metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(N,N′-di­methyl­thio­urea-κS)nickel(II) nitrate

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, bDivision of Science and Technology, University of Education, Township, Lahore, Pakistan, and cInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: saeed_a786@hotmail.com

(Received 3 October 2010; accepted 7 October 2010; online 13 October 2010)

The title complex salt, [Ni(C3H8N2S)6](NO3)2, consists of an [Ni(Dmtu)6]2+ (Dmtu is N,N′-dimethyl­thio­urea) dication and two nitrate counter-anions. The NiII atom (site symmetry [\overline{3}]) is coordinated by the S atoms of six Dmtu ligands within a slightly distorted octa­hedral environment. The crystal structure is characterized by weak intra­molecular N—H⋯S inter­actions and by inter­molecular N—H⋯O hydrogen bonds involving the nitrate anion (site symmetry 3.). These inter­molecular inter­actions lead to the formation of two-dimensional networks lying parallel to the ab plane. The networks are linked via non-classical inter­molecular C—H⋯O hydrogen bonds, forming a three-dimensional arrangement.

Related literature

For background to nickel(II) complexes of thio­urea and its derivatives, see: Ambujam et al. (2006[Ambujam, K., Thomas, P. C., Aruna, S., Anand, D. P. & Sagayaraj, P. (2006). Cryst. Res. Technol. 41, 1082-1088.]); Basso et al. (1969[Basso, S., Costamagna, J. A. & Levitus, R. (1969). J. Inorg. Nucl. Chem. 31, 1797-1805.]); Bentley & Waters (1974[Bentley, G. A. & Waters, J. M. (1974). J. Inorg. Nucl. Chem. 36, 2247-2252.]); Chiesi et al. (1971[Chiesi, A., Mangia, A., Nardelli, M. & Pelizzi, G. (1971). J. Chem. Crystallogr. 1, 285-289.]); Crane & Herod (2004[Crane, J. D. & Herod, A. (2004). Inorg. Chem. Commun. 7, 38-41.]); Eaton & Zaw (1975[Eaton, D. R. & Zaw, K. (1975). Can. J. Chem. 53, 633-643.]); El-Bahy et al. (2003[El-Bahy, G. M. S., El-Sayed, B. A. & Shabana, A. A. (2003). Vib. Spectrosc. 31, 101-107.]); Figgis & Reynolds (1986[Figgis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125-134.]); Monim-ul-Mehboob et al. (2010[Monim-ul-Mehboob, M., Akkurt, M., Khan, I. U., Sharif, S., Asif, I. & Ahmad, S. (2010). Acta Cryst. E66, i57-i58.]); Sonar et al. (1979[Sonar, M. H., Hiremath, A. C. & Murty, A. S. (1979). Monatsh. Chem. 110, 167-175.]); Weininger et al. (1969[Weininger, M. S., O'Connor, J. E. & Amma, E. L. (1969). Inorg. Chem. 8, 424-431.]); Weininger & Amma (1976[Weininger, M. S. & Amma, E. L. (1976). J. Coord. Chem. 5, 91-99.]). For the crystal structures of similar nickel(II) complexes, see: Bentley & Waters (1974[Bentley, G. A. & Waters, J. M. (1974). J. Inorg. Nucl. Chem. 36, 2247-2252.]); El-Bahy et al. (2003[El-Bahy, G. M. S., El-Sayed, B. A. & Shabana, A. A. (2003). Vib. Spectrosc. 31, 101-107.]); Monim-ul-Mehboob et al. (2010[Monim-ul-Mehboob, M., Akkurt, M., Khan, I. U., Sharif, S., Asif, I. & Ahmad, S. (2010). Acta Cryst. E66, i57-i58.]); Weininger et al. (1969[Weininger, M. S., O'Connor, J. E. & Amma, E. L. (1969). Inorg. Chem. 8, 424-431.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H8N2S)6](NO3)2

  • Mr = 807.77

  • Trigonal, [R \overline 3c ]

  • a = 13.7166 (10) Å

  • c = 35.332 (3) Å

  • V = 5756.9 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 223 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: multi-scan (MULscanABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.963, Tmax = 1.000

  • 3491 measured reflections

  • 1199 independent reflections

  • 851 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.056

  • S = 1.00

  • 1199 reflections

  • 79 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.86 (2) 2.520 (19) 3.367 (2) 168.6 (17)
N2—H2N⋯O1ii 0.83 (2) 2.14 (2) 2.947 (3) 163.4 (18)
C3—H3B⋯O1iii 0.97 2.41 3.180 (3) 136
Symmetry codes: (i) [x-y+{\script{1\over 3}}, -y+{\script{2\over 3}}, -z+{\script{1\over 6}}]; (ii) -x+y, -x, z; (iii) y, -x+y, -z.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Several studies have been focused on the synthesis and structural characterization of nickel(II) complexes with thiourea type ligands. These studies showed that nickel(II) can adopt a variety of coordination geometries (octahedral, tetragonal, square-planar and tetrahedral) both in the solid state and in solution, which were prepared by varying the ligands or the anions (Ambujam et al., 2006; Bentley et al., 1974; Chiesi et al., 1971; Eaton & Zaw, 1975; El-Bahy et al., 2003; Figgis & Reynolds, 1986; Monim-ul-Mehboob et al., 2010; Sonar et al., 1979; Weininger et al. 1969, Weininger & Amma, 1976). When the anion is chloride, bromide or iodide, the predominant coordination about the nickel(II) atom in the crystalline solid state is tetragonal with the halide anions in the apical positions, leading to [NiL4]X2 complexes (Ambujam et al., 2006; Chiesi et al., 1971; Crane et al., 2004; Figgis & Reynolds, 1986; Weininger & Amma, 1976), although [NiL6]X2 complexes are also formed (El-Bahy et al., 2003; Weininger et al., 1969). The formation (in the solid state) of the octahedral species NiL62+ is ascribed to crystal packing forces and extensive hydrogen bonding (Ambujam et al., 2006; El-Bahy et al., 2003; Monim-ul-Mehboob et al., 2010; Weininger et al., 1969). The coordination of nickel(II) in nitrate and the perchlorate salts is generally homoleptic octahedral in the solid state (Bentley et al., 1974; Monim-ul-Mehboob et al., 2010), but also can give such species as [NiL2(NO3)2] (Basso et al., 1969). We have recently reported on the crystal structure of a thiourea (Tu) complex of nickel(II) nitrate, [Ni(Tu)6](NO3)2 (Monim-ul-Mehboob et al., 2010). Herein, we report on the crystal structure of the title nickel(II) nitrate complex of dimethylthiourea, [Ni(Dmtu)6](NO3)2.

The molecular structure of the title complex is illustrated in Fig. 1. It is ionic and consists of a [Ni(Dmtu)6]2+ cationic unit (site symmetry 3) and two nitrate counter ions (site symmetry 3.). Atom Ni1 assumes a slightly distorted octahedral geometry, due to coordination with six sulfur atoms of the Dmtu ligands. In the cation there are weak N—H···S interactions linking adjacent ligand molecules (Table 1). The values of the bond lengths and bond angles observed in the title complex are comparable to those reported for related complexes (Ambujam et al., 2006; El-Bahy et al., 2003; Monim-ul-Mehboob et al., 2010; Weininger et al., 1969). In the only previously reported nickel(II) complex of N,N'-dimethylthiourea, [Ni(Dmtu)4]Br2 (Weininger & Amma, 1976), the nickel(II) atom is 4-coordinate, while in the title complex having the same ligand the nickel(II) atom is 6-coordinate, suggesting that in the presence of nitrate an octahedral coordination is preferred.

In the crystal of the title compound the [Ni(Dmtu)6]+2 cations and the NO3- ions are connected via N—H···O hydrogen bonds (Table 1) to form two-dimensional networks lying parallel to the ab-plane (Fig. 2). These two-dimensional sheets are linked via C—H···O hydrogen bonds (Table 1), resulting in the formation of a three-dimensional network.

Related literature top

For background to nickel(II) complexes of thiourea and its derivatives, see: Ambujam et al. (2006); Basso et al. (1969); Bentley & Waters (1974); Chiesi et al. (1971); Crane & Herod (2004); Eaton & Zaw (1975); El-Bahy et al. (2003); Figgis & Reynolds (1986); Monim-ul-Mehboob et al. (2010); Sonar et al. (1979); Weininger et al. (1969); Weininger & Amma (1976). For the crystal structures of similar nickel(II) complexes, see: Bentley & Waters (1974); El-Bahy et al. (2003); Monim-ul-Mehboob et al. (2010); Weininger et al. (1969).

Experimental top

The title compound was prepared by adding 2 equivalents of N,N'-dimethylthiourea in 15 ml methanol to 0.29 g (1 mmol) of nickel(II) nitrate hexahydrate in 10 ml methanol. After stirring the mixture for 30 min the solution was filtered. The filtrate on slow evaporation yielded pale-green crystals, suitable for X-ray diffraction analysis.

Refinement top

The NH H-atoms were located in difference electron-density maps. In the final cycles of least-squares refinement they was refined with a distance restraint of N—H = 0.87 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.97 Å for CH3 H-atoms, with Uiso(H) = 1.5Ueq (parent C-atom).

Structure description top

Several studies have been focused on the synthesis and structural characterization of nickel(II) complexes with thiourea type ligands. These studies showed that nickel(II) can adopt a variety of coordination geometries (octahedral, tetragonal, square-planar and tetrahedral) both in the solid state and in solution, which were prepared by varying the ligands or the anions (Ambujam et al., 2006; Bentley et al., 1974; Chiesi et al., 1971; Eaton & Zaw, 1975; El-Bahy et al., 2003; Figgis & Reynolds, 1986; Monim-ul-Mehboob et al., 2010; Sonar et al., 1979; Weininger et al. 1969, Weininger & Amma, 1976). When the anion is chloride, bromide or iodide, the predominant coordination about the nickel(II) atom in the crystalline solid state is tetragonal with the halide anions in the apical positions, leading to [NiL4]X2 complexes (Ambujam et al., 2006; Chiesi et al., 1971; Crane et al., 2004; Figgis & Reynolds, 1986; Weininger & Amma, 1976), although [NiL6]X2 complexes are also formed (El-Bahy et al., 2003; Weininger et al., 1969). The formation (in the solid state) of the octahedral species NiL62+ is ascribed to crystal packing forces and extensive hydrogen bonding (Ambujam et al., 2006; El-Bahy et al., 2003; Monim-ul-Mehboob et al., 2010; Weininger et al., 1969). The coordination of nickel(II) in nitrate and the perchlorate salts is generally homoleptic octahedral in the solid state (Bentley et al., 1974; Monim-ul-Mehboob et al., 2010), but also can give such species as [NiL2(NO3)2] (Basso et al., 1969). We have recently reported on the crystal structure of a thiourea (Tu) complex of nickel(II) nitrate, [Ni(Tu)6](NO3)2 (Monim-ul-Mehboob et al., 2010). Herein, we report on the crystal structure of the title nickel(II) nitrate complex of dimethylthiourea, [Ni(Dmtu)6](NO3)2.

The molecular structure of the title complex is illustrated in Fig. 1. It is ionic and consists of a [Ni(Dmtu)6]2+ cationic unit (site symmetry 3) and two nitrate counter ions (site symmetry 3.). Atom Ni1 assumes a slightly distorted octahedral geometry, due to coordination with six sulfur atoms of the Dmtu ligands. In the cation there are weak N—H···S interactions linking adjacent ligand molecules (Table 1). The values of the bond lengths and bond angles observed in the title complex are comparable to those reported for related complexes (Ambujam et al., 2006; El-Bahy et al., 2003; Monim-ul-Mehboob et al., 2010; Weininger et al., 1969). In the only previously reported nickel(II) complex of N,N'-dimethylthiourea, [Ni(Dmtu)4]Br2 (Weininger & Amma, 1976), the nickel(II) atom is 4-coordinate, while in the title complex having the same ligand the nickel(II) atom is 6-coordinate, suggesting that in the presence of nitrate an octahedral coordination is preferred.

In the crystal of the title compound the [Ni(Dmtu)6]+2 cations and the NO3- ions are connected via N—H···O hydrogen bonds (Table 1) to form two-dimensional networks lying parallel to the ab-plane (Fig. 2). These two-dimensional sheets are linked via C—H···O hydrogen bonds (Table 1), resulting in the formation of a three-dimensional network.

For background to nickel(II) complexes of thiourea and its derivatives, see: Ambujam et al. (2006); Basso et al. (1969); Bentley & Waters (1974); Chiesi et al. (1971); Crane & Herod (2004); Eaton & Zaw (1975); El-Bahy et al. (2003); Figgis & Reynolds (1986); Monim-ul-Mehboob et al. (2010); Sonar et al. (1979); Weininger et al. (1969); Weininger & Amma (1976). For the crystal structures of similar nickel(II) complexes, see: Bentley & Waters (1974); El-Bahy et al. (2003); Monim-ul-Mehboob et al. (2010); Weininger et al. (1969).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [Only one of the nitrate anions is shown; Symmetry codes: a = 1 - y,x-y,z; b = 1 - x + y,1 - x,z; c = 1/3 + y,-1/3 + x,1/6 - z; d = 4/3 - x,2/3 - x + y,1/6 - z; e = 1/3 + x-y,2/3 - y,1/6 - z; f = -y,x-y,z; g = -x + y,-x,z].
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis (the N—H···O and N—H···S hydrogen bonds are shown as dashed lines - see Table 1 for details; H-atoms not involved in hydrogen bonding have been omitted for clarity).
Hexakis(N,N'-dimethylthiourea-κS)nickel(II) dinitrate top
Crystal data top
[Ni(C3H8N2S)6](NO3)2Dx = 1.398 Mg m3
Mr = 807.77Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 2717 reflections
Hall symbol: -R 3 2"cθ = 2.9–26.1°
a = 13.7166 (10) ŵ = 0.88 mm1
c = 35.332 (3) ÅT = 223 K
V = 5756.9 (8) Å3Block, pale green
Z = 60.30 × 0.26 × 0.24 mm
F(000) = 2556
Data collection top
Stoe IPDS 2
diffractometer
1199 independent reflections
Radiation source: fine-focus sealed tube851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ + ω scansθmax = 25.6°, θmin = 2.9°
Absorption correction: multi-scan
(MULscanABS; Spek, 2009)
h = 414
Tmin = 0.963, Tmax = 1.000k = 169
3491 measured reflectionsl = 4240
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0271P)2]
where P = (Fo2 + 2Fc2)/3
1199 reflections(Δ/σ)max = 0.001
79 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Ni(C3H8N2S)6](NO3)2Z = 6
Mr = 807.77Mo Kα radiation
Trigonal, R3cµ = 0.88 mm1
a = 13.7166 (10) ÅT = 223 K
c = 35.332 (3) Å0.30 × 0.26 × 0.24 mm
V = 5756.9 (8) Å3
Data collection top
Stoe IPDS 2
diffractometer
1199 independent reflections
Absorption correction: multi-scan
(MULscanABS; Spek, 2009)
851 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 1.000Rint = 0.028
3491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
1199 reflectionsΔρmin = 0.18 e Å3
79 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.666670.333330.083330.0208 (1)
S10.50780 (4)0.25803 (5)0.03726 (1)0.0262 (1)
N10.35924 (14)0.17766 (18)0.09365 (4)0.0319 (5)
N20.29514 (15)0.09027 (15)0.03650 (5)0.0295 (5)
C10.37831 (17)0.16823 (15)0.05723 (5)0.0246 (6)
C20.25557 (19)0.10275 (19)0.11355 (6)0.0399 (7)
C30.3066 (2)0.0703 (2)0.00341 (6)0.0409 (8)
O10.05182 (15)0.10490 (12)0.05290 (4)0.0449 (5)
N30.000000.000000.05255 (7)0.0300 (6)
H1N0.4165 (16)0.2300 (15)0.1053 (5)0.029 (6)*
H2A0.194900.112400.103700.0600*
H2B0.265200.120400.140400.0600*
H2C0.237500.025400.109900.0600*
H2N0.2303 (14)0.0569 (17)0.0455 (5)0.021 (5)*
H3A0.344100.141600.016800.0610*
H3B0.232500.022900.014300.0610*
H3C0.350700.033200.005700.0610*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0195 (2)0.0195 (2)0.0232 (2)0.0098 (1)0.00000.0000
S10.0203 (2)0.0277 (3)0.0272 (2)0.0095 (3)0.0019 (2)0.0009 (3)
N10.0223 (8)0.0328 (11)0.0325 (7)0.0078 (10)0.0009 (6)0.0031 (9)
N20.0180 (9)0.0281 (10)0.0382 (8)0.0084 (8)0.0036 (8)0.0040 (8)
C10.0218 (10)0.0222 (11)0.0336 (9)0.0138 (8)0.0037 (7)0.0011 (7)
C20.0299 (12)0.0453 (15)0.0373 (10)0.0133 (11)0.0033 (9)0.0028 (9)
C30.0376 (14)0.0439 (15)0.0398 (11)0.0193 (12)0.0136 (10)0.0131 (10)
O10.0306 (10)0.0206 (7)0.0794 (10)0.0097 (9)0.0077 (10)0.0079 (7)
N30.0261 (9)0.0261 (9)0.0379 (13)0.0131 (5)0.00000.0000
Geometric parameters (Å, º) top
Ni1—S12.4929 (6)N2—C31.460 (3)
Ni1—S1i2.4929 (7)N2—C11.327 (3)
Ni1—S1ii2.4929 (5)N1—H1N0.86 (2)
Ni1—S1iii2.4929 (5)N2—H2N0.83 (2)
Ni1—S1iv2.4929 (6)C2—H2B0.9700
Ni1—S1v2.4929 (7)C2—H2C0.9700
S1—C11.727 (2)C2—H2A0.9700
O1—N31.2462 (14)C3—H3B0.9700
N1—C11.332 (2)C3—H3C0.9700
N1—C21.453 (3)C3—H3A0.9700
S1—Ni1—S1i81.98 (2)C1—N2—H2N118.9 (13)
S1—Ni1—S1ii81.98 (2)C3—N2—H2N116.8 (13)
S1—Ni1—S1iii99.78 (2)O1—N3—O1vi119.99 (14)
S1—Ni1—S1iv177.39 (2)O1vii—N3—O1vi119.99 (14)
S1—Ni1—S1v96.33 (2)O1—N3—O1vii119.99 (14)
S1i—Ni1—S1ii81.98 (2)N1—C1—N2118.7 (2)
S1i—Ni1—S1iii96.34 (2)S1—C1—N2120.83 (15)
S1i—Ni1—S1iv99.78 (2)S1—C1—N1120.48 (16)
S1i—Ni1—S1v177.40 (2)N1—C2—H2B109.00
S1ii—Ni1—S1iii177.40 (3)H2A—C2—H2C110.00
S1ii—Ni1—S1iv96.33 (2)N1—C2—H2C109.00
S1ii—Ni1—S1v99.78 (2)H2A—C2—H2B110.00
S1iii—Ni1—S1iv81.98 (2)N1—C2—H2A109.00
S1iii—Ni1—S1v81.98 (2)H2B—C2—H2C109.00
S1iv—Ni1—S1v81.97 (2)N2—C3—H3C109.00
Ni1—S1—C1113.77 (7)H3A—C3—H3C109.00
C1—N1—C2124.68 (19)H3B—C3—H3C110.00
C1—N2—C3123.7 (2)H3A—C3—H3B109.00
C1—N1—H1N113.7 (13)N2—C3—H3A110.00
C2—N1—H1N121.5 (13)N2—C3—H3B109.00
S1i—Ni1—S1—C1124.24 (8)Ni1—S1—C1—N2154.41 (17)
S1ii—Ni1—S1—C1152.79 (8)C2—N1—C1—S1176.58 (19)
S1iii—Ni1—S1—C129.15 (8)C2—N1—C1—N24.9 (4)
S1v—Ni1—S1—C153.76 (8)C3—N2—C1—S12.9 (3)
Ni1—S1—C1—N127.1 (2)C3—N2—C1—N1178.6 (2)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) y+1/3, x1/3, z+1/6; (iv) x+4/3, x+y+2/3, z+1/6; (v) xy+1/3, y+2/3, z+1/6; (vi) x+y, x, z; (vii) y, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1v0.86 (2)2.520 (19)3.367 (2)168.6 (17)
N2—H2N···O1vi0.83 (2)2.14 (2)2.947 (3)163.4 (18)
C3—H3B···O1viii0.972.413.180 (3)136
Symmetry codes: (v) xy+1/3, y+2/3, z+1/6; (vi) x+y, x, z; (viii) y, x+y, z.

Experimental details

Crystal data
Chemical formula[Ni(C3H8N2S)6](NO3)2
Mr807.77
Crystal system, space groupTrigonal, R3c
Temperature (K)223
a, c (Å)13.7166 (10), 35.332 (3)
V3)5756.9 (8)
Z6
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerStoe IPDS 2
Absorption correctionMulti-scan
(MULscanABS; Spek, 2009)
Tmin, Tmax0.963, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3491, 1199, 851
Rint0.028
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.056, 1.00
No. of reflections1199
No. of parameters79
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.86 (2)2.520 (19)3.367 (2)168.6 (17)
N2—H2N···O1ii0.83 (2)2.14 (2)2.947 (3)163.4 (18)
C3—H3B···O1iii0.972.413.180 (3)136
Symmetry codes: (i) xy+1/3, y+2/3, z+1/6; (ii) x+y, x, z; (iii) y, x+y, z.
 

Acknowledgements

We thank the staff of the X-ray Application Lab, CSEM, Neuchâtel, for access to the X-ray diffraction equipement.

References

First citationAmbujam, K., Thomas, P. C., Aruna, S., Anand, D. P. & Sagayaraj, P. (2006). Cryst. Res. Technol. 41, 1082–1088.  Web of Science CrossRef CAS Google Scholar
First citationBasso, S., Costamagna, J. A. & Levitus, R. (1969). J. Inorg. Nucl. Chem. 31, 1797–1805.  CrossRef CAS Web of Science Google Scholar
First citationBentley, G. A. & Waters, J. M. (1974). J. Inorg. Nucl. Chem. 36, 2247–2252.  CSD CrossRef CAS Web of Science Google Scholar
First citationChiesi, A., Mangia, A., Nardelli, M. & Pelizzi, G. (1971). J. Chem. Crystallogr. 1, 285–289.  Google Scholar
First citationCrane, J. D. & Herod, A. (2004). Inorg. Chem. Commun. 7, 38–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationEaton, D. R. & Zaw, K. (1975). Can. J. Chem. 53, 633–643.  CrossRef CAS Web of Science Google Scholar
First citationEl-Bahy, G. M. S., El-Sayed, B. A. & Shabana, A. A. (2003). Vib. Spectrosc. 31, 101–107.  Web of Science CrossRef CAS Google Scholar
First citationFiggis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125–134.  CSD CrossRef Web of Science Google Scholar
First citationMonim-ul-Mehboob, M., Akkurt, M., Khan, I. U., Sharif, S., Asif, I. & Ahmad, S. (2010). Acta Cryst. E66, i57–i58.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, M. H., Hiremath, A. C. & Murty, A. S. (1979). Monatsh. Chem. 110, 167–175.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWeininger, M. S. & Amma, E. L. (1976). J. Coord. Chem. 5, 91–99.  CrossRef CAS Web of Science Google Scholar
First citationWeininger, M. S., O'Connor, J. E. & Amma, E. L. (1969). Inorg. Chem. 8, 424–431.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds