organic compounds
(E)-N′-(2,3,4-Trihydroxybenzylidene)isonicotinohydrazide dihydrate
aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title isoniazid derivative, C13H11N3O4·2H2O, the Schiff base molecule exists in an E configuration with respect to the acyclic C=N bond. An intramolecular O—H⋯N hydrogen bond forms a six-membered ring, producing an S(6) ring motif. The essentially planar pyridine ring [maximum deviation = 0.0119 (8) Å] is inclined at a dihedral angle of 7.30 (4)° with respect to the benzene ring. In the crystal, intermolecular O—H⋯N, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the molecules into two-dimensional arrays lying parallel to the (10) plane. These arrays are further interconnected into a three-dimensional extended network via O—H⋯O and C—H⋯O hydrogen bonds. A weak intermolecular π–π interaction [centroid-to-centroid distance = 3.5627 (5) Å] is also observed.
Related literature
For general background to and applications of the title isoniazid derivative, see: Janin (2007); Kahwa et al. (1986); Maccari et al. (2005); Slayden & Barry (2000). For the preparation of the title compound, see: Lourenço et al. (2008). For closely related isoniazid structures, see: Naveenkumar et al. (2009, 2010a,b,c); Shi (2005). For hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810043965/rz2508sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810043965/rz2508Isup2.hkl
The isoniazid derivative was prepared following the procedure by Lourenço et al., 2008. The title compound was prepared by the reaction between 2,3,4-trihydroxybenzaldehyde (1.0 eq) with isoniazid (1.0 eq) in ethanol/water. After stirring for 1–3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and ethyl ether, afforded the pure derivative. The brown-coloured single crystals suitable for X-ray analysis were obtained by recrystallization with ethanol.
All H atoms were located from difference Fourier map and allowed to refine freely with N—H = 0.890 (16), O—H = 0.834 (16)–0.926 (18) and C—H = 0.921 (14)–0.988 (13) Å.
In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000).
have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of our current work on synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the of the title compound.The title isoniazid derivative comprises of a (E)-N'-(2,3,4-trihydroxybenzylidene)isonicotinohydrazide molecule and two water molecules of crystallization (Fig. 1). The Schiff base molecule exists in an E configuration with respect to the acyclic C7═N3 bond [C7═N3 = 1.2921 (10) Å; torsion angle N2—N3—C7—C8 = 178.85 (7)°]. An intramolecular O2—H1O2···N3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motifs (Bernstein et al., 1995). The pyridine ring with atom sequence C1/C2/N1/C3/C4/C5 is essentially planar, with a maximum deviation of 0.0119 (8) Å at atom C5. There is a slight inclination between the pyridine and benzene rings, as indicated by the dihedral angle formed of 7.30 (4)°. All bond lengths and angles are consistent to those observed in closely related isoniazid structures (Naveenkumar et al., 2009, 2010a,b,c; Shi, 2005).
In the crystal packing, water molecules play an extensive part in forming the hydrogen-bonded structure. Neighbouring molecules are linked into two-dimensional arrays parallel to the (101) plane (Fig. 2) by intermolecular O3—H1O3···N1, O4—H1O4···O1W, N2—H1N2···O2W, O1W—H1W1···O1, O2W—H2W2···O4 and C7—H7A···O2W hydrogen bonds (Table 1). These arrays are further interconnected by intermolecular O1W—H2W1···O2W, O2W—H1W2···O2 and C4—H4A···O1 hydrogen bonds (Table 1) into a three-dimensional extended structure (Fig. 3). Weak intermolecular π–π aromatic stacking interactions involving the pyridine and benzene rings [Cg1···Cg2 = 3.5627 (5) Å, symmetry code: -x + 2, -y + 1, -z + 2] stabilizing the crystal structure.
For general background to and applications of the title isoniazid derivative, see: Janin (2007); Kahwa et al. (1986); Maccari et al. (2005); Slayden & Barry (2000). For the preparation of the title compound, see: Lourenço et al. (2008). For closely related isoniazid structures, see: Naveenkumar et al. (2009, 2010a,b,c); Shi (2005). For hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title isoniazid derivative, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line. | |
Fig. 2. Part of the crystal structure, viewed along the [101] direction, showing a hydrogen-bonded 2D array. Intermolecular hydrogen bonds are shown as dashed lines. | |
Fig. 3. The crystal structure of the title derivative, viewed along the b axis, showing the 2D arrays being linked into a 3D extended network. Intermolecular hydrogen bonds are shown as dashed lines. |
C13H11N3O4·2H2O | F(000) = 648 |
Mr = 309.28 | Dx = 1.534 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7532 reflections |
a = 6.9504 (5) Å | θ = 2.9–34.5° |
b = 19.9077 (13) Å | µ = 0.12 mm−1 |
c = 10.0930 (7) Å | T = 100 K |
β = 106.416 (2)° | Plate, brown |
V = 1339.60 (16) Å3 | 0.35 × 0.18 × 0.09 mm |
Z = 4 |
Bruker APEXII DUO CCD area-detector diffractometer | 5656 independent reflections |
Radiation source: fine-focus sealed tube | 4668 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
φ and ω scans | θmax = 34.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.959, Tmax = 0.989 | k = −31→31 |
21520 measured reflections | l = −16→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0651P)2 + 0.2238P] where P = (Fo2 + 2Fc2)/3 |
5656 reflections | (Δ/σ)max = 0.001 |
259 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C13H11N3O4·2H2O | V = 1339.60 (16) Å3 |
Mr = 309.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.9504 (5) Å | µ = 0.12 mm−1 |
b = 19.9077 (13) Å | T = 100 K |
c = 10.0930 (7) Å | 0.35 × 0.18 × 0.09 mm |
β = 106.416 (2)° |
Bruker APEXII DUO CCD area-detector diffractometer | 5656 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4668 reflections with I > 2σ(I) |
Tmin = 0.959, Tmax = 0.989 | Rint = 0.031 |
21520 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.113 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.50 e Å−3 |
5656 reflections | Δρmin = −0.26 e Å−3 |
259 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.01608 (10) | 0.51301 (3) | 1.29712 (6) | 0.01639 (12) | |
O2 | 0.67646 (10) | 0.62875 (3) | 0.99244 (6) | 0.01723 (13) | |
O3 | 0.48628 (10) | 0.72385 (3) | 0.80029 (6) | 0.01782 (13) | |
O4 | 0.29346 (10) | 0.68845 (3) | 0.54245 (6) | 0.01504 (12) | |
N1 | 1.23127 (11) | 0.28684 (4) | 1.50037 (7) | 0.01687 (14) | |
N2 | 0.86827 (10) | 0.44582 (3) | 1.11516 (6) | 0.01251 (12) | |
N3 | 0.78423 (10) | 0.50085 (3) | 1.03671 (7) | 0.01281 (12) | |
C1 | 1.05976 (13) | 0.33042 (4) | 1.27584 (8) | 0.01494 (14) | |
C2 | 1.14706 (13) | 0.27828 (4) | 1.36485 (8) | 0.01646 (15) | |
C3 | 1.22531 (14) | 0.34874 (4) | 1.55190 (8) | 0.01760 (15) | |
C4 | 1.14150 (13) | 0.40355 (4) | 1.47177 (8) | 0.01499 (14) | |
C5 | 1.05899 (11) | 0.39475 (4) | 1.32999 (7) | 0.01165 (13) | |
C6 | 0.97938 (12) | 0.45639 (4) | 1.24693 (7) | 0.01180 (13) | |
C7 | 0.68132 (12) | 0.48824 (4) | 0.91109 (8) | 0.01247 (13) | |
C8 | 0.58229 (11) | 0.54102 (3) | 0.81860 (7) | 0.01120 (13) | |
C9 | 0.58328 (11) | 0.60855 (4) | 0.85957 (7) | 0.01149 (13) | |
C10 | 0.48749 (12) | 0.65802 (4) | 0.76616 (7) | 0.01176 (13) | |
C11 | 0.38589 (11) | 0.63908 (4) | 0.63033 (7) | 0.01128 (13) | |
C12 | 0.38052 (12) | 0.57192 (4) | 0.58943 (7) | 0.01307 (13) | |
C13 | 0.47908 (12) | 0.52365 (4) | 0.68254 (7) | 0.01302 (13) | |
O1W | 0.13931 (13) | 0.64535 (3) | 0.28519 (7) | 0.02289 (15) | |
O2W | 0.30816 (11) | 0.67273 (3) | 0.05904 (7) | 0.01959 (13) | |
H1O2 | 0.732 (3) | 0.5922 (9) | 1.0365 (17) | 0.041 (4)* | |
H1O3 | 0.582 (3) | 0.7387 (9) | 0.8694 (18) | 0.045 (5)* | |
H1O4 | 0.247 (3) | 0.6695 (9) | 0.4591 (19) | 0.045 (5)* | |
H1N2 | 0.836 (2) | 0.4055 (8) | 1.0773 (15) | 0.034 (4)* | |
H1A | 1.001 (2) | 0.3205 (7) | 1.1767 (14) | 0.023 (3)* | |
H2A | 1.146 (2) | 0.2338 (7) | 1.3281 (14) | 0.023 (3)* | |
H3A | 1.282 (2) | 0.3542 (6) | 1.6527 (14) | 0.021 (3)* | |
H4A | 1.135 (2) | 0.4445 (7) | 1.5129 (14) | 0.028 (3)* | |
H7A | 0.665 (2) | 0.4412 (7) | 0.8788 (15) | 0.029 (3)* | |
H12A | 0.306 (2) | 0.5605 (7) | 0.4985 (13) | 0.020 (3)* | |
H13A | 0.479 (2) | 0.4751 (7) | 0.6573 (14) | 0.021 (3)* | |
H1W1 | 0.102 (3) | 0.6006 (9) | 0.2736 (17) | 0.043 (4)* | |
H2W1 | 0.206 (3) | 0.6521 (8) | 0.2292 (17) | 0.038 (4)* | |
H1W2 | 0.425 (2) | 0.6675 (7) | 0.0549 (15) | 0.030 (4)* | |
H2W2 | 0.309 (3) | 0.7161 (10) | 0.0608 (19) | 0.049 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0222 (3) | 0.0097 (2) | 0.0151 (2) | −0.0004 (2) | 0.0018 (2) | −0.00091 (18) |
O2 | 0.0237 (3) | 0.0122 (2) | 0.0108 (2) | 0.0021 (2) | −0.0033 (2) | −0.00140 (18) |
O3 | 0.0247 (3) | 0.0080 (2) | 0.0154 (2) | 0.0006 (2) | −0.0029 (2) | −0.00218 (18) |
O4 | 0.0206 (3) | 0.0099 (2) | 0.0112 (2) | 0.00154 (19) | −0.0010 (2) | 0.00164 (17) |
N1 | 0.0185 (3) | 0.0132 (3) | 0.0162 (3) | 0.0008 (2) | 0.0005 (2) | 0.0031 (2) |
N2 | 0.0154 (3) | 0.0084 (2) | 0.0115 (2) | 0.0012 (2) | 0.0002 (2) | 0.00147 (19) |
N3 | 0.0139 (3) | 0.0104 (2) | 0.0126 (3) | 0.0018 (2) | 0.0014 (2) | 0.00298 (19) |
C1 | 0.0188 (4) | 0.0110 (3) | 0.0133 (3) | 0.0015 (2) | 0.0017 (3) | 0.0002 (2) |
C2 | 0.0195 (4) | 0.0109 (3) | 0.0169 (3) | 0.0021 (3) | 0.0018 (3) | 0.0012 (2) |
C3 | 0.0218 (4) | 0.0148 (3) | 0.0129 (3) | 0.0008 (3) | −0.0006 (3) | 0.0023 (2) |
C4 | 0.0179 (4) | 0.0121 (3) | 0.0125 (3) | 0.0008 (2) | 0.0003 (2) | 0.0006 (2) |
C5 | 0.0121 (3) | 0.0097 (3) | 0.0121 (3) | 0.0005 (2) | 0.0017 (2) | 0.0012 (2) |
C6 | 0.0127 (3) | 0.0103 (3) | 0.0115 (3) | 0.0006 (2) | 0.0021 (2) | 0.0009 (2) |
C7 | 0.0146 (3) | 0.0095 (3) | 0.0126 (3) | 0.0010 (2) | 0.0026 (2) | 0.0011 (2) |
C8 | 0.0128 (3) | 0.0088 (3) | 0.0110 (3) | 0.0007 (2) | 0.0018 (2) | 0.0008 (2) |
C9 | 0.0129 (3) | 0.0097 (3) | 0.0101 (3) | 0.0001 (2) | 0.0004 (2) | −0.0001 (2) |
C10 | 0.0137 (3) | 0.0084 (3) | 0.0116 (3) | −0.0001 (2) | 0.0010 (2) | 0.0001 (2) |
C11 | 0.0129 (3) | 0.0093 (3) | 0.0106 (3) | 0.0002 (2) | 0.0015 (2) | 0.0010 (2) |
C12 | 0.0163 (3) | 0.0102 (3) | 0.0110 (3) | 0.0005 (2) | 0.0011 (2) | −0.0003 (2) |
C13 | 0.0165 (3) | 0.0093 (3) | 0.0117 (3) | 0.0006 (2) | 0.0015 (2) | −0.0004 (2) |
O1W | 0.0385 (4) | 0.0160 (3) | 0.0140 (3) | −0.0034 (3) | 0.0071 (3) | −0.0002 (2) |
O2W | 0.0281 (4) | 0.0104 (2) | 0.0201 (3) | −0.0019 (2) | 0.0065 (2) | −0.0011 (2) |
O1—C6 | 1.2326 (9) | C3—H3A | 0.988 (13) |
O2—C9 | 1.3743 (9) | C4—C5 | 1.3941 (10) |
O2—H1O2 | 0.883 (18) | C4—H4A | 0.921 (14) |
O3—C10 | 1.3557 (9) | C5—C6 | 1.5009 (10) |
O3—H1O3 | 0.868 (18) | C7—C8 | 1.4442 (10) |
O4—C11 | 1.3577 (9) | C7—H7A | 0.987 (15) |
O4—H1O4 | 0.895 (18) | C8—C13 | 1.4011 (10) |
N1—C2 | 1.3380 (10) | C8—C9 | 1.4060 (10) |
N1—C3 | 1.3428 (11) | C9—C10 | 1.3954 (10) |
N2—C6 | 1.3524 (9) | C10—C11 | 1.4047 (10) |
N2—N3 | 1.3809 (9) | C11—C12 | 1.3965 (10) |
N2—H1N2 | 0.890 (16) | C12—C13 | 1.3827 (10) |
N3—C7 | 1.2921 (10) | C12—H12A | 0.946 (13) |
C1—C5 | 1.3929 (10) | C13—H13A | 1.000 (13) |
C1—C2 | 1.3945 (11) | O1W—H1W1 | 0.926 (18) |
C1—H1A | 0.988 (13) | O1W—H2W1 | 0.838 (18) |
C2—H2A | 0.960 (14) | O2W—H1W2 | 0.834 (16) |
C3—C4 | 1.3847 (11) | O2W—H2W2 | 0.863 (19) |
C9—O2—H1O2 | 105.5 (11) | N2—C6—C5 | 116.10 (6) |
C10—O3—H1O3 | 118.3 (12) | N3—C7—C8 | 121.57 (7) |
C11—O4—H1O4 | 106.7 (12) | N3—C7—H7A | 119.2 (8) |
C2—N1—C3 | 117.41 (7) | C8—C7—H7A | 119.2 (8) |
C6—N2—N3 | 118.17 (6) | C13—C8—C9 | 118.86 (6) |
C6—N2—H1N2 | 124.5 (10) | C13—C8—C7 | 118.20 (6) |
N3—N2—H1N2 | 117.1 (10) | C9—C8—C7 | 122.94 (6) |
C7—N3—N2 | 115.84 (6) | O2—C9—C10 | 117.13 (6) |
C5—C1—C2 | 118.73 (7) | O2—C9—C8 | 121.91 (6) |
C5—C1—H1A | 122.3 (8) | C10—C9—C8 | 120.96 (6) |
C2—C1—H1A | 118.9 (8) | O3—C10—C9 | 123.14 (6) |
N1—C2—C1 | 123.29 (7) | O3—C10—C11 | 118.03 (6) |
N1—C2—H2A | 117.8 (8) | C9—C10—C11 | 118.83 (6) |
C1—C2—H2A | 118.9 (8) | O4—C11—C12 | 122.13 (6) |
N1—C3—C4 | 123.43 (7) | O4—C11—C10 | 117.24 (6) |
N1—C3—H3A | 117.0 (8) | C12—C11—C10 | 120.63 (6) |
C4—C3—H3A | 119.6 (8) | C13—C12—C11 | 119.85 (7) |
C3—C4—C5 | 118.92 (7) | C13—C12—H12A | 121.6 (8) |
C3—C4—H4A | 119.9 (9) | C11—C12—H12A | 118.6 (8) |
C5—C4—H4A | 121.1 (9) | C12—C13—C8 | 120.85 (7) |
C1—C5—C4 | 118.18 (7) | C12—C13—H13A | 122.3 (8) |
C1—C5—C6 | 125.05 (7) | C8—C13—H13A | 116.8 (8) |
C4—C5—C6 | 116.76 (6) | H1W1—O1W—H2W1 | 105.0 (15) |
O1—C6—N2 | 122.73 (7) | H1W2—O2W—H2W2 | 97.2 (15) |
O1—C6—C5 | 121.16 (7) | ||
C6—N2—N3—C7 | 179.26 (7) | C13—C8—C9—O2 | 178.05 (7) |
C3—N1—C2—C1 | 1.77 (14) | C7—C8—C9—O2 | −1.23 (12) |
C5—C1—C2—N1 | −0.22 (14) | C13—C8—C9—C10 | −1.49 (12) |
C2—N1—C3—C4 | −1.57 (14) | C7—C8—C9—C10 | 179.23 (7) |
N1—C3—C4—C5 | −0.19 (14) | O2—C9—C10—O3 | 1.24 (12) |
C2—C1—C5—C4 | −1.57 (12) | C8—C9—C10—O3 | −179.21 (8) |
C2—C1—C5—C6 | 177.13 (8) | O2—C9—C10—C11 | −178.29 (7) |
C3—C4—C5—C1 | 1.76 (12) | C8—C9—C10—C11 | 1.26 (12) |
C3—C4—C5—C6 | −177.05 (8) | O3—C10—C11—O4 | 0.08 (11) |
N3—N2—C6—O1 | −3.53 (12) | C9—C10—C11—O4 | 179.64 (7) |
N3—N2—C6—C5 | 177.10 (7) | O3—C10—C11—C12 | −179.47 (8) |
C1—C5—C6—O1 | −166.63 (8) | C9—C10—C11—C12 | 0.09 (12) |
C4—C5—C6—O1 | 12.09 (12) | O4—C11—C12—C13 | 179.27 (7) |
C1—C5—C6—N2 | 12.74 (12) | C10—C11—C12—C13 | −1.20 (12) |
C4—C5—C6—N2 | −168.54 (7) | C11—C12—C13—C8 | 0.97 (12) |
N2—N3—C7—C8 | 178.85 (7) | C9—C8—C13—C12 | 0.35 (12) |
N3—C7—C8—C13 | 177.91 (8) | C7—C8—C13—C12 | 179.67 (7) |
N3—C7—C8—C9 | −2.81 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···N3 | 0.883 (18) | 1.854 (18) | 2.6561 (9) | 150.1 (16) |
O3—H1O3···N1i | 0.869 (19) | 1.835 (19) | 2.6911 (10) | 168.4 (18) |
O4—H1O4···O1W | 0.895 (18) | 1.769 (18) | 2.6559 (9) | 170.5 (18) |
N2—H1N2···O2Wii | 0.890 (16) | 2.132 (15) | 2.9910 (9) | 162.1 (14) |
O1W—H1W1···O1iii | 0.926 (18) | 1.880 (18) | 2.7834 (9) | 164.6 (16) |
O1W—H2W1···O2W | 0.837 (19) | 2.077 (18) | 2.8980 (11) | 167.0 (18) |
O2W—H1W2···O2iv | 0.831 (15) | 2.161 (15) | 2.9570 (11) | 160.3 (14) |
O2W—H2W2···O4v | 0.86 (2) | 1.91 (2) | 2.7688 (9) | 173.3 (19) |
C4—H4A···O1vi | 0.922 (14) | 2.575 (14) | 3.2930 (11) | 135.1 (11) |
C7—H7A···O2Wii | 0.988 (14) | 2.347 (14) | 3.2176 (10) | 146.7 (12) |
Symmetry codes: (i) −x+2, y+1/2, −z+5/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z−1; (iv) x, y, z−1; (v) x, −y+3/2, z−1/2; (vi) −x+2, −y+1, −z+3. |
Experimental details
Crystal data | |
Chemical formula | C13H11N3O4·2H2O |
Mr | 309.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 6.9504 (5), 19.9077 (13), 10.0930 (7) |
β (°) | 106.416 (2) |
V (Å3) | 1339.60 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.35 × 0.18 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.959, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21520, 5656, 4668 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.798 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.113, 1.03 |
No. of reflections | 5656 |
No. of parameters | 259 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.50, −0.26 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···N3 | 0.883 (18) | 1.854 (18) | 2.6561 (9) | 150.1 (16) |
O3—H1O3···N1i | 0.869 (19) | 1.835 (19) | 2.6911 (10) | 168.4 (18) |
O4—H1O4···O1W | 0.895 (18) | 1.769 (18) | 2.6559 (9) | 170.5 (18) |
N2—H1N2···O2Wii | 0.890 (16) | 2.132 (15) | 2.9910 (9) | 162.1 (14) |
O1W—H1W1···O1iii | 0.926 (18) | 1.880 (18) | 2.7834 (9) | 164.6 (16) |
O1W—H2W1···O2W | 0.837 (19) | 2.077 (18) | 2.8980 (11) | 167.0 (18) |
O2W—H1W2···O2iv | 0.831 (15) | 2.161 (15) | 2.9570 (11) | 160.3 (14) |
O2W—H2W2···O4v | 0.86 (2) | 1.91 (2) | 2.7688 (9) | 173.3 (19) |
C4—H4A···O1vi | 0.922 (14) | 2.575 (14) | 3.2930 (11) | 135.1 (11) |
C7—H7A···O2Wii | 0.988 (14) | 2.347 (14) | 3.2176 (10) | 146.7 (12) |
Symmetry codes: (i) −x+2, y+1/2, −z+5/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z−1; (iv) x, y, z−1; (v) x, −y+3/2, z−1/2; (vi) −x+2, −y+1, −z+3. |
Acknowledgements
This research was supported by Universiti Sains Malaysia (USM) under a University Research Grant (No. 1001/PFARMASI/815005). JHG and HKF thank USM for a Research University Grant (No. 1001/PFIZIK/811160). HSNK is grateful to USM for a USM Fellowship.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513. Web of Science CrossRef PubMed CAS Google Scholar
Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185. CrossRef CAS Web of Science Google Scholar
Lourenço, M. C. da S., Ferreira, M. de L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347. Web of Science PubMed Google Scholar
Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513. Web of Science CrossRef PubMed CAS Google Scholar
Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2010a). Acta Cryst. E66, o1202–o1203. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o291. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o579. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, J. (2005). Acta Cryst. E61, o3933–o3934. Web of Science CSD CrossRef IUCr Journals Google Scholar
Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of our current work on synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound.
The title isoniazid derivative comprises of a (E)-N'-(2,3,4-trihydroxybenzylidene)isonicotinohydrazide molecule and two water molecules of crystallization (Fig. 1). The Schiff base molecule exists in an E configuration with respect to the acyclic C7═N3 bond [C7═N3 = 1.2921 (10) Å; torsion angle N2—N3—C7—C8 = 178.85 (7)°]. An intramolecular O2—H1O2···N3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motifs (Bernstein et al., 1995). The pyridine ring with atom sequence C1/C2/N1/C3/C4/C5 is essentially planar, with a maximum deviation of 0.0119 (8) Å at atom C5. There is a slight inclination between the pyridine and benzene rings, as indicated by the dihedral angle formed of 7.30 (4)°. All bond lengths and angles are consistent to those observed in closely related isoniazid structures (Naveenkumar et al., 2009, 2010a,b,c; Shi, 2005).
In the crystal packing, water molecules play an extensive part in forming the hydrogen-bonded structure. Neighbouring molecules are linked into two-dimensional arrays parallel to the (101) plane (Fig. 2) by intermolecular O3—H1O3···N1, O4—H1O4···O1W, N2—H1N2···O2W, O1W—H1W1···O1, O2W—H2W2···O4 and C7—H7A···O2W hydrogen bonds (Table 1). These arrays are further interconnected by intermolecular O1W—H2W1···O2W, O2W—H1W2···O2 and C4—H4A···O1 hydrogen bonds (Table 1) into a three-dimensional extended structure (Fig. 3). Weak intermolecular π–π aromatic stacking interactions involving the pyridine and benzene rings [Cg1···Cg2 = 3.5627 (5) Å, symmetry code: -x + 2, -y + 1, -z + 2] stabilizing the crystal structure.