organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Dimeth­­oxy-1,8-bis­­(4-phen­­oxy­benzo­yl)naphthalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 1 October 2010; accepted 18 October 2010; online 23 October 2010)

In the title mol­ecule {systematic name: [2,7-dimethoxy-8-(4-phenoxybenzoyl)naphthalen-1-yl](4-phenoxyphenyl)methan­one}, C38H28O6, the 4-phen­oxy­benzoyl units adopt a syn orientation with respect to the naphthalene ring system. The inter­nal benzene rings, A and B, make dihedral angles of 86.72 (5) and 79.22 (5)° with the naphthalene ring system. The two terminal benzene rings, C and D, of the 4-phen­oxy­benzoyl groups are twisted with respect to benzene rings A and B, with dihedral angles of A/C = 62.72 (8) and B/D = 87.61 (6)°. In the crystal, H atoms in the naphthalene system make two types of inter­molecular C—H⋯O inter­actions with the carbonyl O atom and the phenyl etheral O atom of neighbouring mol­ecules. Mol­ecules are further linked by C—H⋯π inter­actions involving a H atom of terminal benzene ring D and the π-system of the inter­nal benzene ring A, forming dimers centered about an inversion center.

Related literature

For the syntheses of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.], 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Mitsui et al. (2010[Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Watanabe et al. (2010a[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o403.],b[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010b). Acta Cryst. E66, o329.]).

[Scheme 1]

Experimental

Crystal data
  • C38H28O6

  • Mr = 580.60

  • Monoclinic, P 21 /n

  • a = 12.0733 (4) Å

  • b = 12.4806 (4) Å

  • c = 19.8094 (6) Å

  • β = 91.115 (2)°

  • V = 2984.36 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 193 K

  • 0.50 × 0.30 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.720, Tmax = 0.816

  • 54106 measured reflections

  • 5458 independent reflections

  • 4862 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.04

  • 5458 reflections

  • 400 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of ring A (C12–C17).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.44 3.1479 (17) 131
C6—H6⋯O6ii 0.95 2.56 3.3293 (16) 138
C35—H35⋯Cg3iii 0.95 2.78 3.6528 (17) 153
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+2.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we reported on the crystal structures of three such compounds, 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a), and 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but a little tilted toward the exo sides against the naphthalene ring. In addition, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalen-2-ol ethanol monosolvate (Mitsui et al., 2010), which was formed by selective demethylation at the 2-methoxy group of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), solely has two syn-oriented chlorobenzoyl groups bonding to the naphthalene ring system, and in this molecule the 2-hydroxy group forms intramolecular hydrogen bonds with the carbonyl oxygen atom. As a part of our continuous studies on the molecular structures of this kind of homologous molecules, the crystal structure of the title compound, 1,8-bis(4-phenoxybenzoyl)-2,7-dimethoxynaphthalene, synthesized via nucleophilic aromatic substitution of (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010b), is reported herein.

In the title molecule, illustrated in Fig. 1, two intervenient benzene rings, A (C12–C17) and B (C25–C30), are in a syn orientation with respect to the naphthalene ring system (C1–C10), and make dihedral angles of 86.72 (5) and 79.22 (5)°, respectively, with the naphthalene ring system. Furthermore, the dihedral angles between benzene rings A and B and the terminal benzene rings C (C18–C23) and D (C31–C36)] are A/C = 62.72 (8), B/D = 87.61 (6)°. Benzene rings A and B are configurated almost parallel to one another, the dihedral angle A/B being only 12.20 (6)°. On the other hand, benzene rings C and D are far from being parallel to one another with a dihedral angle C/D of 64.10 (8)°.

In the crystal, hydrogen atoms in the naphthalene ring form two types of intermolecular C—H···O interactions with the carbonyl oxygen atom (C3—H3···O2i = 2.44 Å; see Fig. 2 and Table 1) and the phenyl ethereal oxygen atom (C6—H6···O6ii = 2.56 Å; see Fig. 2 and Table 1). Moreover, molecules are linked by C—H···π interactions forming dimeric pairs. The terminal benzene ring D acts as a hydrogen-bond donor and the π system of the intervenient benzene ring A (with centroid Cg3) of an adjacent molecule acts as an acceptor (C35—H35···Cg3iii = 2.78 Å; see Fig. 3 and Table 1).

Related literature top

For the syntheses of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Nakaema et al. (2007, 2008); Mitsui et al. (2010); Muto et al. (2010); Watanabe et al. (2010a,b).

Experimental top

In a 10 ml one-necked flask equipped with a condenser, (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (1.0 mmol, 432.4 mg), phenol (4.0 mmol, 376.4 mg), potassium carbonate (8.0 mmol, 1.10 g) and freshly distilled DMAc (2.0 ml) were stirred at 423 K for 6 h. This mixture was then added dropwise into methanol (20 ml) resulting in the formation of a pale yellow precipitate. The crude material was purified by column chromatography (silica gel, hexane: AcOEt= 2:1) to give the title compound (yield 104 mg, 18%). The isolated product was recrystallized from acetone to give block-like yellow single-crystals of the title compound. M.p. 441.6–444.4 K; 1HNMR δ (300 MHz, CDCl3): 3.72 (6H, s), 6.82–6.94 (4H, m), 7.09 (4H, d, J=7.5 Hz), 7.14–7.21 (4H, m), 7.36 (4H, t, J=8.4 Hz), 7.55–7.78 (4H,m), 7.92 (2H, d, J=7.5 Hz) p.p.m.; 13CNMR δ (75 MHz, CDCl3): 56.442, 111.128, 116.575, 120.274, 121.440, 124.345, 125.415, 129.467, 129.850, 131.360, 131.876, 133.424, 155.405, 155.998, 161.474, 195.057 p.p.m.; IR (KBr): 1673 (C=O), 1267 (Ar—O—Me) cm-1; HRMS (m/z): [M + H]+ calcd for C38H29O6, 581.1964 found, 581.82.

Refinement top

All H atoms were found in a difference Fourier map and were subsequently refined as riding atoms: C—H = 0.95 (aromatic) and 0.98 (methyl) Å, with Uiso(H) = 1.2 Ueq(C).

Structure description top

In the course of our studies on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we reported on the crystal structures of three such compounds, 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a), and 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but a little tilted toward the exo sides against the naphthalene ring. In addition, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalen-2-ol ethanol monosolvate (Mitsui et al., 2010), which was formed by selective demethylation at the 2-methoxy group of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), solely has two syn-oriented chlorobenzoyl groups bonding to the naphthalene ring system, and in this molecule the 2-hydroxy group forms intramolecular hydrogen bonds with the carbonyl oxygen atom. As a part of our continuous studies on the molecular structures of this kind of homologous molecules, the crystal structure of the title compound, 1,8-bis(4-phenoxybenzoyl)-2,7-dimethoxynaphthalene, synthesized via nucleophilic aromatic substitution of (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010b), is reported herein.

In the title molecule, illustrated in Fig. 1, two intervenient benzene rings, A (C12–C17) and B (C25–C30), are in a syn orientation with respect to the naphthalene ring system (C1–C10), and make dihedral angles of 86.72 (5) and 79.22 (5)°, respectively, with the naphthalene ring system. Furthermore, the dihedral angles between benzene rings A and B and the terminal benzene rings C (C18–C23) and D (C31–C36)] are A/C = 62.72 (8), B/D = 87.61 (6)°. Benzene rings A and B are configurated almost parallel to one another, the dihedral angle A/B being only 12.20 (6)°. On the other hand, benzene rings C and D are far from being parallel to one another with a dihedral angle C/D of 64.10 (8)°.

In the crystal, hydrogen atoms in the naphthalene ring form two types of intermolecular C—H···O interactions with the carbonyl oxygen atom (C3—H3···O2i = 2.44 Å; see Fig. 2 and Table 1) and the phenyl ethereal oxygen atom (C6—H6···O6ii = 2.56 Å; see Fig. 2 and Table 1). Moreover, molecules are linked by C—H···π interactions forming dimeric pairs. The terminal benzene ring D acts as a hydrogen-bond donor and the π system of the intervenient benzene ring A (with centroid Cg3) of an adjacent molecule acts as an acceptor (C35—H35···Cg3iii = 2.78 Å; see Fig. 3 and Table 1).

For the syntheses of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Nakaema et al. (2007, 2008); Mitsui et al. (2010); Muto et al. (2010); Watanabe et al. (2010a,b).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial crystal packing diagram of the title compound. The intermolecular C—H···O interactions are shown as double dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. The dimeric pairs of the title molecule formed via C—H···π interactions, shown as double dashed lines (see Table 1 for details).
[2,7-dimethoxy-8-(4-phenoxybenzoyl)naphthalen-1-yl](4-phenoxyphenyl)methanone top
Crystal data top
C38H28O6F(000) = 1216
Mr = 580.60Dx = 1.292 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 37382 reflections
a = 12.0733 (4) Åθ = 3.5–68.3°
b = 12.4806 (4) ŵ = 0.71 mm1
c = 19.8094 (6) ÅT = 193 K
β = 91.115 (2)°Block, yellow
V = 2984.36 (15) Å30.50 × 0.30 × 0.30 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5458 independent reflections
Radiation source: rotating anode4862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.00 pixels mm-1θmax = 68.3°, θmin = 4.2°
ω scansh = 1414
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1515
Tmin = 0.720, Tmax = 0.816l = 2323
54106 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.5589P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5458 reflectionsΔρmax = 0.16 e Å3
400 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00337 (19)
Crystal data top
C38H28O6V = 2984.36 (15) Å3
Mr = 580.60Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.0733 (4) ŵ = 0.71 mm1
b = 12.4806 (4) ÅT = 193 K
c = 19.8094 (6) Å0.50 × 0.30 × 0.30 mm
β = 91.115 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5458 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4862 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.816Rint = 0.038
54106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
5458 reflectionsΔρmin = 0.13 e Å3
400 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.96053 (8)0.06684 (7)0.81736 (5)0.0546 (2)
O20.77701 (9)0.00287 (7)0.90988 (5)0.0586 (3)
O30.97983 (8)0.27793 (8)0.73618 (5)0.0584 (3)
O40.51924 (8)0.06935 (9)0.91941 (5)0.0615 (3)
O51.08799 (8)0.36651 (9)1.06682 (5)0.0620 (3)
O60.79851 (8)0.28865 (8)1.16825 (4)0.0556 (3)
C10.83140 (10)0.20657 (9)0.79447 (6)0.0406 (3)
C20.86712 (11)0.27048 (10)0.74219 (6)0.0471 (3)
C30.79253 (12)0.32401 (11)0.69846 (7)0.0522 (3)
H30.81890.36920.66370.063*
C40.68212 (12)0.30989 (11)0.70687 (6)0.0510 (3)
H40.63140.34470.67690.061*
C50.64066 (10)0.24509 (10)0.75887 (6)0.0447 (3)
C60.52610 (11)0.22967 (12)0.76518 (7)0.0542 (3)
H60.47720.26130.73280.065*
C70.48293 (11)0.17099 (13)0.81612 (7)0.0579 (4)
H70.40530.16000.81860.069*
C80.55556 (11)0.12678 (11)0.86504 (7)0.0493 (3)
C90.66870 (10)0.13650 (9)0.86044 (6)0.0408 (3)
C100.71611 (10)0.19418 (9)0.80557 (6)0.0394 (3)
C110.92353 (10)0.15289 (9)0.83493 (6)0.0405 (3)
C120.96973 (9)0.21139 (9)0.89451 (6)0.0388 (3)
C130.92476 (9)0.30783 (9)0.91570 (6)0.0407 (3)
H130.86470.33880.89090.049*
C140.96670 (10)0.35918 (10)0.97258 (6)0.0446 (3)
H140.93540.42500.98700.054*
C151.05418 (10)0.31414 (11)1.00819 (6)0.0478 (3)
C161.10038 (11)0.21766 (11)0.98832 (7)0.0535 (3)
H161.16000.18671.01350.064*
C171.05836 (11)0.16749 (10)0.93132 (7)0.0477 (3)
H171.09030.10200.91690.057*
C181.19700 (12)0.39961 (11)1.07515 (7)0.0522 (3)
C191.27352 (14)0.39668 (15)1.02490 (8)0.0715 (4)
H191.25350.37090.98120.086*
C201.38027 (17)0.4318 (2)1.03878 (11)0.0967 (7)
H201.43430.42831.00460.116*
C211.40910 (18)0.47185 (18)1.10142 (11)0.0946 (6)
H211.48250.49621.11050.113*
C221.33065 (17)0.47633 (14)1.15093 (9)0.0758 (5)
H221.35010.50421.19420.091*
C231.22396 (14)0.44059 (11)1.13820 (7)0.0602 (4)
H231.16990.44411.17230.072*
C240.73586 (10)0.08501 (9)0.91703 (6)0.0412 (3)
C250.74864 (9)0.14370 (9)0.98181 (6)0.0388 (3)
C260.69332 (10)0.23842 (10)0.99588 (6)0.0423 (3)
H260.64420.26850.96290.051*
C270.70890 (10)0.28958 (11)1.05731 (6)0.0458 (3)
H270.67060.35421.06670.055*
C280.78094 (10)0.24554 (10)1.10496 (6)0.0441 (3)
C290.83819 (11)0.15178 (10)1.09148 (6)0.0487 (3)
H290.88800.12241.12420.058*
C300.82200 (11)0.10197 (10)1.03023 (6)0.0461 (3)
H300.86140.03801.02070.055*
C310.77444 (11)0.39731 (11)1.17747 (6)0.0477 (3)
C320.68244 (12)0.42435 (12)1.21339 (7)0.0569 (4)
H320.63440.37051.23000.068*
C330.66113 (13)0.53178 (13)1.22497 (8)0.0651 (4)
H330.59740.55211.24930.078*
C340.73172 (13)0.60918 (13)1.20139 (8)0.0637 (4)
H340.71690.68271.20970.076*
C350.82377 (13)0.58022 (13)1.16573 (8)0.0625 (4)
H350.87220.63391.14940.075*
C360.84602 (12)0.47327 (12)1.15348 (7)0.0561 (3)
H360.90950.45281.12900.067*
C371.02198 (14)0.34475 (15)0.68454 (9)0.0741 (5)
H37A1.10310.34390.68670.089*
H37B0.99550.41820.69090.089*
H37C0.99640.31820.64040.089*
C380.40630 (15)0.0786 (2)0.93694 (12)0.1008 (7)
H38A0.39480.04370.98060.121*
H38B0.35980.04390.90230.121*
H38C0.38630.15450.94010.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0598 (6)0.0431 (5)0.0604 (6)0.0113 (4)0.0108 (4)0.0065 (4)
O20.0817 (7)0.0420 (5)0.0514 (5)0.0130 (5)0.0147 (5)0.0058 (4)
O30.0499 (5)0.0617 (6)0.0636 (6)0.0012 (4)0.0039 (4)0.0206 (5)
O40.0488 (5)0.0698 (7)0.0658 (6)0.0101 (5)0.0012 (4)0.0149 (5)
O50.0549 (6)0.0761 (7)0.0546 (6)0.0006 (5)0.0087 (4)0.0167 (5)
O60.0719 (6)0.0533 (6)0.0411 (5)0.0076 (5)0.0123 (4)0.0064 (4)
C10.0459 (6)0.0357 (6)0.0399 (6)0.0017 (5)0.0052 (5)0.0007 (5)
C20.0492 (7)0.0438 (7)0.0481 (7)0.0032 (5)0.0007 (5)0.0045 (5)
C30.0610 (8)0.0491 (8)0.0462 (7)0.0042 (6)0.0033 (6)0.0116 (6)
C40.0593 (8)0.0491 (7)0.0440 (7)0.0091 (6)0.0120 (6)0.0050 (6)
C50.0491 (7)0.0430 (7)0.0414 (6)0.0049 (5)0.0106 (5)0.0018 (5)
C60.0494 (7)0.0581 (8)0.0545 (8)0.0052 (6)0.0163 (6)0.0021 (6)
C70.0407 (7)0.0666 (9)0.0660 (9)0.0031 (6)0.0106 (6)0.0031 (7)
C80.0481 (7)0.0477 (7)0.0519 (7)0.0055 (6)0.0038 (6)0.0015 (6)
C90.0445 (6)0.0374 (6)0.0400 (6)0.0013 (5)0.0073 (5)0.0025 (5)
C100.0452 (6)0.0351 (6)0.0377 (6)0.0013 (5)0.0081 (5)0.0038 (5)
C110.0411 (6)0.0356 (6)0.0448 (6)0.0009 (5)0.0015 (5)0.0042 (5)
C120.0381 (6)0.0349 (6)0.0433 (6)0.0012 (5)0.0016 (5)0.0054 (5)
C130.0369 (6)0.0359 (6)0.0492 (7)0.0001 (5)0.0035 (5)0.0058 (5)
C140.0423 (6)0.0381 (6)0.0535 (7)0.0013 (5)0.0008 (5)0.0017 (5)
C150.0455 (7)0.0513 (7)0.0465 (7)0.0035 (6)0.0041 (5)0.0029 (6)
C160.0509 (7)0.0552 (8)0.0537 (8)0.0085 (6)0.0150 (6)0.0020 (6)
C170.0497 (7)0.0411 (7)0.0521 (7)0.0088 (5)0.0073 (6)0.0027 (5)
C180.0560 (8)0.0464 (7)0.0534 (7)0.0011 (6)0.0158 (6)0.0014 (6)
C190.0657 (10)0.0865 (12)0.0619 (9)0.0152 (8)0.0117 (7)0.0112 (8)
C200.0701 (11)0.1271 (18)0.0927 (14)0.0304 (12)0.0038 (10)0.0231 (13)
C210.0769 (12)0.1078 (16)0.0979 (15)0.0283 (11)0.0281 (11)0.0112 (12)
C220.0966 (13)0.0629 (10)0.0665 (10)0.0146 (9)0.0363 (10)0.0002 (8)
C230.0814 (10)0.0475 (8)0.0508 (8)0.0021 (7)0.0179 (7)0.0023 (6)
C240.0459 (6)0.0358 (6)0.0418 (6)0.0033 (5)0.0029 (5)0.0021 (5)
C250.0422 (6)0.0348 (6)0.0392 (6)0.0049 (5)0.0026 (5)0.0039 (5)
C260.0403 (6)0.0453 (7)0.0411 (6)0.0026 (5)0.0060 (5)0.0010 (5)
C270.0447 (6)0.0462 (7)0.0464 (7)0.0065 (5)0.0040 (5)0.0048 (5)
C280.0478 (7)0.0461 (7)0.0382 (6)0.0042 (5)0.0034 (5)0.0021 (5)
C290.0580 (8)0.0434 (7)0.0441 (7)0.0031 (6)0.0138 (6)0.0043 (5)
C300.0567 (7)0.0348 (6)0.0463 (7)0.0020 (5)0.0076 (5)0.0034 (5)
C310.0519 (7)0.0522 (8)0.0387 (6)0.0001 (6)0.0077 (5)0.0075 (5)
C320.0554 (8)0.0596 (9)0.0558 (8)0.0123 (7)0.0045 (6)0.0102 (7)
C330.0582 (8)0.0671 (10)0.0706 (10)0.0053 (7)0.0151 (7)0.0195 (8)
C340.0663 (9)0.0533 (8)0.0719 (10)0.0056 (7)0.0077 (7)0.0161 (7)
C350.0629 (9)0.0602 (9)0.0646 (9)0.0141 (7)0.0077 (7)0.0052 (7)
C360.0517 (8)0.0661 (9)0.0506 (7)0.0023 (7)0.0063 (6)0.0075 (7)
C370.0649 (9)0.0804 (11)0.0774 (11)0.0013 (8)0.0147 (8)0.0301 (9)
C380.0584 (10)0.1314 (19)0.1134 (16)0.0008 (11)0.0215 (10)0.0495 (14)
Geometric parameters (Å, º) top
O1—C111.2167 (14)C18—C231.3826 (19)
O2—C241.2135 (15)C19—C201.384 (2)
O3—C21.3714 (16)C19—H190.9500
O3—C371.4217 (17)C20—C211.376 (3)
O4—C81.3727 (16)C20—H200.9500
O4—C381.418 (2)C21—C221.378 (3)
O5—C181.3863 (17)C21—H210.9500
O5—C151.3871 (15)C22—C231.382 (2)
O6—C281.3771 (14)C22—H220.9500
O6—C311.3996 (16)C23—H230.9500
C1—C21.3829 (17)C24—C251.4832 (16)
C1—C101.4219 (17)C25—C261.3887 (17)
C1—C111.5145 (16)C25—C301.3938 (16)
C2—C31.4061 (18)C26—C271.3839 (17)
C3—C41.358 (2)C26—H260.9500
C3—H30.9500C27—C281.3847 (17)
C4—C51.4092 (19)C27—H270.9500
C4—H40.9500C28—C291.3877 (18)
C5—C61.4045 (19)C29—C301.3738 (18)
C5—C101.4339 (16)C29—H290.9500
C6—C71.359 (2)C30—H300.9500
C6—H60.9500C31—C321.3729 (19)
C7—C81.4070 (19)C31—C361.374 (2)
C7—H70.9500C32—C331.385 (2)
C8—C91.3761 (17)C32—H320.9500
C9—C101.4323 (17)C33—C341.376 (2)
C9—C241.5139 (16)C33—H330.9500
C11—C121.4871 (16)C34—C351.377 (2)
C12—C131.3887 (17)C34—H340.9500
C12—C171.3952 (16)C35—C361.384 (2)
C13—C141.3838 (17)C35—H350.9500
C13—H130.9500C36—H360.9500
C14—C151.3783 (18)C37—H37A0.9800
C14—H140.9500C37—H37B0.9800
C15—C161.3873 (19)C37—H37C0.9800
C16—C171.3792 (18)C38—H38A0.9800
C16—H160.9500C38—H38B0.9800
C17—H170.9500C38—H38C0.9800
C18—C191.372 (2)
C2—O3—C37118.15 (11)C21—C20—H20119.6
C8—O4—C38118.24 (12)C19—C20—H20119.6
C18—O5—C15120.22 (11)C20—C21—C22119.42 (18)
C28—O6—C31117.95 (10)C20—C21—H21120.3
C2—C1—C10119.93 (11)C22—C21—H21120.3
C2—C1—C11114.52 (11)C21—C22—C23120.55 (16)
C10—C1—C11125.54 (10)C21—C22—H22119.7
O3—C2—C1115.37 (11)C23—C22—H22119.7
O3—C2—C3122.61 (12)C22—C23—C18119.11 (17)
C1—C2—C3122.01 (12)C22—C23—H23120.4
C4—C3—C2118.77 (12)C18—C23—H23120.4
C4—C3—H3120.6O2—C24—C25120.76 (11)
C2—C3—H3120.6O2—C24—C9120.79 (11)
C3—C4—C5121.84 (12)C25—C24—C9118.44 (10)
C3—C4—H4119.1C26—C25—C30118.80 (11)
C5—C4—H4119.1C26—C25—C24123.49 (10)
C6—C5—C4120.53 (11)C30—C25—C24117.70 (11)
C6—C5—C10119.75 (12)C27—C26—C25120.77 (11)
C4—C5—C10119.71 (12)C27—C26—H26119.6
C7—C6—C5122.17 (12)C25—C26—H26119.6
C7—C6—H6118.9C26—C27—C28119.28 (12)
C5—C6—H6118.9C26—C27—H27120.4
C6—C7—C8118.68 (13)C28—C27—H27120.4
C6—C7—H7120.7O6—C28—C27123.30 (11)
C8—C7—H7120.7O6—C28—C29115.86 (11)
O4—C8—C9115.52 (11)C27—C28—C29120.81 (11)
O4—C8—C7122.74 (12)C30—C29—C28119.26 (11)
C9—C8—C7121.73 (12)C30—C29—H29120.4
C8—C9—C10120.43 (11)C28—C29—H29120.4
C8—C9—C24115.57 (11)C29—C30—C25121.08 (12)
C10—C9—C24124.00 (10)C29—C30—H30119.5
C1—C10—C9125.36 (10)C25—C30—H30119.5
C1—C10—C5117.62 (11)C32—C31—C36122.03 (13)
C9—C10—C5117.00 (11)C32—C31—O6118.55 (13)
O1—C11—C12121.75 (11)C36—C31—O6119.34 (12)
O1—C11—C1120.60 (11)C31—C32—C33118.59 (14)
C12—C11—C1117.59 (10)C31—C32—H32120.7
C13—C12—C17118.87 (11)C33—C32—H32120.7
C13—C12—C11121.50 (10)C34—C33—C32120.34 (14)
C17—C12—C11119.60 (11)C34—C33—H33119.8
C14—C13—C12120.57 (11)C32—C33—H33119.8
C14—C13—H13119.7C35—C34—C33120.08 (15)
C12—C13—H13119.7C35—C34—H34120.0
C15—C14—C13119.50 (12)C33—C34—H34120.0
C15—C14—H14120.2C34—C35—C36120.31 (14)
C13—C14—H14120.2C34—C35—H35119.8
C14—C15—O5116.51 (12)C36—C35—H35119.8
C14—C15—C16121.14 (12)C31—C36—C35118.64 (13)
O5—C15—C16122.21 (12)C31—C36—H36120.7
C17—C16—C15118.87 (12)C35—C36—H36120.7
C17—C16—H16120.6O3—C37—H37A109.5
C15—C16—H16120.6O3—C37—H37B109.5
C16—C17—C12121.04 (12)H37A—C37—H37B109.5
C16—C17—H17119.5O3—C37—H37C109.5
C12—C17—H17119.5H37A—C37—H37C109.5
C19—C18—C23121.03 (14)H37B—C37—H37C109.5
C19—C18—O5123.84 (12)O4—C38—H38A109.5
C23—C18—O5115.09 (13)O4—C38—H38B109.5
C18—C19—C20119.02 (16)H38A—C38—H38B109.5
C18—C19—H19120.5O4—C38—H38C109.5
C20—C19—H19120.5H38A—C38—H38C109.5
C21—C20—C19120.8 (2)H38B—C38—H38C109.5
C37—O3—C2—C1178.33 (13)C18—O5—C15—C14123.87 (13)
C37—O3—C2—C31.6 (2)C18—O5—C15—C1660.33 (18)
C10—C1—C2—O3179.42 (11)C14—C15—C16—C170.9 (2)
C11—C1—C2—O31.79 (16)O5—C15—C16—C17176.54 (12)
C10—C1—C2—C30.50 (19)C15—C16—C17—C121.0 (2)
C11—C1—C2—C3178.30 (12)C13—C12—C17—C160.78 (19)
O3—C2—C3—C4178.22 (12)C11—C12—C17—C16177.51 (12)
C1—C2—C3—C41.9 (2)C15—O5—C18—C198.8 (2)
C2—C3—C4—C51.3 (2)C15—O5—C18—C23173.45 (12)
C3—C4—C5—C6178.26 (13)C23—C18—C19—C202.4 (3)
C3—C4—C5—C101.5 (2)O5—C18—C19—C20179.97 (17)
C4—C5—C6—C7177.53 (14)C18—C19—C20—C211.7 (3)
C10—C5—C6—C72.7 (2)C19—C20—C21—C220.3 (4)
C5—C6—C7—C81.7 (2)C20—C21—C22—C230.3 (3)
C38—O4—C8—C9164.34 (16)C21—C22—C23—C180.4 (3)
C38—O4—C8—C717.1 (2)C19—C18—C23—C221.7 (2)
C6—C7—C8—O4177.86 (13)O5—C18—C23—C22179.52 (13)
C6—C7—C8—C93.7 (2)C8—C9—C24—O298.63 (15)
O4—C8—C9—C10179.63 (11)C10—C9—C24—O282.66 (16)
C7—C8—C9—C101.0 (2)C8—C9—C24—C2580.37 (14)
O4—C8—C9—C241.60 (17)C10—C9—C24—C2598.34 (14)
C7—C8—C9—C24179.81 (12)O2—C24—C25—C26172.30 (12)
C2—C1—C10—C9175.50 (12)C9—C24—C25—C266.70 (17)
C11—C1—C10—C95.84 (19)O2—C24—C25—C309.04 (18)
C2—C1—C10—C53.26 (17)C9—C24—C25—C30171.96 (11)
C11—C1—C10—C5175.39 (11)C30—C25—C26—C271.23 (18)
C8—C9—C10—C1177.92 (12)C24—C25—C26—C27179.88 (11)
C24—C9—C10—C13.42 (19)C25—C26—C27—C280.25 (19)
C8—C9—C10—C53.31 (17)C31—O6—C28—C2722.47 (18)
C24—C9—C10—C5175.35 (11)C31—O6—C28—C29159.22 (12)
C6—C5—C10—C1176.01 (11)C26—C27—C28—O6177.55 (11)
C4—C5—C10—C13.76 (17)C26—C27—C28—C290.68 (19)
C6—C5—C10—C95.12 (17)O6—C28—C29—C30177.76 (12)
C4—C5—C10—C9175.10 (11)C27—C28—C29—C300.6 (2)
C2—C1—C11—O187.22 (15)C28—C29—C30—C250.4 (2)
C10—C1—C11—O191.50 (16)C26—C25—C30—C291.33 (19)
C2—C1—C11—C1290.10 (13)C24—C25—C30—C29179.95 (12)
C10—C1—C11—C1291.18 (14)C28—O6—C31—C32107.42 (14)
O1—C11—C12—C13177.79 (11)C28—O6—C31—C3675.86 (15)
C1—C11—C12—C134.92 (16)C36—C31—C32—C330.7 (2)
O1—C11—C12—C170.44 (18)O6—C31—C32—C33177.33 (13)
C1—C11—C12—C17176.85 (11)C31—C32—C33—C340.7 (2)
C17—C12—C13—C140.39 (18)C32—C33—C34—C350.4 (3)
C11—C12—C13—C14177.86 (11)C33—C34—C35—C360.1 (2)
C12—C13—C14—C150.28 (18)C32—C31—C36—C350.4 (2)
C13—C14—C15—O5176.41 (11)O6—C31—C36—C35177.04 (12)
C13—C14—C15—C160.6 (2)C34—C35—C36—C310.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of ring A (C12–C17).
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.443.1479 (17)131
C6—H6···O6ii0.952.563.3293 (16)138
C35—H35···Cg3iii0.952.783.6528 (17)153
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC38H28O6
Mr580.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)12.0733 (4), 12.4806 (4), 19.8094 (6)
β (°) 91.115 (2)
V3)2984.36 (15)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.50 × 0.30 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.720, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
54106, 5458, 4862
Rint0.038
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.04
No. of reflections5458
No. of parameters400
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of ring A (C12–C17).
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.443.1479 (17)131
C6—H6···O6ii0.952.563.3293 (16)138
C35—H35···Cg3iii0.952.783.6528 (17)153
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+2, y+1, z+2.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010b). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds