metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ2-1,2-bis­­(1H-imidazol-1-ylmeth­yl)benzene-κ2N3:N3′](μ2-tereph­thalato-κ2O1:O4)zinc(II)]

aDepartment of Applied Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: zhangshishen@126.com

(Received 19 October 2010; accepted 19 October 2010; online 23 October 2010)

In the title coordination polymer, [Zn(C8H4O4)(C14H14N4)]n, the ZnII atom is coordinated by two N atoms from two 1,2-bis­(imidazol-1-ylmeth­yl)benzene ligands as well as by the two O atoms from two terephthalate ligands, confering a tetra­hedral coordination geometry. The bridging ligands generate a three-dimensional structure.

Related literature

For related structures, see: Fan et al. (2005[Fan, J., Slebodnick, C., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 552-558.], 2006[Fan, J., Yee, G. T., Wang, G.-B. & Hanson, B. E. (2006). Inorg. Chem. 45, 599-608.]); Liu et al. (2007[Liu, Y.-Y., Ma, J.-F., Yang, J. & Su, Z.-M. (2007). Inorg. Chem. 46, 3027-3037.], 2008a[Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008a). CrystEngComm, 10, 894-904.],b[Liu, G.-X., Zhu, L., Chen, H., Huang, R.-Y. & Ren, X.-M. (2008b). CrystEngComm, 10, 1527-1530.], 2009[Liu, G.-X., Zhu, L., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605-1610.]); Yang et al. (2008[Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C. & Batten, S. R. (2008). Cryst. Growth Des. 12, 4383-4393.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H4O4)(C14H14N4)]

  • Mr = 467.79

  • Triclinic, [P \overline 1]

  • a = 10.132 (3) Å

  • b = 10.179 (3) Å

  • c = 11.169 (3) Å

  • α = 99.073 (4)°

  • β = 102.748 (4)°

  • γ = 112.974 (4)°

  • V = 995.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 291 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.785, Tmax = 0.883

  • 7505 measured reflections

  • 3674 independent reflections

  • 3140 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.097

  • S = 1.05

  • 3674 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazol and its derivatives have been achieving rapidly increasing attention not only for their potential application as functional materials, but also for their intriguing variety of architectures and topologies. 1,2-bis(imidazole-1-ylmethyl)-benzene, as one kind of those ligand, has usually been used to construct a great variety of structurally interesting entities, such as one-dimensional chain, square grid, 2-fold interpenetrated, 3-fold interpenetrated network.

The asymmetric unit of the title compound (I) is illustrated in Fig. 1. Single-crystal X-ray diffraction shows that the asymmetric unit contains one Zn crystallographically nonequivalent atom.the ZnII atom is coordinated by two N atoms from two 1,2-bis(imidazole-1-ylmethyl)-benzene ligands, as well as by the two O atoms from two terephthalic acid ligands to confer a distorted tetrahedral coordination at the metal centre. The two Zn atoms coordinated by two N atoms to form a layer. The layer three-dimensional structure is stabilized by intermolecular π-π stacking interaction and hydrogen bond.

Related literature top

For related structures, see: Fan et al. (2005, 2006); Liu et al. (2007, 2008a,b, 2009); Yang et al. (2008).

Experimental top

A mixture of ZnSO4 (0.032 g, 0.2 nmol), 1,2-bis(imidazole-1-ylmethyl)-benzene(0.024 g, 0.1 nmol) and Terephthalic acid (0.016 g, 0.1 nmol) in mole ratio of 1:1:1 in water(6 ml) was sealed in 15 ml Teflon-lined reactor and heated to 180°C for 24 h and then cooled to room temperature at a rate of 5°C/h. the yellow block crystal was obtianed in the yield of 20%.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å(aromatic) or 0.97 Å(aliphatic), and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Imidazol and its derivatives have been achieving rapidly increasing attention not only for their potential application as functional materials, but also for their intriguing variety of architectures and topologies. 1,2-bis(imidazole-1-ylmethyl)-benzene, as one kind of those ligand, has usually been used to construct a great variety of structurally interesting entities, such as one-dimensional chain, square grid, 2-fold interpenetrated, 3-fold interpenetrated network.

The asymmetric unit of the title compound (I) is illustrated in Fig. 1. Single-crystal X-ray diffraction shows that the asymmetric unit contains one Zn crystallographically nonequivalent atom.the ZnII atom is coordinated by two N atoms from two 1,2-bis(imidazole-1-ylmethyl)-benzene ligands, as well as by the two O atoms from two terephthalic acid ligands to confer a distorted tetrahedral coordination at the metal centre. The two Zn atoms coordinated by two N atoms to form a layer. The layer three-dimensional structure is stabilized by intermolecular π-π stacking interaction and hydrogen bond.

For related structures, see: Fan et al. (2005, 2006); Liu et al. (2007, 2008a,b, 2009); Yang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound
Poly[[µ2-1,2-bis(1H-imidazol-1-ylmethyl)benzene- κ2N3:N3'](µ2-terephthalato- κ2O1:O4)zinc(II)] top
Crystal data top
[Zn(C8H4O4)(C14H14N4)]Z = 2
Mr = 467.79F(000) = 480
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.132 (3) ÅCell parameters from 1793 reflections
b = 10.179 (3) Åθ = 1.9–25.5°
c = 11.169 (3) ŵ = 1.27 mm1
α = 99.073 (4)°T = 291 K
β = 102.748 (4)°Block, yellow
γ = 112.974 (4)°0.20 × 0.16 × 0.10 mm
V = 995.5 (5) Å3
Data collection top
Bruker SMART area-detector
diffractometer
3674 independent reflections
Radiation source: fine-focus sealed tube3140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.785, Tmax = 0.883k = 1212
7505 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.0138P]
where P = (Fo2 + 2Fc2)/3
3674 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Zn(C8H4O4)(C14H14N4)]γ = 112.974 (4)°
Mr = 467.79V = 995.5 (5) Å3
Triclinic, P1Z = 2
a = 10.132 (3) ÅMo Kα radiation
b = 10.179 (3) ŵ = 1.27 mm1
c = 11.169 (3) ÅT = 291 K
α = 99.073 (4)°0.20 × 0.16 × 0.10 mm
β = 102.748 (4)°
Data collection top
Bruker SMART area-detector
diffractometer
3674 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3140 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.883Rint = 0.027
7505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.60 e Å3
3674 reflectionsΔρmin = 0.23 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.72744 (4)0.03060 (3)0.12258 (3)0.03123 (13)
O10.8199 (2)0.0226 (2)0.24812 (18)0.0371 (5)
O20.9037 (2)0.2104 (2)0.2633 (2)0.0458 (6)
O30.5956 (2)0.1577 (2)0.0977 (2)0.0459 (6)
O40.8048 (3)0.1373 (2)0.0314 (3)0.0560 (6)
N10.5722 (3)0.0954 (3)0.2066 (2)0.0348 (6)
N20.8687 (3)0.1981 (2)0.0314 (2)0.0337 (6)
N61.0855 (3)0.3509 (3)0.1741 (2)0.0360 (6)
N90.4735 (3)0.2181 (3)0.3094 (2)0.0376 (6)
C10.9907 (4)0.1328 (4)0.4772 (3)0.0455 (8)
H10.98580.22300.46250.073 (12)*
C40.8876 (3)0.0814 (3)0.2957 (3)0.0314 (6)
C60.9462 (3)0.0392 (3)0.4010 (3)0.0319 (7)
C90.9965 (3)0.2102 (3)0.1035 (3)0.0360 (7)
H91.02220.13220.10550.045 (9)*
C100.6685 (4)0.2048 (3)0.0265 (3)0.0382 (7)
C110.8774 (4)0.3382 (3)0.0577 (3)0.0446 (8)
H110.80250.36360.02030.052 (10)*
C131.2799 (3)0.5047 (3)0.3833 (3)0.0356 (7)
C181.4214 (3)0.6254 (3)0.4431 (3)0.0394 (7)
C200.5801 (3)0.3584 (3)0.0123 (3)0.0382 (7)
C221.3428 (5)0.6714 (4)0.6276 (3)0.0633 (11)
H221.36470.72710.70970.067 (11)*
C231.1735 (4)0.4697 (3)0.4470 (3)0.0420 (8)
H231.07950.38950.40650.035 (8)*
C260.5945 (3)0.1929 (3)0.2730 (3)0.0389 (7)
H260.68330.23900.29220.030 (7)*
C270.4285 (3)0.0549 (3)0.2007 (3)0.0407 (7)
H270.38090.01360.15960.047 (9)*
C280.6533 (4)0.4224 (3)0.0621 (3)0.0443 (8)
H280.75630.37080.10430.050 (10)*
C310.9565 (4)0.0932 (3)0.4253 (3)0.0436 (8)
H310.92780.15720.37500.063 (11)*
C320.4269 (4)0.4382 (3)0.0747 (3)0.0442 (8)
H320.37750.39670.12520.058 (10)*
C331.2432 (3)0.4081 (4)0.2513 (3)0.0441 (8)
H33A1.26600.32520.25940.063 (11)*
H33B1.30730.46520.20710.042 (9)*
C371.0093 (4)0.4329 (3)0.1455 (3)0.0443 (8)
H371.04220.53390.17950.038 (8)*
C381.2048 (4)0.5524 (4)0.5688 (3)0.0547 (9)
H381.13250.52720.61060.040 (9)*
C391.4495 (4)0.7073 (4)0.5666 (3)0.0562 (10)
H391.54230.78850.60750.065 (11)*
C450.4583 (3)0.3249 (4)0.3803 (3)0.0490 (9)
H45A0.36000.27890.44460.045 (9)*
H45B0.46500.41040.32220.045 (9)*
C460.3671 (4)0.1301 (3)0.2636 (3)0.0431 (8)
H460.27100.12330.27350.052 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0359 (2)0.0264 (2)0.0302 (2)0.01204 (16)0.01047 (15)0.00882 (14)
O10.0418 (12)0.0331 (11)0.0389 (12)0.0145 (10)0.0196 (10)0.0115 (9)
O20.0562 (14)0.0343 (12)0.0543 (14)0.0227 (11)0.0270 (12)0.0103 (10)
O30.0583 (15)0.0309 (12)0.0426 (13)0.0103 (11)0.0167 (11)0.0174 (10)
O40.0445 (14)0.0400 (14)0.0877 (18)0.0156 (11)0.0265 (13)0.0285 (13)
N10.0354 (14)0.0328 (14)0.0356 (14)0.0136 (11)0.0101 (11)0.0127 (11)
N20.0378 (14)0.0285 (13)0.0316 (13)0.0149 (11)0.0062 (11)0.0050 (11)
N60.0413 (15)0.0303 (14)0.0310 (13)0.0149 (12)0.0072 (12)0.0021 (11)
N90.0292 (13)0.0356 (14)0.0442 (15)0.0129 (11)0.0050 (12)0.0132 (12)
C10.065 (2)0.0356 (18)0.055 (2)0.0290 (17)0.0345 (18)0.0205 (16)
C40.0277 (15)0.0310 (16)0.0322 (16)0.0114 (13)0.0076 (13)0.0064 (13)
C60.0295 (15)0.0303 (16)0.0355 (16)0.0108 (13)0.0131 (13)0.0099 (13)
C90.0442 (18)0.0294 (16)0.0335 (16)0.0177 (14)0.0108 (14)0.0041 (13)
C100.047 (2)0.0300 (17)0.0406 (18)0.0159 (15)0.0230 (16)0.0068 (14)
C110.054 (2)0.0357 (18)0.0436 (19)0.0276 (17)0.0028 (16)0.0059 (15)
C130.0429 (18)0.0308 (16)0.0307 (16)0.0170 (14)0.0045 (14)0.0095 (13)
C180.0387 (17)0.0311 (16)0.0396 (18)0.0133 (14)0.0029 (14)0.0138 (14)
C200.0467 (19)0.0323 (16)0.0418 (18)0.0176 (15)0.0227 (15)0.0130 (14)
C220.090 (3)0.050 (2)0.0291 (19)0.023 (2)0.002 (2)0.0006 (17)
C230.0468 (19)0.0297 (17)0.0389 (18)0.0094 (15)0.0094 (15)0.0065 (14)
C260.0306 (17)0.0350 (17)0.052 (2)0.0131 (14)0.0115 (15)0.0189 (15)
C270.0395 (18)0.0410 (18)0.0437 (18)0.0156 (15)0.0193 (15)0.0142 (15)
C280.043 (2)0.0381 (18)0.053 (2)0.0153 (16)0.0167 (17)0.0197 (16)
C310.059 (2)0.0366 (18)0.051 (2)0.0241 (16)0.0316 (17)0.0223 (16)
C320.047 (2)0.0376 (18)0.053 (2)0.0205 (16)0.0159 (17)0.0215 (16)
C330.0415 (19)0.0430 (19)0.0423 (19)0.0166 (16)0.0126 (16)0.0033 (15)
C370.057 (2)0.0293 (18)0.0427 (18)0.0209 (16)0.0070 (17)0.0055 (14)
C380.077 (3)0.053 (2)0.0397 (19)0.030 (2)0.023 (2)0.0154 (17)
C390.059 (2)0.040 (2)0.040 (2)0.0102 (18)0.0127 (18)0.0063 (16)
C450.0325 (18)0.040 (2)0.064 (2)0.0126 (15)0.0018 (17)0.0198 (18)
C460.0337 (18)0.0428 (19)0.053 (2)0.0159 (15)0.0153 (15)0.0129 (16)
Geometric parameters (Å, º) top
Zn1—O31.967 (2)C13—C331.515 (4)
Zn1—O11.9680 (19)C18—C391.399 (5)
Zn1—N21.999 (2)C18—C45ii1.497 (4)
Zn1—N12.036 (2)C20—C321.384 (4)
O1—C41.283 (3)C20—C281.393 (4)
O2—C41.240 (3)C22—C391.364 (5)
O3—C101.244 (4)C22—C381.369 (5)
O4—C101.234 (4)C22—H220.9271
N1—C261.310 (3)C23—C381.378 (4)
N1—C271.370 (4)C23—H230.9299
N2—C91.313 (4)C26—H260.9298
N2—C111.373 (4)C27—C461.347 (4)
N6—C91.344 (3)C27—H270.9297
N6—C371.369 (4)C28—C32iii1.381 (4)
N6—C331.464 (4)C28—H280.9299
N9—C261.339 (4)C31—C1i1.386 (4)
N9—C461.364 (4)C31—H310.9294
N9—C451.478 (4)C32—C28iii1.381 (4)
C1—C31i1.386 (4)C32—H320.9283
C1—C61.387 (4)C33—H33A0.9696
C1—H10.9289C33—H33B0.9695
C4—C61.506 (4)C37—H370.9299
C6—C311.383 (4)C38—H380.9292
C9—H90.9291C39—H390.9280
C10—C201.522 (4)C45—C18ii1.497 (4)
C11—C371.340 (4)C45—H45A0.9699
C11—H110.9294C45—H45B0.9696
C13—C231.383 (4)C46—H460.9284
C13—C181.398 (4)
O3—Zn1—O1105.82 (9)C28—C20—C10120.3 (3)
O3—Zn1—N2118.54 (9)C39—C22—C38120.2 (3)
O1—Zn1—N2115.65 (9)C39—C22—H22119.6
O3—Zn1—N1100.79 (10)C38—C22—H22120.1
O1—Zn1—N1109.17 (9)C38—C23—C13120.9 (3)
N2—Zn1—N1105.62 (10)C38—C23—H23119.8
C4—O1—Zn1115.41 (18)C13—C23—H23119.2
C10—O3—Zn1111.8 (2)N1—C26—N9111.6 (3)
C26—N1—C27105.7 (2)N1—C26—H26124.3
C26—N1—Zn1125.8 (2)N9—C26—H26124.2
C27—N1—Zn1128.4 (2)C46—C27—N1109.2 (3)
C9—N2—C11105.6 (2)C46—C27—H27125.4
C9—N2—Zn1125.44 (19)N1—C27—H27125.3
C11—N2—Zn1126.0 (2)C32iii—C28—C20120.3 (3)
C9—N6—C37107.5 (3)C32iii—C28—H28119.8
C9—N6—C33125.4 (3)C20—C28—H28120.0
C37—N6—C33126.5 (3)C6—C31—C1i121.5 (3)
C26—N9—C46106.8 (3)C6—C31—H31119.3
C26—N9—C45127.3 (3)C1i—C31—H31119.2
C46—N9—C45125.9 (3)C28iii—C32—C20121.0 (3)
C31i—C1—C6120.5 (3)C28iii—C32—H32119.7
C31i—C1—H1119.6C20—C32—H32119.3
C6—C1—H1119.9N6—C33—C13113.4 (3)
O2—C4—O1124.7 (3)N6—C33—H33A108.9
O2—C4—C6119.0 (2)C13—C33—H33A108.9
O1—C4—C6116.3 (2)N6—C33—H33B108.8
C31—C6—C1118.0 (3)C13—C33—H33B109.0
C31—C6—C4121.4 (3)H33A—C33—H33B107.7
C1—C6—C4120.6 (3)C11—C37—N6105.9 (3)
N2—C9—N6110.9 (3)C11—C37—H37126.8
N2—C9—H9124.7N6—C37—H37127.2
N6—C9—H9124.5C22—C38—C23119.7 (4)
O4—C10—O3124.9 (3)C22—C38—H38120.3
O4—C10—C20118.8 (3)C23—C38—H38120.0
O3—C10—C20116.2 (3)C22—C39—C18121.5 (3)
C37—C11—N2110.1 (3)C22—C39—H39119.3
C37—C11—H11124.9C18—C39—H39119.3
N2—C11—H11125.0N9—C45—C18ii111.3 (3)
C23—C13—C18119.7 (3)N9—C45—H45A109.3
C23—C13—C33119.4 (3)C18ii—C45—H45A109.5
C18—C13—C33120.9 (3)N9—C45—H45B109.4
C13—C18—C39118.0 (3)C18ii—C45—H45B109.4
C13—C18—C45ii123.6 (3)H45A—C45—H45B108.0
C39—C18—C45ii118.4 (3)C27—C46—N9106.7 (3)
C32—C20—C28118.8 (3)C27—C46—H46126.5
C32—C20—C10120.9 (3)N9—C46—H46126.8
Symmetry codes: (i) x+2, y, z1; (ii) x+2, y+1, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O4)(C14H14N4)]
Mr467.79
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)10.132 (3), 10.179 (3), 11.169 (3)
α, β, γ (°)99.073 (4), 102.748 (4), 112.974 (4)
V3)995.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.785, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
7505, 3674, 3140
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.097, 1.05
No. of reflections3674
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Qianjiang Talents Project of the Technology Office of Zhejiang Province (grant No. 2009R10029), the National Natural Science Foundation of China (grant No. 20803067) and the Zhejiang Provincial Top Academic Discipline of Applied Chemistry and Eco-Dyeing & Finishing Engineering (grant No. ZYG2010019).

References

First citationBruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, J., Slebodnick, C., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 552–558.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFan, J., Yee, G. T., Wang, G.-B. & Hanson, B. E. (2006). Inorg. Chem. 45, 599–608.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008a). CrystEngComm, 10, 894–904.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y.-Y., Ma, J.-F., Yang, J. & Su, Z.-M. (2007). Inorg. Chem. 46, 3027–3037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, G.-X., Zhu, L., Chen, H., Huang, R.-Y. & Ren, X.-M. (2008b). CrystEngComm, 10, 1527–1530.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, G.-X., Zhu, L., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605–1610.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C. & Batten, S. R. (2008). Cryst. Growth Des. 12, 4383–4393.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds