0.306 (5)
H22E0.55410.96020.88160.058*0.306 (5)
H22F0.38980.93590.86910.058*0.306 (5)
C230.2051 (2)0.98208 (14)1.01718 (6)0.0348 (4)
H23A0.25081.05571.02250.052*
H23B0.11850.97351.04150.052*
H23C0.26730.91621.01960.052*
P10.03700 (4)0.98649 (3)0.736481 (13)0.02052 (8)
F10.14427 (10)1.08561 (8)0.72469 (3)0.0333 (2)
F20.13549 (10)0.88117 (8)0.72386 (3)0.0322 (2)
F30.06262 (9)1.09104 (7)0.75081 (3)0.02749 (18)
F40.12345 (10)0.98346 (7)0.79273 (3)0.0288 (2)
F50.07193 (9)0.88809 (8)0.74956 (3)0.02905 (19)
F60.05042 (10)0.98987 (7)0.68110 (3)0.02762 (19)
P20.70821 (4)0.49928 (3)0.947765 (13)0.02189 (8)
F7A0.5758 (12)0.4191 (10)0.9282 (3)0.078 (2)0.64 (3)
F8A0.6652 (12)0.5050 (9)0.9993 (4)0.0473 (18)0.64 (3)
F9A0.8492 (8)0.5779 (7)0.9694 (3)0.0372 (10)0.64 (3)
F10A0.7584 (13)0.4898 (3)0.8965 (2)0.0429 (14)0.64 (3)
F7B0.5535 (12)0.4370 (13)0.9296 (4)0.052 (2)0.36 (3)
F8B0.689 (2)0.5172 (17)1.0023 (7)0.050 (3)0.36 (3)
F9B0.8528 (13)0.5644 (17)0.9618 (8)0.053 (3)0.36 (3)
F10B0.7239 (19)0.4851 (9)0.8938 (4)0.056 (3)0.36 (3)
F110.62602 (11)0.62115 (9)0.93069 (4)0.0452 (3)
F120.79372 (13)0.37811 (8)0.96468 (4)0.0462 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0263 (6)0.0145 (5)0.0190 (5)0.0008 (4)0.0065 (4)0.0006 (4)
N20.0266 (6)0.0214 (5)0.0256 (6)0.0007 (5)0.0077 (5)0.0003 (5)
N30.0255 (6)0.0136 (5)0.0181 (5)0.0010 (4)0.0040 (4)0.0006 (4)
N40.0256 (6)0.0331 (7)0.0261 (6)0.0044 (5)0.0013 (5)0.0069 (5)
C10.0220 (6)0.0206 (6)0.0192 (6)0.0008 (5)0.0080 (5)0.0014 (5)
C20.0231 (6)0.0169 (5)0.0221 (6)0.0001 (5)0.0075 (5)0.0001 (5)
C30.0312 (7)0.0176 (6)0.0268 (7)0.0000 (5)0.0133 (6)0.0024 (5)
C40.0362 (8)0.0212 (6)0.0252 (7)0.0007 (5)0.0159 (6)0.0009 (5)
C50.0352 (8)0.0182 (6)0.0269 (7)0.0015 (5)0.0137 (6)0.0022 (5)
C60.0235 (6)0.0171 (6)0.0238 (7)0.0005 (5)0.0091 (5)0.0021 (5)
C70.0249 (7)0.0180 (6)0.0278 (7)0.0005 (5)0.0097 (6)0.0027 (5)
C80.0287 (7)0.0177 (6)0.0196 (6)0.0003 (5)0.0060 (5)0.0002 (5)
C90.0381 (8)0.0210 (6)0.0180 (6)0.0027 (6)0.0055 (6)0.0025 (5)
C100.0322 (8)0.0238 (7)0.0238 (7)0.0037 (6)0.0025 (6)0.0020 (5)
C110.0287 (8)0.0318 (8)0.0400 (9)0.0006 (6)0.0160 (7)0.0007 (7)
C120.0237 (7)0.0362 (8)0.0298 (8)0.0016 (6)0.0078 (6)0.0029 (6)
C130.0449 (10)0.0491 (11)0.0542 (12)0.0066 (9)0.0292 (9)0.0007 (9)
C140.0530 (12)0.0621 (13)0.0593 (14)0.0055 (10)0.0320 (11)0.0127 (11)
C150.0240 (6)0.0191 (6)0.0244 (7)0.0023 (5)0.0065 (5)0.0038 (5)
