organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­imidazolium piperazinediium bis­­(benzene-1,3,5-tri­carboxyl­ate) dihydrate

aThe State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and School of Stomatology, Wuhan University 430072, People's Republic of China, and bCollege of Chemistry and Molecular Science, Wuhan University 430072, People's Republic of China
*Correspondence e-mail: lizhian2001@126.com

(Received 9 October 2010; accepted 13 October 2010; online 23 October 2010)

During the crystallization of the title compound, 4C3H5N2+·C4H12N2+·2C9H3O63−·2H2O, the acidic protons were transferred to the imidazole and piperazine N atoms, forming the final 4:1:2:2 hydrated mixed salt. The mean planes of the three carboxyl­ate groups in the anion are twisted with respect to the the central benzene ring, making dihedral angles of 13.5 (1), 14.5 (1) and 16.9 (1)°. In the crystal, the component ions are linked into a three-dimensional network by a combination of inter­molecular N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds. Further stabilization is provided by π-π stacking inter­actions with centroid–centroid distances of 3.393 (2) Å and weak C=O⋯π inter­actions [O–centroid = 3.363 (2) Å].

Related literature

For applications of multi-component piperazine compounds, see: Jacobs et al. (2009[Jacobs, T., Lloyd, G. O., Bredenkamp, M. W. & Barbour, L. J. (2009). CrystEngComm, 11, 1545-1548.]); Oswald et al. (2002[Oswald, I. D. H., Allan, D. R., McGregor, P. A., Motherwell, W. D. S., Parsons, S. & Pulham, C. R. (2002). Acta Cryst. B58, 1057-1066.]); Wang & Jia (2008[Wang, Z.-L. & Jia, L.-H. (2008). Acta Cryst. E64, o665-o666.]). For examples of compounds containing weak anion–π inter­actions, see: Schottel et al. (2008[Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68-83.]); Gao et al. (2009[Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123-o127.]).

[Scheme 1]

Experimental

Crystal data
  • 4C3H5N2+·C4H12N2+·2C9H3O63−·2H2O

  • Mr = 814.78

  • Triclinic, [P \overline 1]

  • a = 7.1548 (4) Å

  • b = 9.9424 (5) Å

  • c = 13.3567 (7) Å

  • α = 96.895 (1)°

  • β = 95.201 (1)°

  • γ = 101.439 (2)°

  • V = 918.11 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.20 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.989

  • 10341 measured reflections

  • 3925 independent reflections

  • 2757 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.04

  • 3925 reflections

  • 286 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.87 (2) 1.83 (2) 2.6870 (18) 166.9 (19)
N2—H2A⋯O5i 0.90 (2) 1.86 (2) 2.7522 (19) 177.4 (19)
N3—H3A⋯O6 0.915 (19) 1.80 (2) 2.701 (2) 168.8 (18)
N4—H4A⋯O2ii 0.93 (2) 1.74 (2) 2.668 (2) 176.6 (18)
N5—H5A⋯O3iii 0.98 (2) 1.83 (2) 2.7872 (19) 166.7 (17)
N5—H5A⋯O4iii 0.98 (2) 2.60 (2) 3.366 (2) 135.7 (14)
N5—H5B⋯O5 0.91 (2) 2.19 (2) 2.985 (2) 145.2 (16)
N5—H5B⋯O6 0.91 (2) 2.10 (2) 2.888 (2) 145.1 (18)
O7—H7A⋯O1 0.86 (3) 1.86 (3) 2.7184 (17) 171 (2)
O7—H7B⋯O3iv 0.90 (3) 1.95 (3) 2.840 (2) 169 (2)
C10—H10⋯O7 0.93 2.35 3.217 (3) 156
C12—H12⋯O4i 0.93 2.32 3.244 (2) 175
C13—H13⋯O1 0.93 2.36 3.267 (2) 164
C14—H14⋯O3iv 0.93 2.51 3.372 (2) 154
C15—H15⋯O7v 0.93 2.38 3.186 (2) 145
C16—H16B⋯O4vi 0.97 2.32 3.200 (2) 150
C16—H16A⋯O7v 0.97 2.48 3.207 (2) 132
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) -x, -y, -z+2; (v) -x+1, -y+1, -z+2; (vi) -x, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Piperazine has been used in the manufacture of anthelmintic vermicide. In order to improve its pharmaceutical effect, piperazine has been made into tablets containing two or more components (Jacobs et al., 2009; Oswald et al., 2002; Wang & Jia, 2008). In this paper, we report a new four-component piperazine containing adduct and the crystal structure is presented herein.

The formula unit of the title compound is shown in Fig. 1. The asymmetric unit is composed of two imidazolium cations, half a piperazinium cation, one benzene 1,3,5-tricarboxylate trianion and one water molecule. During the crystallization, the carboxylic acid protons of benzene-1,3,5-tricarboxylic acid were transferred to the imidazole and piperazine nitrogen atoms, forming the 4:1:2:2 organic adduct (imidazolium: piperazinium: benzene 1,3,5-tricarboxylate: water). Delocalization of charges on the the imidazolium and the benzene-1,3,5-tricarboxylate ions are reflected in the bond distances of C15—N3, C15—N4, C9—O5 and C9—O6. The mean planes of the three carboxylate groups in the anion twisted away from the central benzene ring with dihedral angles of 13.5 (1)°, 14.5 (1)° and 16.9 (1)°.

In the crystal packing, the component ions are linked into a complex three-dimensional network by a combination of N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 and Figure 2). A PLATON (Spek, 2009) analysis shows that the crystal structure is further consolidated by a π···π interaction [Cg1···Cg1(1 - x, 1 - y, 2 - z) = 3.393 (2) Å, dihedral angle = 0°, Cg1 is the centroid defined by atoms N3/N4/C13—C15] and a C=O···π interaction (C9···Cg2 = 3.472 (2) Å, O5···Cg2 = 3.363 (2)Å and C9=O5···Cg2 = 84.4 (2)°, Cg2 is th centroid defined by atoms N1/N2/C10—C12). These types of weak interactions have previously been studied (Gao et al., 2009, Schottel et al., 2008).

Related literature top

For applications of multi-component piperazine compounds, see: Jacobs et al. (2009); Oswald et al. (2002); Wang & Jia (2008). For examples of compounds containing weak anion–π interactions, see: Schottel et al. (2008); Gao et al. (2009).

Experimental top

All the reagents and solvents were used as obtained without further purification. Piperazine hexahydrate (0.2 mmol, 38.8 mg), imidazole (0.2 mmol, 13.6 mg) and benzene 1,3,5-tricarboxylic acid (0.1 mmol, 42.0 mg) were dissolved in 95% methanol (20 ml). The resulting colorless solution was kept in air for two weeks. Colorless blocks of the title compound suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Refinement top

H atoms bonded to C atoms were positioned geometrically with C–H = 0.93Å (aromatic) and 0.97 Å (methylene) and refined in a riding-model approximation [Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were found in Fourier difference maps with N—H and were refined freely with Uiso(H)= 1.2Ueq(N) or 1.5Ueq(O).

Structure description top

Piperazine has been used in the manufacture of anthelmintic vermicide. In order to improve its pharmaceutical effect, piperazine has been made into tablets containing two or more components (Jacobs et al., 2009; Oswald et al., 2002; Wang & Jia, 2008). In this paper, we report a new four-component piperazine containing adduct and the crystal structure is presented herein.

The formula unit of the title compound is shown in Fig. 1. The asymmetric unit is composed of two imidazolium cations, half a piperazinium cation, one benzene 1,3,5-tricarboxylate trianion and one water molecule. During the crystallization, the carboxylic acid protons of benzene-1,3,5-tricarboxylic acid were transferred to the imidazole and piperazine nitrogen atoms, forming the 4:1:2:2 organic adduct (imidazolium: piperazinium: benzene 1,3,5-tricarboxylate: water). Delocalization of charges on the the imidazolium and the benzene-1,3,5-tricarboxylate ions are reflected in the bond distances of C15—N3, C15—N4, C9—O5 and C9—O6. The mean planes of the three carboxylate groups in the anion twisted away from the central benzene ring with dihedral angles of 13.5 (1)°, 14.5 (1)° and 16.9 (1)°.

In the crystal packing, the component ions are linked into a complex three-dimensional network by a combination of N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 and Figure 2). A PLATON (Spek, 2009) analysis shows that the crystal structure is further consolidated by a π···π interaction [Cg1···Cg1(1 - x, 1 - y, 2 - z) = 3.393 (2) Å, dihedral angle = 0°, Cg1 is the centroid defined by atoms N3/N4/C13—C15] and a C=O···π interaction (C9···Cg2 = 3.472 (2) Å, O5···Cg2 = 3.363 (2)Å and C9=O5···Cg2 = 84.4 (2)°, Cg2 is th centroid defined by atoms N1/N2/C10—C12). These types of weak interactions have previously been studied (Gao et al., 2009, Schottel et al., 2008).

For applications of multi-component piperazine compounds, see: Jacobs et al. (2009); Oswald et al. (2002); Wang & Jia (2008). For examples of compounds containing weak anion–π interactions, see: Schottel et al. (2008); Gao et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The formula unit of the title compound. The displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. Atoms marked with 'A' are at the position of (1 - x, 1 - y, 1 - z).
[Figure 2] Fig. 2. Part of the title crystal structure, showing the three-dimensional network linked by N—H···O, O—H···O and C—H···O hydrogen bonds represented by dashed lines. For the sake of clarity, the H atoms not involved in the hydrogen-bonds pattern have been omitted. Color code: C, black; H, white; N, blue; O, red.
Tetraimidazolium piperazinediium bis(benzene-1,3,5-tricarboxylate) dihydrate top
Crystal data top
4C3H5N2+·C4H12N2+·2C9H3O63·2H2OZ = 1
Mr = 814.78F(000) = 428
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1548 (4) ÅCell parameters from 2102 reflections
b = 9.9424 (5) Åθ = 2.4–23.2°
c = 13.3567 (7) ŵ = 0.12 mm1
α = 96.895 (1)°T = 298 K
β = 95.201 (1)°Block, colorless
γ = 101.439 (2)°0.20 × 0.13 × 0.10 mm
V = 918.11 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3925 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
0.3° wide ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.967, Tmax = 0.989k = 1112
10341 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.0369P]
where P = (Fo2 + 2Fc2)/3
3925 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
4C3H5N2+·C4H12N2+·2C9H3O63·2H2Oγ = 101.439 (2)°
Mr = 814.78V = 918.11 (8) Å3
Triclinic, P1Z = 1
a = 7.1548 (4) ÅMo Kα radiation
b = 9.9424 (5) ŵ = 0.12 mm1
c = 13.3567 (7) ÅT = 298 K
α = 96.895 (1)°0.20 × 0.13 × 0.10 mm
β = 95.201 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3925 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2757 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.989Rint = 0.029
10341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
3925 reflectionsΔρmin = 0.19 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2128 (2)0.05764 (17)0.89657 (11)0.0263 (4)
C20.1004 (2)0.17749 (17)0.84080 (11)0.0263 (4)
H20.04090.24810.87430.032*
C30.0756 (2)0.19338 (17)0.73487 (11)0.0274 (4)
C40.1609 (2)0.08588 (18)0.68651 (12)0.0295 (4)
H40.14650.09640.61590.035*
C50.2676 (2)0.03761 (17)0.74101 (12)0.0267 (4)
C60.2947 (2)0.04896 (17)0.84640 (12)0.0274 (4)
H60.36940.12970.88380.033*
C70.2458 (2)0.04026 (18)1.01134 (12)0.0297 (4)
C80.0459 (2)0.32408 (19)0.67241 (12)0.0332 (4)
C90.3502 (2)0.15651 (19)0.68720 (13)0.0310 (4)
C100.2728 (3)0.0067 (2)1.32738 (13)0.0391 (5)
H100.34300.07901.31750.047*
C110.1114 (3)0.2190 (2)1.29964 (14)0.0432 (5)
H110.05050.30631.26610.052*
C120.1222 (3)0.1753 (2)1.39965 (13)0.0421 (5)
H120.07020.22611.44840.051*
C130.2479 (3)0.3752 (2)0.99158 (14)0.0401 (5)
H130.23790.28761.01110.048*
C140.2247 (3)0.4896 (2)1.04845 (14)0.0396 (5)
H140.19490.49611.11500.048*
C150.2920 (3)0.5449 (2)0.90127 (14)0.0400 (5)
H150.31760.59540.84800.048*
C160.3894 (3)0.4987 (2)0.58396 (13)0.0422 (5)
H16A0.37730.53180.65390.051*
H16B0.27100.43410.55570.051*
C170.5803 (3)0.3814 (2)0.47501 (14)0.0462 (5)
H17A0.46880.31260.44280.055*
H17B0.69100.33870.47470.055*
N10.2057 (2)0.11215 (17)1.25638 (11)0.0396 (4)
H1A0.217 (3)0.111 (2)1.1923 (16)0.048*
N20.2245 (2)0.04171 (17)1.41557 (11)0.0389 (4)
H2A0.265 (3)0.014 (2)1.4745 (16)0.047*
N30.2891 (2)0.41179 (16)0.89917 (12)0.0374 (4)
H3A0.320 (3)0.355 (2)0.8468 (14)0.045*
N40.2528 (2)0.59528 (17)0.99092 (11)0.0361 (4)
H4A0.240 (3)0.686 (2)1.0107 (14)0.043*
N50.5516 (2)0.42669 (17)0.58090 (11)0.0388 (4)
H5A0.667 (3)0.486 (2)0.6204 (14)0.047*
H5B0.520 (3)0.350 (2)0.6120 (15)0.047*
O10.3047 (2)0.07841 (13)1.05718 (9)0.0488 (4)
O20.21058 (18)0.14867 (12)1.05409 (8)0.0379 (3)
O30.15144 (18)0.40803 (13)0.71833 (9)0.0450 (4)
O40.0363 (2)0.34118 (16)0.58017 (9)0.0617 (5)
O50.3573 (2)0.13542 (13)0.59351 (9)0.0436 (3)
O60.41142 (19)0.27435 (12)0.73950 (9)0.0415 (3)
O70.4407 (2)0.26393 (16)1.22724 (10)0.0498 (4)
H7A0.407 (3)0.201 (3)1.1749 (19)0.075*
H7B0.342 (3)0.306 (3)1.2364 (18)0.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (9)0.0259 (9)0.0207 (8)0.0069 (7)0.0028 (6)0.0045 (6)
C20.0329 (9)0.0236 (9)0.0223 (8)0.0025 (7)0.0046 (6)0.0073 (6)
C30.0293 (8)0.0277 (10)0.0243 (8)0.0042 (7)0.0023 (6)0.0038 (7)
C40.0368 (9)0.0330 (10)0.0186 (7)0.0064 (8)0.0040 (6)0.0047 (7)
C50.0301 (9)0.0256 (9)0.0265 (8)0.0071 (7)0.0068 (6)0.0069 (7)
C60.0330 (9)0.0218 (9)0.0261 (8)0.0036 (7)0.0025 (7)0.0027 (7)
C70.0397 (10)0.0282 (10)0.0213 (8)0.0080 (8)0.0034 (7)0.0026 (7)
C80.0360 (9)0.0336 (11)0.0256 (8)0.0009 (8)0.0006 (7)0.0013 (7)
C90.0357 (9)0.0301 (10)0.0307 (9)0.0095 (8)0.0088 (7)0.0103 (7)
C100.0498 (11)0.0398 (12)0.0308 (9)0.0124 (9)0.0099 (8)0.0090 (8)
C110.0501 (11)0.0425 (12)0.0332 (10)0.0025 (9)0.0019 (8)0.0040 (9)
C120.0477 (11)0.0478 (13)0.0322 (10)0.0064 (10)0.0094 (8)0.0140 (9)
C130.0473 (11)0.0327 (11)0.0427 (10)0.0080 (9)0.0089 (8)0.0128 (9)
C140.0465 (11)0.0394 (12)0.0352 (10)0.0105 (9)0.0087 (8)0.0086 (8)
C150.0500 (11)0.0342 (12)0.0376 (10)0.0081 (9)0.0112 (8)0.0097 (8)
C160.0441 (11)0.0506 (13)0.0269 (9)0.0014 (9)0.0040 (8)0.0040 (8)
C170.0566 (12)0.0361 (12)0.0432 (11)0.0085 (10)0.0001 (9)0.0013 (9)
N10.0508 (10)0.0500 (11)0.0216 (7)0.0155 (8)0.0074 (7)0.0090 (7)
N20.0487 (9)0.0454 (11)0.0233 (7)0.0121 (8)0.0055 (7)0.0035 (7)
N30.0446 (9)0.0289 (9)0.0390 (9)0.0081 (7)0.0091 (7)0.0020 (7)
N40.0434 (9)0.0264 (9)0.0391 (8)0.0086 (7)0.0076 (7)0.0037 (7)
N50.0455 (10)0.0309 (9)0.0344 (8)0.0067 (8)0.0049 (7)0.0143 (7)
O10.0874 (11)0.0259 (7)0.0268 (6)0.0060 (7)0.0025 (6)0.0047 (5)
O20.0642 (9)0.0285 (7)0.0213 (6)0.0072 (6)0.0072 (5)0.0076 (5)
O30.0521 (8)0.0360 (8)0.0371 (7)0.0124 (6)0.0057 (6)0.0016 (6)
O40.0783 (11)0.0614 (10)0.0263 (7)0.0223 (8)0.0034 (7)0.0059 (6)
O50.0648 (9)0.0375 (8)0.0297 (7)0.0058 (6)0.0163 (6)0.0107 (5)
O60.0592 (8)0.0252 (7)0.0393 (7)0.0009 (6)0.0146 (6)0.0079 (6)
O70.0637 (10)0.0433 (9)0.0349 (7)0.0004 (7)0.0066 (7)0.0058 (6)
Geometric parameters (Å, º) top
C1—C61.382 (2)C12—H120.9300
C1—C21.385 (2)C13—C141.337 (3)
C1—C71.513 (2)C13—N31.369 (2)
C2—C31.396 (2)C13—H130.9300
C2—H20.9300C14—N41.369 (2)
C3—C41.382 (2)C14—H140.9300
C3—C81.517 (2)C15—N31.317 (2)
C4—C51.390 (2)C15—N41.318 (2)
C4—H40.9300C15—H150.9300
C5—C61.391 (2)C16—N51.481 (3)
C5—C91.506 (2)C16—C17i1.497 (3)
C6—H60.9300C16—H16A0.9700
C7—O11.236 (2)C16—H16B0.9700
C7—O21.272 (2)C17—N51.477 (2)
C8—O41.233 (2)C17—C16i1.497 (3)
C8—O31.265 (2)C17—H17A0.9700
C9—O51.251 (2)C17—H17B0.9700
C9—O61.264 (2)N1—H1A0.87 (2)
C10—N11.307 (2)N2—H2A0.90 (2)
C10—N21.324 (2)N3—H3A0.915 (19)
C10—H100.9300N4—H4A0.93 (2)
C11—C121.345 (3)N5—H5A0.98 (2)
C11—N11.361 (2)N5—H5B0.91 (2)
C11—H110.9300O7—H7A0.86 (3)
C12—N21.365 (2)O7—H7B0.90 (3)
C6—C1—C2119.32 (14)N3—C13—H13126.6
C6—C1—C7119.29 (14)C13—C14—N4107.51 (16)
C2—C1—C7121.39 (15)C13—C14—H14126.2
C1—C2—C3120.66 (15)N4—C14—H14126.2
C1—C2—H2119.7N3—C15—N4109.13 (17)
C3—C2—H2119.7N3—C15—H15125.4
C4—C3—C2118.85 (14)N4—C15—H15125.4
C4—C3—C8119.66 (14)N5—C16—C17i110.90 (16)
C2—C3—C8121.48 (15)N5—C16—H16A109.5
C3—C4—C5121.49 (14)C17i—C16—H16A109.5
C3—C4—H4119.3N5—C16—H16B109.5
C5—C4—H4119.3C17i—C16—H16B109.5
C4—C5—C6118.38 (15)H16A—C16—H16B108.0
C4—C5—C9120.74 (14)N5—C17—C16i111.07 (16)
C6—C5—C9120.88 (15)N5—C17—H17A109.4
C1—C6—C5121.22 (15)C16i—C17—H17A109.4
C1—C6—H6119.4N5—C17—H17B109.4
C5—C6—H6119.4C16i—C17—H17B109.4
O1—C7—O2124.44 (15)H17A—C17—H17B108.0
O1—C7—C1117.75 (16)C10—N1—C11108.59 (15)
O2—C7—C1117.81 (14)C10—N1—H1A124.3 (14)
O4—C8—O3124.28 (16)C11—N1—H1A127.1 (14)
O4—C8—C3117.93 (16)C10—N2—C12108.49 (16)
O3—C8—C3117.79 (14)C10—N2—H2A122.6 (13)
O5—C9—O6122.58 (16)C12—N2—H2A128.7 (13)
O5—C9—C5119.37 (16)C15—N3—C13108.45 (16)
O6—C9—C5118.05 (14)C15—N3—H3A125.6 (13)
N1—C10—N2108.95 (18)C13—N3—H3A125.7 (12)
N1—C10—H10125.5C15—N4—C14108.03 (16)
N2—C10—H10125.5C15—N4—H4A126.1 (12)
C12—C11—N1107.52 (17)C14—N4—H4A125.8 (12)
C12—C11—H11126.2C17—N5—C16110.82 (14)
N1—C11—H11126.2C17—N5—H5A113.0 (11)
C11—C12—N2106.45 (17)C16—N5—H5A110.0 (11)
C11—C12—H12126.8C17—N5—H5B108.4 (13)
N2—C12—H12126.8C16—N5—H5B107.1 (13)
C14—C13—N3106.88 (17)H5A—N5—H5B107.3 (16)
C14—C13—H13126.6H7A—O7—H7B108 (2)
C6—C1—C2—C32.5 (2)C4—C3—C8—O3166.35 (16)
C7—C1—C2—C3178.26 (15)C2—C3—C8—O312.2 (3)
C1—C2—C3—C41.7 (3)C4—C5—C9—O514.7 (3)
C1—C2—C3—C8179.66 (15)C6—C5—C9—O5165.86 (16)
C2—C3—C4—C51.0 (3)C4—C5—C9—O6165.85 (16)
C8—C3—C4—C5177.65 (15)C6—C5—C9—O613.6 (2)
C3—C4—C5—C62.9 (3)N1—C11—C12—N20.3 (2)
C3—C4—C5—C9176.58 (15)N3—C13—C14—N40.3 (2)
C2—C1—C6—C50.5 (2)N2—C10—N1—C110.1 (2)
C7—C1—C6—C5179.78 (15)C12—C11—N1—C100.3 (2)
C4—C5—C6—C12.1 (2)N1—C10—N2—C120.0 (2)
C9—C5—C6—C1177.32 (15)C11—C12—N2—C100.2 (2)
C6—C1—C7—O117.1 (2)N4—C15—N3—C130.5 (2)
C2—C1—C7—O1162.20 (16)C14—C13—N3—C150.5 (2)
C6—C1—C7—O2163.16 (15)N3—C15—N4—C140.3 (2)
C2—C1—C7—O217.6 (2)C13—C14—N4—C150.0 (2)
C4—C3—C8—O413.2 (3)C16i—C17—N5—C1656.2 (2)
C2—C3—C8—O4168.22 (17)C17i—C16—N5—C1756.1 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.87 (2)1.83 (2)2.6870 (18)166.9 (19)
N2—H2A···O5ii0.90 (2)1.86 (2)2.7522 (19)177.4 (19)
N3—H3A···O60.915 (19)1.80 (2)2.701 (2)168.8 (18)
N4—H4A···O2iii0.93 (2)1.74 (2)2.668 (2)176.6 (18)
N5—H5A···O3iv0.98 (2)1.83 (2)2.7872 (19)166.7 (17)
N5—H5A···O4iv0.98 (2)2.60 (2)3.366 (2)135.7 (14)
N5—H5B···O50.91 (2)2.19 (2)2.985 (2)145.2 (16)
N5—H5B···O60.91 (2)2.10 (2)2.888 (2)145.1 (18)
O7—H7A···O10.86 (3)1.86 (3)2.7184 (17)171 (2)
O7—H7B···O3v0.90 (3)1.95 (3)2.840 (2)169 (2)
C10—H10···O70.932.353.217 (3)156
C12—H12···O4ii0.932.323.244 (2)175
C13—H13···O10.932.363.267 (2)164
C14—H14···O3v0.932.513.372 (2)154
C15—H15···O7vi0.932.383.186 (2)145
C16—H16B···O4vii0.972.323.200 (2)150
C16—H16A···O7vi0.972.483.207 (2)132
Symmetry codes: (ii) x, y, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x, y, z+2; (vi) x+1, y+1, z+2; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formula4C3H5N2+·C4H12N2+·2C9H3O63·2H2O
Mr814.78
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.1548 (4), 9.9424 (5), 13.3567 (7)
α, β, γ (°)96.895 (1), 95.201 (1), 101.439 (2)
V3)918.11 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
10341, 3925, 2757
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.04
No. of reflections3925
No. of parameters286
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.19

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.87 (2)1.83 (2)2.6870 (18)166.9 (19)
N2—H2A···O5i0.90 (2)1.86 (2)2.7522 (19)177.4 (19)
N3—H3A···O60.915 (19)1.80 (2)2.701 (2)168.8 (18)
N4—H4A···O2ii0.93 (2)1.74 (2)2.668 (2)176.6 (18)
N5—H5A···O3iii0.98 (2)1.83 (2)2.7872 (19)166.7 (17)
N5—H5A···O4iii0.98 (2)2.60 (2)3.366 (2)135.7 (14)
N5—H5B···O50.91 (2)2.19 (2)2.985 (2)145.2 (16)
N5—H5B···O60.91 (2)2.10 (2)2.888 (2)145.1 (18)
O7—H7A···O10.86 (3)1.86 (3)2.7184 (17)171 (2)
O7—H7B···O3iv0.90 (3)1.95 (3)2.840 (2)169 (2)
C10—H10···O70.932.353.217 (3)155.9
C12—H12···O4i0.932.323.244 (2)174.8
C13—H13···O10.932.363.267 (2)164.1
C14—H14···O3iv0.932.513.372 (2)154.0
C15—H15···O7v0.932.383.186 (2)145.4
C16—H16B···O4vi0.972.323.200 (2)150.1
C16—H16A···O7v0.972.483.207 (2)131.7
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y, z+2; (v) x+1, y+1, z+2; (vi) x, y, z+1.
 

Acknowledgements

We thank Dr Gui-Huan Du for helpful discussions about the structure.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123–o127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobs, T., Lloyd, G. O., Bredenkamp, M. W. & Barbour, L. J. (2009). CrystEngComm, 11, 1545–1548.  Web of Science CSD CrossRef CAS Google Scholar
First citationOswald, I. D. H., Allan, D. R., McGregor, P. A., Motherwell, W. D. S., Parsons, S. & Pulham, C. R. (2002). Acta Cryst. B58, 1057–1066.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68–83.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Jia, L.-H. (2008). Acta Cryst. E64, o665–o666.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds