organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(pyrimidin-2-yl­sulfanyl)­butane

aDepartment of Chemistry, Government College University, 54000 Lahore, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 October 2010; accepted 12 October 2010; online 20 October 2010)

The –SCH2CH2CH2CH2S– portion of the title compound, C12H14N2S2, adopts an extended zigzag conformation. The angles at the tetra­hedral carbon atoms are marginally increased [113.63 (12)° and 111.38 (17)° for S—C—C and C—C—C respectively] from the idealized tetra­hedral angle. The mol­ecule lies on an inversion center located at the mid-point of the butyl chain. In the crystal, there is a ππ stacking inter­action between inversion-related pyrimidine rings with mean inter­planar spacing of 3.494 (2) Å.

Related literature

For the structure of a silver perchlorate adduct of the title compound see: Wang & Zheng (2007[Wang, S.-L. & Zheng, Y. (2007). Acta Cryst. E63, m2528.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N4S2

  • Mr = 278.39

  • Triclinic, [P \overline 1]

  • a = 5.5025 (1) Å

  • b = 7.6617 (1) Å

  • c = 8.3598 (2) Å

  • α = 86.915 (1)°

  • β = 87.253 (1)°

  • γ = 75.853 (1)°

  • V = 341.03 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.10 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.849, Tmax = 1.000

  • 5571 measured reflections

  • 1524 independent reflections

  • 1384 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.115

  • S = 1.05

  • 1524 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The bis(arylthio)alkane ligands are excellent 'flexible' ligands for binding to silver(I) compounds. The title ligand (Scheme I) has been used in the synthesis of a silver perchlorate adduct; the ligand binds through its nitrogen donor sites (Wang & Zheng, 2007). The ligand itself exists as a centrosymmetric compound (Fig. 1) with an inversion center located at the mid-point of the butyl chain. The –SCH2CH2CH2CH2S– portion of the molecule of C12H14N2S2 adopts an extended zigzag conformation, and the angles at the tetrahedral C atoms are marginally increased from the idealized 109.5 ° (113.62 (12)° and 111.38 (17)° for S—C—C and C—C—C respectively).

Related literature top

For the structure of a silver perchlorate adduct, see: Wang & Zheng (2007).

Experimental top

To the ethanol mixture (50 ml) of 2-mercaptopyrimidine (2 g, 17.8 mmol) and sodium bicarbonate (1.8 g, 21.4 mmol) was added 1,4-dichlorobutane (1.13 g, 8.92 mmol). The mixture was heated for 6 h and the progress of the reaction was monitored by TLC (chloroform: ethyl acetate 9:1). The mixture was filtered and the solvent was allowed to evaporate. The colorless crystals that were isolated were collected and washed with hexane; yield 82%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Structure description top

The bis(arylthio)alkane ligands are excellent 'flexible' ligands for binding to silver(I) compounds. The title ligand (Scheme I) has been used in the synthesis of a silver perchlorate adduct; the ligand binds through its nitrogen donor sites (Wang & Zheng, 2007). The ligand itself exists as a centrosymmetric compound (Fig. 1) with an inversion center located at the mid-point of the butyl chain. The –SCH2CH2CH2CH2S– portion of the molecule of C12H14N2S2 adopts an extended zigzag conformation, and the angles at the tetrahedral C atoms are marginally increased from the idealized 109.5 ° (113.62 (12)° and 111.38 (17)° for S—C—C and C—C—C respectively).

For the structure of a silver perchlorate adduct, see: Wang & Zheng (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H14N2S2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies about a center-of-inversion.
1,4-Bis(pyrimidin-2-ylsulfanyl)butane top
Crystal data top
C12H14N4S2Z = 1
Mr = 278.39F(000) = 146
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5025 (1) ÅCell parameters from 3569 reflections
b = 7.6617 (1) Åθ = 2.4–28.3°
c = 8.3598 (2) ŵ = 0.38 mm1
α = 86.915 (1)°T = 293 K
β = 87.253 (1)°Prism, pale yellow
γ = 75.853 (1)°0.35 × 0.20 × 0.10 mm
V = 341.03 (1) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
1524 independent reflections
Radiation source: fine-focus sealed tube1384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 2.7°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.849, Tmax = 1.000l = 1010
5571 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.0791P]
where P = (Fo2 + 2Fc2)/3
1524 reflections(Δ/σ)max = 0.001
82 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H14N4S2γ = 75.853 (1)°
Mr = 278.39V = 341.03 (1) Å3
Triclinic, P1Z = 1
a = 5.5025 (1) ÅMo Kα radiation
b = 7.6617 (1) ŵ = 0.38 mm1
c = 8.3598 (2) ÅT = 293 K
α = 86.915 (1)°0.35 × 0.20 × 0.10 mm
β = 87.253 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
1524 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1384 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 1.000Rint = 0.025
5571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
1524 reflectionsΔρmin = 0.23 e Å3
82 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00757 (8)0.83807 (5)0.36197 (5)0.0497 (2)
N10.2131 (3)0.68013 (19)0.09155 (18)0.0464 (3)
N20.2078 (3)0.8589 (2)0.09199 (19)0.0505 (4)
C10.3698 (3)0.5370 (2)0.46719 (19)0.0437 (4)
H1A0.35220.47130.37420.052*
H1B0.24440.51910.54790.052*
C20.3247 (3)0.7362 (2)0.4204 (2)0.0469 (4)
H2A0.43950.75160.33210.056*
H2B0.36220.79890.51030.056*
C30.0099 (3)0.78350 (19)0.16033 (19)0.0396 (3)
C40.1936 (3)0.6518 (3)0.0632 (2)0.0533 (4)
H40.33050.58000.11710.064*
C50.0195 (4)0.7241 (3)0.1458 (2)0.0541 (4)
H50.02890.70420.25390.065*
C60.2187 (3)0.8274 (3)0.0615 (2)0.0539 (4)
H60.36670.87700.11400.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0475 (3)0.0499 (3)0.0434 (3)0.00536 (19)0.00486 (18)0.00421 (18)
N10.0412 (7)0.0462 (7)0.0472 (8)0.0017 (6)0.0016 (6)0.0023 (6)
N20.0391 (7)0.0549 (8)0.0517 (9)0.0004 (6)0.0063 (6)0.0012 (6)
C10.0419 (8)0.0443 (8)0.0420 (8)0.0037 (6)0.0078 (7)0.0004 (6)
C20.0467 (8)0.0440 (8)0.0470 (9)0.0035 (7)0.0116 (7)0.0020 (7)
C30.0384 (7)0.0352 (7)0.0428 (8)0.0048 (6)0.0032 (6)0.0013 (6)
C40.0500 (10)0.0566 (10)0.0485 (10)0.0038 (8)0.0045 (7)0.0067 (8)
C50.0603 (11)0.0596 (10)0.0419 (9)0.0130 (8)0.0047 (8)0.0021 (7)
C60.0474 (9)0.0605 (10)0.0514 (10)0.0075 (8)0.0134 (8)0.0033 (8)
Geometric parameters (Å, º) top
S1—C31.7571 (17)C1—H1B0.9700
S1—C21.8076 (16)C2—H2A0.9700
N1—C31.328 (2)C2—H2B0.9700
N1—C41.337 (2)C4—C51.370 (3)
N2—C61.325 (2)C4—H40.9300
N2—C31.337 (2)C5—C61.374 (3)
C1—C21.517 (2)C5—H50.9300
C1—C1i1.524 (3)C6—H60.9300
C1—H1A0.9700
C3—S1—C2103.41 (8)H2A—C2—H2B107.7
C3—N1—C4115.09 (14)N1—C3—N2127.07 (15)
C6—N2—C3115.78 (15)N1—C3—S1120.73 (12)
C2—C1—C1i111.38 (17)N2—C3—S1112.20 (12)
C2—C1—H1A109.4N1—C4—C5122.81 (16)
C1i—C1—H1A109.4N1—C4—H4118.6
C2—C1—H1B109.4C5—C4—H4118.6
C1i—C1—H1B109.4C4—C5—C6116.83 (17)
H1A—C1—H1B108.0C4—C5—H5121.6
C1—C2—S1113.63 (12)C6—C5—H5121.6
C1—C2—H2A108.8N2—C6—C5122.41 (16)
S1—C2—H2A108.8N2—C6—H6118.8
C1—C2—H2B108.8C5—C6—H6118.8
S1—C2—H2B108.8
C1i—C1—C2—S1173.69 (15)C2—S1—C3—N13.47 (15)
C3—S1—C2—C182.52 (14)C2—S1—C3—N2175.76 (12)
C4—N1—C3—N20.6 (3)C3—N1—C4—C50.2 (3)
C4—N1—C3—S1178.46 (12)N1—C4—C5—C60.8 (3)
C6—N2—C3—N10.7 (3)C3—N2—C6—C50.1 (3)
C6—N2—C3—S1178.47 (13)C4—C5—C6—N20.8 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H14N4S2
Mr278.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.5025 (1), 7.6617 (1), 8.3598 (2)
α, β, γ (°)86.915 (1), 87.253 (1), 75.853 (1)
V3)341.03 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.35 × 0.20 × 0.10
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.849, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5571, 1524, 1384
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.115, 1.05
No. of reflections1524
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Higher Education Commission of Pakistan, GC University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-L. & Zheng, Y. (2007). Acta Cryst. E63, m2528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds