organic compounds
[2,7-Dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp
In the title compound, C28H24O4, the two 4-methylbenzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost antiparallel, the dihedral angle between the two phenyl rings being 9.64 (7)°. The dihedral angles between the two phenyl rings and the naphthalene ring system are 71.82 (6) and 71.58 (6)°. In the crystal, intermolecular C—H⋯O interactions between the carbonyl oxygen and aromatic hydrogen are observed.
Related literature
For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, see: Okamoto & Yonezawa (2009). For related structures, see: Nakaema et al. (2007, 2008); Watanabe et al. (2010a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810039620/om2367sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810039620/om2367Isup2.hkl
To a 30 ml flask, 4-methylbenzoic acid (8.00 mmol, 1.08 g) and phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH; 8.0 ml) were placed and stirred at 333 K. To the solution thus obtained, 2,7-dimethoxynaphthalene (4.00 mmol, 0.752 g) was added. After the reaction mixture was stirred at 333 K for 2 h, it was poured into ice-cold water (10 ml) and the mixture was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layer was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (57% yield). The crude product was purified by recrystallization from CHCl3-hexane (isolated yield 35%). Furthermore, the isolated product was crystallized from EtOH to give single-crystals.
Spectral data:1H NMR δ (300 MHz, CDCl3): 2.37 (6H, s), 3.67 (6H, s), 7.11 (4H, d, J = 7.8 Hz), 7.19 (2H, d, J = 8.7 Hz), 7.57 (4H, d, J = 7.8 Hz), 7.92 (2H, d, J = 8.7 Hz). 13C NMR δ (300 MHz, CDCl3): 21.740, 56.495, 111.34, 121.91, 125.58, 128.70, 129.25, 129.74, 131.79, 136.31, 143.17, 156.12, 196.22. IR (KBr): 1655 (C═O), 1607, 1512 (Ar, naphthalene). m.p. = 531.8–534.9 K. Anal. Calcd for C28H24O4; C, 79.22; H, 5,70. Found C, 78.98; H, 5.78.
All the H-atoms could be located in difference Fourier maps. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98(methyl) Å, and Uiso(H) = 1.2Ueq. Friedel-pair reflections were merged before final
because the parameter was -0.04 (17). [Merging Friedel-pair data with the MERG 3 instruction in SHELX97].In the course of our study on selective electrophilic aromatic aroylation of the naphthalene core, peri-aroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone [1,8-bis(4-bromobenzoyl)-2,7-dimethoxynaphthalene] (Watanabe et al., 2010a) and (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl) dimethanone [1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene] (Watanabe et al., 2010b). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are oriented in opposite direction. The aromatic rings in the molecule are non-coplanar, resulting in partial disruption of π-conjugation of ring systems. As a part of our continuing studies on the molecular structures of this kind of homologous molecules, the X-ray of title compound, peri-aroylnaphthalene bearing methyl groups, is discussed in this article.
The molecular structure of the title compound is displayed in Fig 1. Two 4-methylbenzoyl groups are situated in anti orientation and are twisted away from the attached naphthalene ring. The interplanar angle between the best planes of the two phenyl rings is 9.64 (7)°. On the other hand, the two interplanar angles between the best planes of the 4-methylphenyl rings and the naphthalene ring are 71.82 (6) and 71.58 (6)°, respectively. The torsion angles between the carbonyl groups and the naphthalene ring [C10—C1—C11—O1 = 68.1 (2)° and C10—C9—C18—O2 = 67.6 (2)°] are larger than those between the carbonyl groups and 4-methylphenyl groups [O1—C11—C12—C13 = -179.18 (15)° and O2—C18—C19—C20 = 176.67 (15)°]. In the molecular packing, the C—H···O hydrogen interactions between the oxygen atoms of the carbonyl groups and the hydrogen atoms of the phenyl rings are observed along the c axis [C14—H14···O1 = 2.52 Å and C21—H21···O2 = 2.38 Å] (Fig. 2).
For the formation of aroylated naphthalene compounds via electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, see: Okamoto & Yonezawa (2009). For related structures, see: Nakaema et al. (2007, 2008); Watanabe et al. (2010a,b).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. : Molecular structure with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. : C—H···O interactions (dashed lines). |
C28H24O4 | F(000) = 896 |
Mr = 424.47 | Dx = 1.318 Mg m−3 |
Orthorhombic, Pna21 | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: P 2c -2n | Cell parameters from 31782 reflections |
a = 20.0334 (3) Å | θ = 3.3–68.2° |
b = 13.4311 (2) Å | µ = 0.70 mm−1 |
c = 7.94771 (10) Å | T = 193 K |
V = 2138.49 (5) Å3 | Block, colorless |
Z = 4 | 0.60 × 0.40 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 2110 independent reflections |
Radiation source: fine-focus sealed tube | 2041 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.2°, θmin = 4.0° |
ω scans | h = −24→24 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −16→16 |
Tmin = 0.604, Tmax = 0.873 | l = −9→9 |
33150 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0569P)2 + 0.3088P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.002 |
2110 reflections | Δρmax = 0.18 e Å−3 |
293 parameters | Δρmin = −0.17 e Å−3 |
1 restraint | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0066 (5) |
C28H24O4 | V = 2138.49 (5) Å3 |
Mr = 424.47 | Z = 4 |
Orthorhombic, Pna21 | Cu Kα radiation |
a = 20.0334 (3) Å | µ = 0.70 mm−1 |
b = 13.4311 (2) Å | T = 193 K |
c = 7.94771 (10) Å | 0.60 × 0.40 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 2110 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2041 reflections with I > 2σ(I) |
Tmin = 0.604, Tmax = 0.873 | Rint = 0.034 |
33150 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 1 restraint |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.18 e Å−3 |
2110 reflections | Δρmin = −0.17 e Å−3 |
293 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.14819 (8) | 0.11387 (12) | 0.5115 (2) | 0.0340 (4) | |
O2 | 0.14078 (8) | 0.32719 (13) | 0.2589 (2) | 0.0368 (4) | |
O3 | 0.06372 (8) | −0.05143 (12) | 0.2673 (3) | 0.0449 (4) | |
O4 | 0.03319 (8) | 0.46452 (13) | 0.4971 (3) | 0.0444 (4) | |
C1 | 0.05479 (10) | 0.11760 (16) | 0.3328 (3) | 0.0300 (5) | |
C2 | 0.02338 (11) | 0.02950 (17) | 0.2891 (3) | 0.0361 (5) | |
C3 | −0.04660 (12) | 0.0239 (2) | 0.2705 (4) | 0.0426 (6) | |
H3 | −0.0672 | −0.0361 | 0.2345 | 0.051* | |
C4 | −0.08397 (11) | 0.1059 (2) | 0.3048 (3) | 0.0420 (6) | |
H4 | −0.1311 | 0.1020 | 0.2935 | 0.050* | |
C5 | −0.05501 (10) | 0.19654 (19) | 0.3567 (3) | 0.0369 (5) | |
C6 | −0.09500 (11) | 0.2789 (2) | 0.4003 (4) | 0.0436 (6) | |
H6 | −0.1422 | 0.2727 | 0.3944 | 0.052* | |
C7 | −0.06805 (12) | 0.3673 (2) | 0.4509 (4) | 0.0428 (6) | |
H7 | −0.0960 | 0.4215 | 0.4816 | 0.051* | |
C8 | 0.00175 (12) | 0.37696 (17) | 0.4567 (3) | 0.0361 (5) | |
C9 | 0.04339 (10) | 0.29876 (17) | 0.4152 (3) | 0.0303 (5) | |
C10 | 0.01624 (10) | 0.20501 (17) | 0.3670 (3) | 0.0309 (5) | |
C11 | 0.12923 (11) | 0.11221 (15) | 0.3659 (3) | 0.0282 (5) | |
C12 | 0.17684 (11) | 0.10505 (15) | 0.2237 (3) | 0.0274 (5) | |
C13 | 0.15505 (11) | 0.10444 (17) | 0.0569 (3) | 0.0330 (5) | |
H13 | 0.1086 | 0.1075 | 0.0330 | 0.040* | |
C14 | 0.20036 (12) | 0.09938 (16) | −0.0735 (3) | 0.0343 (5) | |
H14 | 0.1847 | 0.0991 | −0.1863 | 0.041* | |
C15 | 0.26866 (11) | 0.09473 (16) | −0.0420 (3) | 0.0332 (5) | |
C16 | 0.29032 (11) | 0.09517 (17) | 0.1250 (3) | 0.0343 (5) | |
H16 | 0.3367 | 0.0916 | 0.1486 | 0.041* | |
C17 | 0.24524 (11) | 0.10078 (15) | 0.2565 (3) | 0.0314 (5) | |
H17 | 0.2609 | 0.1017 | 0.3693 | 0.038* | |
C18 | 0.11740 (11) | 0.32131 (15) | 0.4002 (3) | 0.0286 (5) | |
C19 | 0.15908 (11) | 0.33410 (15) | 0.5519 (3) | 0.0280 (5) | |
C20 | 0.13218 (11) | 0.33242 (17) | 0.7139 (3) | 0.0326 (5) | |
H20 | 0.0855 | 0.3239 | 0.7283 | 0.039* | |
C21 | 0.17245 (12) | 0.34296 (17) | 0.8529 (3) | 0.0356 (5) | |
H21 | 0.1532 | 0.3424 | 0.9621 | 0.043* | |
C22 | 0.24135 (12) | 0.35449 (16) | 0.8353 (3) | 0.0335 (5) | |
C23 | 0.26816 (12) | 0.35582 (17) | 0.6736 (3) | 0.0345 (5) | |
H23 | 0.3149 | 0.3638 | 0.6594 | 0.041* | |
C24 | 0.22803 (11) | 0.34573 (16) | 0.5340 (3) | 0.0301 (5) | |
H24 | 0.2473 | 0.3467 | 0.4248 | 0.036* | |
C25 | 0.03540 (14) | −0.14711 (18) | 0.2950 (4) | 0.0489 (7) | |
H25A | 0.0694 | −0.1983 | 0.2755 | 0.059* | |
H25B | −0.0020 | −0.1573 | 0.2173 | 0.059* | |
H25C | 0.0193 | −0.1516 | 0.4111 | 0.059* | |
C26 | −0.00659 (15) | 0.5493 (2) | 0.5335 (5) | 0.0575 (8) | |
H26A | 0.0224 | 0.6057 | 0.5614 | 0.069* | |
H26B | −0.0358 | 0.5348 | 0.6292 | 0.069* | |
H26C | −0.0338 | 0.5661 | 0.4350 | 0.069* | |
C27 | 0.31772 (13) | 0.0894 (2) | −0.1857 (4) | 0.0450 (6) | |
H27A | 0.2936 | 0.0769 | −0.2909 | 0.054* | |
H27B | 0.3495 | 0.0353 | −0.1654 | 0.054* | |
H27C | 0.3419 | 0.1527 | −0.1942 | 0.054* | |
C28 | 0.28470 (13) | 0.3658 (2) | 0.9887 (4) | 0.0442 (6) | |
H28A | 0.2668 | 0.3247 | 1.0802 | 0.053* | |
H28B | 0.2853 | 0.4357 | 1.0238 | 0.053* | |
H28C | 0.3302 | 0.3442 | 0.9622 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0338 (8) | 0.0407 (9) | 0.0276 (9) | −0.0016 (6) | −0.0026 (7) | 0.0006 (7) |
O2 | 0.0351 (9) | 0.0514 (10) | 0.0238 (9) | −0.0047 (7) | 0.0037 (7) | 0.0015 (7) |
O3 | 0.0372 (8) | 0.0403 (9) | 0.0573 (11) | −0.0093 (7) | 0.0077 (8) | −0.0081 (9) |
O4 | 0.0402 (9) | 0.0398 (9) | 0.0532 (12) | 0.0093 (7) | 0.0005 (9) | −0.0030 (8) |
C1 | 0.0260 (10) | 0.0401 (11) | 0.0237 (10) | −0.0036 (8) | 0.0020 (9) | 0.0017 (9) |
C2 | 0.0338 (11) | 0.0455 (12) | 0.0289 (12) | −0.0074 (9) | 0.0028 (10) | −0.0013 (10) |
C3 | 0.0353 (11) | 0.0551 (14) | 0.0374 (13) | −0.0168 (11) | −0.0020 (11) | −0.0008 (12) |
C4 | 0.0258 (10) | 0.0635 (16) | 0.0368 (14) | −0.0094 (10) | −0.0037 (10) | 0.0080 (12) |
C5 | 0.0262 (10) | 0.0545 (13) | 0.0300 (12) | −0.0008 (10) | −0.0020 (10) | 0.0094 (11) |
C6 | 0.0239 (10) | 0.0633 (15) | 0.0437 (15) | 0.0035 (10) | −0.0006 (10) | 0.0122 (12) |
C7 | 0.0313 (11) | 0.0558 (14) | 0.0414 (14) | 0.0125 (10) | 0.0054 (11) | 0.0095 (12) |
C8 | 0.0361 (11) | 0.0434 (12) | 0.0286 (12) | 0.0050 (10) | 0.0008 (10) | 0.0041 (10) |
C9 | 0.0263 (10) | 0.0402 (11) | 0.0244 (11) | 0.0029 (8) | −0.0013 (9) | 0.0046 (9) |
C10 | 0.0267 (10) | 0.0443 (12) | 0.0218 (10) | −0.0018 (9) | −0.0003 (9) | 0.0057 (9) |
C11 | 0.0302 (11) | 0.0267 (9) | 0.0275 (12) | −0.0023 (8) | −0.0017 (10) | 0.0005 (9) |
C12 | 0.0264 (10) | 0.0272 (9) | 0.0286 (12) | −0.0021 (7) | −0.0009 (9) | −0.0001 (8) |
C13 | 0.0281 (11) | 0.0408 (12) | 0.0303 (12) | −0.0005 (9) | −0.0048 (9) | 0.0018 (10) |
C14 | 0.0387 (12) | 0.0381 (11) | 0.0262 (11) | 0.0005 (9) | −0.0004 (10) | 0.0009 (9) |
C15 | 0.0360 (12) | 0.0292 (10) | 0.0344 (13) | −0.0012 (9) | 0.0046 (10) | 0.0012 (9) |
C16 | 0.0267 (11) | 0.0370 (11) | 0.0393 (13) | −0.0026 (8) | 0.0011 (10) | 0.0001 (10) |
C17 | 0.0294 (10) | 0.0331 (10) | 0.0317 (12) | −0.0024 (8) | −0.0034 (9) | 0.0007 (10) |
C18 | 0.0304 (10) | 0.0279 (9) | 0.0276 (12) | 0.0009 (8) | 0.0023 (9) | 0.0013 (8) |
C19 | 0.0298 (10) | 0.0264 (10) | 0.0277 (11) | 0.0009 (8) | 0.0005 (9) | 0.0010 (8) |
C20 | 0.0291 (10) | 0.0398 (12) | 0.0289 (12) | −0.0008 (9) | 0.0018 (9) | 0.0002 (10) |
C21 | 0.0404 (12) | 0.0405 (12) | 0.0259 (12) | −0.0007 (9) | 0.0031 (10) | 0.0032 (10) |
C22 | 0.0389 (12) | 0.0283 (10) | 0.0331 (13) | 0.0001 (8) | −0.0061 (11) | 0.0012 (9) |
C23 | 0.0300 (11) | 0.0341 (11) | 0.0393 (14) | −0.0002 (9) | −0.0024 (10) | −0.0005 (10) |
C24 | 0.0310 (10) | 0.0312 (10) | 0.0280 (11) | 0.0014 (8) | 0.0044 (10) | −0.0004 (9) |
C25 | 0.0531 (15) | 0.0413 (12) | 0.0523 (17) | −0.0147 (11) | 0.0089 (14) | −0.0081 (12) |
C26 | 0.0583 (16) | 0.0509 (15) | 0.063 (2) | 0.0204 (13) | −0.0051 (16) | −0.0145 (15) |
C27 | 0.0419 (13) | 0.0522 (14) | 0.0408 (15) | 0.0002 (10) | 0.0110 (12) | 0.0014 (12) |
C28 | 0.0500 (15) | 0.0459 (13) | 0.0368 (14) | −0.0022 (11) | −0.0114 (12) | 0.0028 (12) |
O1—C11 | 1.218 (3) | C15—C16 | 1.396 (4) |
O2—C18 | 1.219 (3) | C15—C27 | 1.508 (3) |
O3—C2 | 1.366 (3) | C16—C17 | 1.384 (3) |
O3—C25 | 1.422 (3) | C16—H16 | 0.9500 |
O4—C8 | 1.372 (3) | C17—H17 | 0.9500 |
O4—C26 | 1.420 (3) | C18—C19 | 1.477 (3) |
C1—C2 | 1.385 (3) | C19—C20 | 1.395 (3) |
C1—C10 | 1.431 (3) | C19—C24 | 1.398 (3) |
C1—C11 | 1.516 (3) | C20—C21 | 1.375 (3) |
C2—C3 | 1.412 (3) | C20—H20 | 0.9500 |
C3—C4 | 1.359 (4) | C21—C22 | 1.396 (3) |
C3—H3 | 0.9500 | C21—H21 | 0.9500 |
C4—C5 | 1.410 (4) | C22—C23 | 1.393 (3) |
C4—H4 | 0.9500 | C22—C28 | 1.505 (3) |
C5—C6 | 1.409 (4) | C23—C24 | 1.377 (3) |
C5—C10 | 1.434 (3) | C23—H23 | 0.9500 |
C6—C7 | 1.365 (4) | C24—H24 | 0.9500 |
C6—H6 | 0.9500 | C25—H25A | 0.9800 |
C7—C8 | 1.405 (3) | C25—H25B | 0.9800 |
C7—H7 | 0.9500 | C25—H25C | 0.9800 |
C8—C9 | 1.381 (3) | C26—H26A | 0.9800 |
C9—C10 | 1.424 (3) | C26—H26B | 0.9800 |
C9—C18 | 1.518 (3) | C26—H26C | 0.9800 |
C11—C12 | 1.482 (3) | C27—H27A | 0.9800 |
C12—C13 | 1.396 (3) | C27—H27B | 0.9800 |
C12—C17 | 1.396 (3) | C27—H27C | 0.9800 |
C13—C14 | 1.379 (3) | C28—H28A | 0.9800 |
C13—H13 | 0.9500 | C28—H28B | 0.9800 |
C14—C15 | 1.392 (3) | C28—H28C | 0.9800 |
C14—H14 | 0.9500 | ||
C2—O3—C25 | 117.63 (18) | C15—C16—H16 | 119.5 |
C8—O4—C26 | 118.5 (2) | C16—C17—C12 | 120.1 (2) |
C2—C1—C10 | 120.23 (19) | C16—C17—H17 | 119.9 |
C2—C1—C11 | 116.73 (18) | C12—C17—H17 | 119.9 |
C10—C1—C11 | 122.48 (18) | O2—C18—C19 | 121.84 (19) |
O3—C2—C1 | 116.31 (18) | O2—C18—C9 | 117.41 (19) |
O3—C2—C3 | 122.2 (2) | C19—C18—C9 | 120.75 (18) |
C1—C2—C3 | 121.5 (2) | C20—C19—C24 | 118.5 (2) |
C4—C3—C2 | 118.9 (2) | C20—C19—C18 | 122.2 (2) |
C4—C3—H3 | 120.6 | C24—C19—C18 | 119.2 (2) |
C2—C3—H3 | 120.6 | C21—C20—C19 | 120.8 (2) |
C3—C4—C5 | 122.1 (2) | C21—C20—H20 | 119.6 |
C3—C4—H4 | 118.9 | C19—C20—H20 | 119.6 |
C5—C4—H4 | 118.9 | C20—C21—C22 | 120.7 (2) |
C6—C5—C4 | 121.05 (19) | C20—C21—H21 | 119.6 |
C6—C5—C10 | 119.3 (2) | C22—C21—H21 | 119.6 |
C4—C5—C10 | 119.6 (2) | C23—C22—C21 | 118.4 (2) |
C7—C6—C5 | 122.03 (19) | C23—C22—C28 | 121.6 (2) |
C7—C6—H6 | 119.0 | C21—C22—C28 | 120.0 (2) |
C5—C6—H6 | 119.0 | C24—C23—C22 | 121.1 (2) |
C6—C7—C8 | 118.9 (2) | C24—C23—H23 | 119.4 |
C6—C7—H7 | 120.5 | C22—C23—H23 | 119.4 |
C8—C7—H7 | 120.5 | C23—C24—C19 | 120.4 (2) |
O4—C8—C9 | 115.50 (19) | C23—C24—H24 | 119.8 |
O4—C8—C7 | 122.9 (2) | C19—C24—H24 | 119.8 |
C9—C8—C7 | 121.5 (2) | O3—C25—H25A | 109.5 |
C8—C9—C10 | 120.40 (18) | O3—C25—H25B | 109.5 |
C8—C9—C18 | 117.19 (19) | H25A—C25—H25B | 109.5 |
C10—C9—C18 | 121.89 (18) | O3—C25—H25C | 109.5 |
C9—C10—C1 | 124.76 (17) | H25A—C25—H25C | 109.5 |
C9—C10—C5 | 117.74 (19) | H25B—C25—H25C | 109.5 |
C1—C10—C5 | 117.5 (2) | O4—C26—H26A | 109.5 |
O1—C11—C12 | 121.7 (2) | O4—C26—H26B | 109.5 |
O1—C11—C1 | 118.1 (2) | H26A—C26—H26B | 109.5 |
C12—C11—C1 | 120.25 (19) | O4—C26—H26C | 109.5 |
C13—C12—C17 | 118.9 (2) | H26A—C26—H26C | 109.5 |
C13—C12—C11 | 121.6 (2) | H26B—C26—H26C | 109.5 |
C17—C12—C11 | 119.5 (2) | C15—C27—H27A | 109.5 |
C14—C13—C12 | 120.5 (2) | C15—C27—H27B | 109.5 |
C14—C13—H13 | 119.7 | H27A—C27—H27B | 109.5 |
C12—C13—H13 | 119.7 | C15—C27—H27C | 109.5 |
C13—C14—C15 | 120.9 (2) | H27A—C27—H27C | 109.5 |
C13—C14—H14 | 119.5 | H27B—C27—H27C | 109.5 |
C15—C14—H14 | 119.5 | C22—C28—H28A | 109.5 |
C14—C15—C16 | 118.4 (2) | C22—C28—H28B | 109.5 |
C14—C15—C27 | 120.4 (2) | H28A—C28—H28B | 109.5 |
C16—C15—C27 | 121.2 (2) | C22—C28—H28C | 109.5 |
C17—C16—C15 | 121.0 (2) | H28A—C28—H28C | 109.5 |
C17—C16—H16 | 119.5 | H28B—C28—H28C | 109.5 |
C25—O3—C2—C1 | 153.3 (3) | C10—C1—C11—O1 | 67.9 (3) |
C25—O3—C2—C3 | −25.9 (4) | C2—C1—C11—C12 | 76.4 (3) |
C10—C1—C2—O3 | −176.7 (2) | C10—C1—C11—C12 | −112.1 (2) |
C11—C1—C2—O3 | −5.0 (3) | O1—C11—C12—C13 | −179.2 (2) |
C10—C1—C2—C3 | 2.5 (4) | C1—C11—C12—C13 | 0.9 (3) |
C11—C1—C2—C3 | 174.1 (2) | O1—C11—C12—C17 | −0.5 (3) |
O3—C2—C3—C4 | 175.7 (3) | C1—C11—C12—C17 | 179.60 (18) |
C1—C2—C3—C4 | −3.4 (4) | C17—C12—C13—C14 | 0.2 (3) |
C2—C3—C4—C5 | 0.7 (4) | C11—C12—C13—C14 | 178.9 (2) |
C3—C4—C5—C6 | −176.6 (3) | C12—C13—C14—C15 | 0.0 (3) |
C3—C4—C5—C10 | 2.8 (4) | C13—C14—C15—C16 | 0.1 (3) |
C4—C5—C6—C7 | −180.0 (3) | C13—C14—C15—C27 | −179.9 (2) |
C10—C5—C6—C7 | 0.6 (4) | C14—C15—C16—C17 | −0.4 (3) |
C5—C6—C7—C8 | 1.1 (4) | C27—C15—C16—C17 | 179.5 (2) |
C26—O4—C8—C9 | 177.1 (3) | C15—C16—C17—C12 | 0.7 (3) |
C26—O4—C8—C7 | −0.4 (4) | C13—C12—C17—C16 | −0.6 (3) |
C6—C7—C8—O4 | 176.4 (2) | C11—C12—C17—C16 | −179.3 (2) |
C6—C7—C8—C9 | −1.1 (4) | C8—C9—C18—O2 | −104.1 (3) |
O4—C8—C9—C10 | −178.4 (2) | C10—C9—C18—O2 | 67.6 (3) |
C7—C8—C9—C10 | −0.8 (4) | C8—C9—C18—C19 | 76.7 (3) |
O4—C8—C9—C18 | −6.6 (3) | C10—C9—C18—C19 | −111.6 (2) |
C7—C8—C9—C18 | 171.0 (2) | O2—C18—C19—C20 | 176.7 (2) |
C8—C9—C10—C1 | −175.5 (2) | C9—C18—C19—C20 | −4.1 (3) |
C18—C9—C10—C1 | 13.1 (4) | O2—C18—C19—C24 | −5.0 (3) |
C8—C9—C10—C5 | 2.5 (3) | C9—C18—C19—C24 | 174.19 (18) |
C18—C9—C10—C5 | −169.0 (2) | C24—C19—C20—C21 | 0.6 (3) |
C2—C1—C10—C9 | 179.0 (2) | C18—C19—C20—C21 | 178.9 (2) |
C11—C1—C10—C9 | 7.9 (4) | C19—C20—C21—C22 | −0.7 (3) |
C2—C1—C10—C5 | 1.1 (4) | C20—C21—C22—C23 | 0.5 (3) |
C11—C1—C10—C5 | −170.1 (2) | C20—C21—C22—C28 | −179.9 (2) |
C6—C5—C10—C9 | −2.4 (4) | C21—C22—C23—C24 | −0.2 (3) |
C4—C5—C10—C9 | 178.2 (2) | C28—C22—C23—C24 | −179.8 (2) |
C6—C5—C10—C1 | 175.8 (2) | C22—C23—C24—C19 | 0.1 (3) |
C4—C5—C10—C1 | −3.7 (4) | C20—C19—C24—C23 | −0.4 (3) |
C2—C1—C11—O1 | −103.5 (3) | C18—C19—C24—C23 | −178.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O1i | 0.95 | 2.52 | 3.465 (3) | 175 |
C21—H21···O2ii | 0.95 | 2.38 | 3.295 (3) | 162 |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C28H24O4 |
Mr | 424.47 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 193 |
a, b, c (Å) | 20.0334 (3), 13.4311 (2), 7.94771 (10) |
V (Å3) | 2138.49 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.70 |
Crystal size (mm) | 0.60 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.604, 0.873 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33150, 2110, 2041 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.094, 1.17 |
No. of reflections | 2110 |
No. of parameters | 293 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.17 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O1i | 0.95 | 2.52 | 3.465 (3) | 175 |
C21—H21···O2ii | 0.95 | 2.38 | 3.295 (3) | 162 |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1. |
Acknowledgements
The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by The Mukai Science and Technology Foundation, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o329. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o403. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on selective electrophilic aromatic aroylation of the naphthalene core, peri-aroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone [1,8-bis(4-bromobenzoyl)-2,7-dimethoxynaphthalene] (Watanabe et al., 2010a) and (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl) dimethanone [1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene] (Watanabe et al., 2010b). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are oriented in opposite direction. The aromatic rings in the molecule are non-coplanar, resulting in partial disruption of π-conjugation of ring systems. As a part of our continuing studies on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, peri-aroylnaphthalene bearing methyl groups, is discussed in this article.
The molecular structure of the title compound is displayed in Fig 1. Two 4-methylbenzoyl groups are situated in anti orientation and are twisted away from the attached naphthalene ring. The interplanar angle between the best planes of the two phenyl rings is 9.64 (7)°. On the other hand, the two interplanar angles between the best planes of the 4-methylphenyl rings and the naphthalene ring are 71.82 (6) and 71.58 (6)°, respectively. The torsion angles between the carbonyl groups and the naphthalene ring [C10—C1—C11—O1 = 68.1 (2)° and C10—C9—C18—O2 = 67.6 (2)°] are larger than those between the carbonyl groups and 4-methylphenyl groups [O1—C11—C12—C13 = -179.18 (15)° and O2—C18—C19—C20 = 176.67 (15)°]. In the molecular packing, the C—H···O hydrogen interactions between the oxygen atoms of the carbonyl groups and the hydrogen atoms of the phenyl rings are observed along the c axis [C14—H14···O1 = 2.52 Å and C21—H21···O2 = 2.38 Å] (Fig. 2).