C160.0265 (7)0.0204 (6)0.0192 (6)0.0005 (5)0.0038 (5)0.0005 (5)
C170.0444 (9)0.0164 (6)0.0182 (6)0.0023 (6)0.0022 (6)0.0024 (5)
C180.0410 (9)0.0254 (7)0.0254 (7)0.0105 (6)0.0039 (6)0.0028 (6)
C19A0.0258 (13)0.0306 (18)0.0399 (16)0.0018 (16)0.0136 (11)0.0025 (16)
C20A0.0234 (12)0.0317 (13)0.0454 (19)0.0030 (9)0.0088 (12)0.0032 (12)
C21A0.0245 (11)0.0269 (12)0.0288 (11)0.0001 (9)0.0034 (9)0.0041 (9)
C22A0.0267 (13)0.0304 (13)0.0396 (16)0.0037 (10)0.0005 (13)0.0037 (13)
C19B0.027 (3)0.025 (3)0.034 (3)0.002 (3)0.003 (2)0.001 (3)
C20B0.019 (2)0.041 (3)0.022 (3)0.007 (2)0.002 (2)0.002 (2)
C21B0.023 (2)0.028 (3)0.043 (3)0.004 (2)0.014 (2)0.010 (2)
C22B0.031 (4)0.038 (4)0.072 (6)0.004 (3)0.000 (4)0.015 (4)
C230.0534 (10)0.0283 (7)0.0287 (8)0.0001 (7)0.0223 (7)0.0005 (6)
P10.02485 (18)0.01586 (15)0.01977 (17)0.00042 (12)0.00237 (13)0.00059 (12)
F10.0344 (5)0.0262 (4)0.0401 (5)0.0078 (4)0.0098 (4)0.0037 (4)
F20.0330 (5)0.0254 (4)0.0368 (5)0.0078 (4)0.0042 (4)0.0055 (4)
F30.0323 (4)0.0242 (4)0.0245 (4)0.0060 (3)0.0028 (3)0.0049 (3)
F40.0343 (5)0.0232 (4)0.0236 (4)0.0004 (3)0.0055 (4)0.0011 (3)
F50.0328 (5)0.0250 (4)0.0279 (4)0.0080 (3)0.0032 (4)0.0026 (3)
F60.0398 (5)0.0230 (4)0.0182 (4)0.0021 (3)0.0021 (4)0.0010 (3)
P20.02675 (18)0.01888 (16)0.01996 (17)0.00170 (13)0.00483 (14)0.00076 (13)
F7A0.074 (4)0.063 (3)0.079 (3)0.047 (3)0.024 (2)0.005 (2)
F8A0.057 (3)0.057 (2)0.037 (4)0.0006 (17)0.031 (3)0.003 (2)
F9A0.039 (2)0.0269 (14)0.0385 (18)0.0080 (11)0.0080 (11)0.0024 (12)
F10A0.084 (4)0.0229 (17)0.0288 (16)0.0030 (13)0.0279 (19)0.0019 (9)
F7B0.027 (3)0.067 (4)0.058 (4)0.022 (3)0.001 (2)0.029 (3)
F8B0.068 (7)0.060 (5)0.022 (3)0.024 (5)0.008 (3)0.013 (3)
F9B0.015 (3)0.049 (6)0.088 (8)0.007 (3)0.005 (4)0.023 (5)
F10B0.057 (5)0.095 (7)0.021 (2)0.026 (3)0.015 (2)0.011 (3)
F110.0385 (6)0.0373 (5)0.0541 (7)0.0151 (4)0.0025 (5)0.0061 (5)
F120.0840 (8)0.0214 (4)0.0350 (5)0.0163 (5)0.0168 (5)0.0048 (4)
Geometric parameters (Å, º) top
N1—C81.3285 (17)C17—C181.349 (2)
N1—C91.3828 (18)C17—H17A0.9300
N1—C71.4753 (17)C18—H18A0.9300
N2—C81.3272 (18)C19A—C20A1.522 (5)
N2—C101.3825 (18)C19A—H19A0.9700
N2—C111.4751 (19)C19A—H19B0.9700
N3—C161.3238 (17)C20A—C21A1.528 (3)
N3—C171.3837 (17)C20A—H20A0.9700
N3—C151.4764 (18)C20A—H20B0.9700
N4—C161.3238 (18)C21A—C22A1.504 (4)
N4—C181.378 (2)C21A—H21A0.9700
N4—C19B1.410 (10)C21A—H21B0.9700
N4—C19A1.516 (4)C22A—H22A0.9600
C1—C61.3938 (18)C22A—H22B0.9600
C1—C21.3959 (17)C22A—H22C0.9600
C1—H1A0.9300C19B—C20B1.521 (9)
C2—C31.3954 (18)C19B—H19C0.9700
C2—C151.5141 (18)C19B—H19D0.9700
C3—C41.3921 (19)C20B—C21B1.532 (8)
C3—H3A0.9300C20B—H20C0.9700
C4—C51.3927 (19)C20B—H20D0.9700
C4—C231.508 (2)C21B—C22B1.485 (9)
C5—C61.3972 (19)C21B—H21C0.9700
C5—H5A0.9300C21B—H21D0.9700
C6—C71.5170 (18)C22B—H22D0.9600
C7—H7A0.9700C22B—H22E0.9600
C7—H7B0.9700C22B—H22F0.9600
C8—H8A0.9300C23—H23A0.9600
C9—C101.351 (2)C23—H23B0.9600
C9—H9A0.9300C23—H23C0.9600
C10—H10A0.9300P1—F61.5941 (9)
C11—C121.515 (2)P1—F11.5960 (9)
C11—H11A0.9700P1—F21.5976 (9)
C11—H11B0.9700P1—F41.6120 (9)
C12—C131.525 (2)P1—F51.6145 (9)
C12—H12A0.9700P1—F31.6154 (9)
C12—H12B0.9700P2—F9B1.544 (13)
C13—C141.512 (3)P2—F10B1.556 (11)
C13—H13A0.9700P2—F7A1.557 (6)
C13—H13B0.9700P2—F8A1.583 (9)
C14—H14A0.9600P2—F8B1.584 (16)
C14—H14B0.9600P2—F111.5959 (10)
C14—H14C0.9600P2—F121.6024 (10)
C15—H15A0.9700P2—F10A1.610 (6)
C15—H15B0.9700P2—F9A1.620 (7)
C16—H16A0.9300P2—F7B1.622 (10)
C8—N1—C9108.18 (12)H20A—C20A—H20B107.5
C8—N1—C7124.42 (12)C22A—C21A—C20A112.2 (2)
C9—N1—C7127.40 (12)C22A—C21A—H21A109.2
C8—N2—C10108.38 (12)C20A—C21A—H21A109.2
C8—N2—C11124.06 (13)C22A—C21A—H21B109.2
C10—N2—C11127.46 (13)C20A—C21A—H21B109.2
C16—N3—C17108.54 (12)H21A—C21A—H21B107.9
C16—N3—C15124.05 (11)N4—C19B—C20B103.1 (5)
C17—N3—C15127.23 (12)N4—C19B—H19C111.2
C16—N4—C18108.47 (13)C20B—C19B—H19C111.2
C16—N4—C19B133.8 (4)N4—C19B—H19D111.2
C18—N4—C19B116.9 (4)C20B—C19B—H19D111.2
C16—N4—C19A121.1 (2)H19C—C19B—H19D109.1
C18—N4—C19A129.8 (2)C19B—C20B—C21B113.3 (6)
C19B—N4—C19A19.6 (3)C19B—C20B—H20C108.9
C6—C1—C2120.31 (12)C21B—C20B—H20C108.9
C6—C1—H1A119.8C19B—C20B—H20D108.9
C2—C1—H1A119.8C21B—C20B—H20D108.9
C3—C2—C1119.25 (12)H20C—C20B—H20D107.7
C3—C2—C15120.34 (12)C22B—C21B—C20B110.8 (7)
C1—C2—C15120.41 (12)C22B—C21B—H21C109.5
C4—C3—C2121.32 (12)C20B—C21B—H21C109.5
C4—C3—H3A119.3C22B—C21B—H21D109.5
C2—C3—H3A119.3C20B—C21B—H21D109.5
C3—C4—C5118.60 (13)H21C—C21B—H21D108.1
C3—C4—C23120.58 (13)C21B—C22B—H22D109.5
C5—C4—C23120.77 (13)C21B—C22B—H22E109.5
C4—C5—C6121.11 (13)H22D—C22B—H22E109.5
C4—C5—H5A119.4C21B—C22B—H22F109.5
C6—C5—H5A119.4H22D—C22B—H22F109.5
C1—C6—C5119.40 (12)H22E—C22B—H22F109.5
C1—C6—C7120.42 (12)C4—C23—H23A109.5
C5—C6—C7120.14 (12)C4—C23—H23B109.5
N1—C7—C6111.93 (11)H23A—C23—H23B109.5
N1—C7—H7A109.2C4—C23—H23C109.5
C6—C7—H7A109.2H23A—C23—H23C109.5
N1—C7—H7B109.2H23B—C23—H23C109.5
C6—C7—H7B109.2F6—P1—F190.75 (5)
H7A—C7—H7B107.9F6—P1—F291.01 (5)
N2—C8—N1109.20 (12)F1—P1—F291.48 (5)
N2—C8—H8A125.4F6—P1—F4179.23 (6)
N1—C8—H8A125.4F1—P1—F489.69 (5)
C10—C9—N1107.24 (12)F2—P1—F489.61 (5)
C10—C9—H9A126.4F6—P1—F590.17 (5)
N1—C9—H9A126.4F1—P1—F5178.60 (5)
C9—C10—N2107.00 (13)F2—P1—F589.56 (5)
C9—C10—H10A126.5F4—P1—F589.38 (5)
N2—C10—H10A126.5F6—P1—F390.33 (5)
N2—C11—C12112.49 (13)F1—P1—F389.61 (5)
N2—C11—H11A109.1F2—P1—F3178.26 (5)
C12—C11—H11A109.1F4—P1—F389.04 (5)
N2—C11—H11B109.1F5—P1—F389.34 (5)
C12—C11—H11B109.1F9B—P2—F10B91.4 (7)
H11A—C11—H11B107.8F9B—P2—F7A170.0 (7)
C11—C12—C13111.65 (14)F10B—P2—F7A81.0 (6)
C11—C12—H12A109.3F9B—P2—F8A98.5 (9)
C13—C12—H12A109.3F10B—P2—F8A170.0 (7)
C11—C12—H12B109.3F7A—P2—F8A89.3 (5)
C13—C12—H12B109.3F9B—P2—F8B88.8 (9)
H12A—C12—H12B108.0F10B—P2—F8B178.3 (8)
C14—C13—C12112.36 (16)F7A—P2—F8B99.0 (8)
C14—C13—H13A109.1F8A—P2—F8B9.7 (11)
C12—C13—H13A109.1F9B—P2—F1192.0 (7)
C14—C13—H13B109.1F10B—P2—F1186.7 (4)
C12—C13—H13B109.1F7A—P2—F1194.1 (5)
H13A—C13—H13B107.9F8A—P2—F1191.6 (4)
C13—C14—H14A109.5F8B—P2—F1191.6 (7)
C13—C14—H14B109.5F9B—P2—F1286.9 (7)
H14A—C14—H14B109.5F10B—P2—F1292.8 (4)
C13—C14—H14C109.5F7A—P2—F1286.9 (5)
H14A—C14—H14C109.5F8A—P2—F1289.1 (4)
H14B—C14—H14C109.5F8B—P2—F1288.9 (7)
N3—C15—C2110.71 (11)F11—P2—F12178.80 (7)
N3—C15—H15A109.5F9B—P2—F10A80.3 (7)
C2—C15—H15A109.5F10B—P2—F10A11.7 (7)
N3—C15—H15B109.5F7A—P2—F10A91.7 (4)
C2—C15—H15B109.5F8A—P2—F10A177.3 (5)
H15A—C15—H15B108.1F8B—P2—F10A168.9 (8)
N3—C16—N4109.00 (12)F11—P2—F10A90.8 (2)
N3—C16—H16A125.5F12—P2—F10A88.5 (2)
N4—C16—H16A125.5F9B—P2—F9A9.4 (10)
C18—C17—N3106.69 (13)F10B—P2—F9A99.8 (7)
C18—C17—H17A126.7F7A—P2—F9A177.6 (5)
N3—C17—H17A126.7F8A—P2—F9A90.0 (5)
C17—C18—N4107.30 (13)F8B—P2—F9A80.3 (9)
C17—C18—H18A126.4F11—P2—F9A88.3 (3)
N4—C18—H18A126.4F12—P2—F9A90.8 (3)
N4—C19A—C20A111.9 (3)F10A—P2—F9A88.9 (4)
N4—C19A—H19A109.2F9B—P2—F7B175.9 (8)
C20A—C19A—H19A109.2F10B—P2—F7B85.8 (7)
N4—C19A—H19B109.2F7A—P2—F7B10.6 (9)
C20A—C19A—H19B109.2F8A—P2—F7B84.3 (6)
H19A—C19A—H19B107.9F8B—P2—F7B93.9 (9)
C19A—C20A—C21A114.8 (3)F11—P2—F7B84.9 (5)
C19A—C20A—H20A108.6F12—P2—F7B96.2 (5)
C21A—C20A—H20A108.6F10A—P2—F7B97.1 (5)
C19A—C20A—H20B108.6F9A—P2—F7B170.9 (6)
C21A—C20A—H20B108.6
C6—C1—C2—C31.1 (2)N2—C11—C12—C13170.61 (14)
C6—C1—C2—C15178.02 (13)C11—C12—C13—C14176.02 (17)
C1—C2—C3—C40.4 (2)C16—N3—C15—C290.70 (15)
C15—C2—C3—C4178.69 (14)C17—N3—C15—C283.84 (16)
C2—C3—C4—C50.3 (2)C3—C2—C15—N392.95 (15)
C2—C3—C4—C23177.08 (15)C1—C2—C15—N386.17 (15)
C3—C4—C5—C60.3 (2)C17—N3—C16—N40.59 (15)
C23—C4—C5—C6177.02 (15)C15—N3—C16—N4174.83 (11)
C2—C1—C6—C51.1 (2)C18—N4—C16—N30.45 (16)
C2—C1—C6—C7178.94 (12)C19B—N4—C16—N3169.1 (5)
C4—C5—C6—C10.3 (2)C19A—N4—C16—N3171.83 (19)
C4—C5—C6—C7178.22 (14)C16—N3—C17—C180.49 (15)
C8—N1—C7—C6101.42 (15)C15—N3—C17—C18174.74 (12)
C9—N1—C7—C679.54 (16)N3—C17—C18—N40.22 (16)
C1—C6—C7—N186.62 (16)C16—N4—C18—C170.13 (17)
C5—C6—C7—N195.51 (15)C19B—N4—C18—C17171.0 (4)
C10—N2—C8—N11.08 (16)C19A—N4—C18—C17171.3 (2)
C11—N2—C8—N1177.63 (12)C16—N4—C19A—C20A105.3 (3)
C9—N1—C8—N20.99 (15)C18—N4—C19A—C20A65.2 (3)
C7—N1—C8—N2179.81 (11)C19B—N4—C19A—C20A119.3 (17)
C8—N1—C9—C100.52 (16)N4—C19A—C20A—C21A61.1 (4)
C7—N1—C9—C10179.69 (12)C19A—C20A—C21A—C22A175.4 (3)
N1—C9—C10—N20.13 (16)C16—N4—C19B—C20B72.2 (7)
C8—N2—C10—C90.73 (16)C18—N4—C19B—C20B119.9 (5)
C11—N2—C10—C9177.13 (14)C19A—N4—C19B—C20B15.9 (11)
C8—N2—C11—C12105.44 (16)N4—C19B—C20B—C21B60.3 (7)
C10—N2—C11—C1270.44 (19)C19B—C20B—C21B—C22B169.3 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···F40.932.423.0154 (16)121
C8—H8A···F50.932.393.2700 (16)157
C16—H16A···F30.932.313.1941 (16)160
C16—H16A···F40.932.453.1677 (16)134
C21A—H21B···F40.972.493.196 (2)130
C3—H3A···F12i0.932.443.3147 (16)157
C5—H5A···F9Aii0.932.553.420 (8)156
C7—H7A···F10Aii0.972.513.427 (6)158
C9—H9A···F12iii0.932.483.2805 (17)144
C12—H12A···F3iv0.972.533.3358 (18)140
C18—H18A···F8Av0.932.383.148 (11)140
C22A—H22C···Cg1vi0.962.763.535 (3)138
C23—H23B···Cg1vii0.962.593.487 (2)155
C22B—H22E···Cg1vi0.962.863.637 (8)139
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z+2; (iv) x, y1/2, z+3/2; (v) x+1, y+2, z+2; (vi) x+1, y, z; (vii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC23H34N42+·2PF6
Mr656.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.6207 (1), 11.1801 (1), 27.9277 (3)
β (°) 102.416 (1)
V3)2933.66 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.49 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.890, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
45569, 10399, 7294
Rint0.040
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.03
No. of reflections10399
No. of parameters448
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···F40.932.423.0154 (16)121
C8—H8A···F50.932.393.2700 (16)157
C16—H16A···F30.932.313.1941 (16)160
C16—H16A···F40.932.453.1677 (16)134
C21A—H21B···F40.972.493.196 (2)130
C3—H3A···F12i0.932.443.3147 (16)157
C5—H5A···F9Aii0.932.553.420 (8)156
C7—H7A···F10Aii0.972.513.427 (6)158
C9—H9A···F12iii0.932.483.2805 (17)144
C12—H12A···F3iv0.972.533.3358 (18)140
C18—H18A···F8Av0.932.383.148 (11)140
C22A—H22C···Cg1vi0.962.763.535 (3)138
C23—H23B···Cg1vii0.962.593.487 (2)155
C22B—H22E···Cg1vi0.962.863.637 (8)139
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z+2; (iv) x, y1/2, z+3/2; (v) x+1, y+2, z+2; (vi) x+1, y, z; (vii) x, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH, AW and SGT thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), the short term grant (304/PKIMIA/639001) and the Research University Grant (1001/PKIMIA/813023). HKF and CKQ thank USM for the Research University Grant (1001/PFIZIK/811160) and CKQ also thanks USM for a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBourissou, D., Guerret, O., Gabbai, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavell, K. J. & McGuinness, D. S. (2004). Coord. Chem. Rev. 248, 671–681.  Web of Science CrossRef CAS Google Scholar
First citationChen, W., Wu, B. & Matsumoto, K. (2002). J. Organomet. Chem. 654, 233–236.  CSD CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDanopoulos, A. A., Tsoureas, N., Macgregor, S. A. & Smith, C. (2007). Organometallics, 26, 253–263.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarrison, J. C., Simons, R. S., Talley, J. M., Wesdemiotis, C., Tessier, C. A. & Youngs, W. J. (2001). Organometallics, 20, 1276–1278.  Web of Science CSD CrossRef CAS Google Scholar
First citationHahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. Engl. 47, 3122–3172.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Q.-X., Zhao, X.-J., Wu, X.-M., Guo, J.-H. & Wang, X.-G. (2007). J. Organomet. Chem. 692, 5671–5679.  Web of Science CrossRef CAS Google Scholar
First citationMcGuinness, D. S. & Cavell, K. J. (2000). Organometallics, 19, 741–748.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y., Zhang, X., Chen, W. & Qiu, H. (2008). J. Organomet. Chem. 693, 205–215.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds