metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­{1-[(1H-1,2,3-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole}sulfato­zinc(II) dihydrate

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: yanghuaixia888@163.com

(Received 13 October 2010; accepted 24 October 2010; online 30 October 2010)

In the title complex, [Zn(SO4)(C9H8N6)(H2O)4]·2H2O, the ZnII ion is six-coordinated by one N atom from a 1-[(1H-1,2,3-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole ligand and five O atoms from one monodentate sulfate anion and four water mol­ecules in a distorted octa­hedral geometry. The sulfate tetra­hedron is rotationally disordered over two positions in a 0.618 (19):0.382 (19) ratio. In the crystal, adjacent mol­ecules are linked through O—H⋯O and O—H⋯N hydrogen bonds involving the cation, the anion, and the coordinated and uncoordinated water mol­ecules into a three-dimensional network.

Related literature

For background to complexes based on symmetrical N-hetero­cyclic ligands, see: Fan & Hanson (2005[Fan, J. & Hanson, B. E. (2005). Inorg. Chem. 44, 6998-7008.]); Zhao et al. (2007[Zhao, X.-X., Ma, J.-P., Dong, Y.-B., Huang, R.-Q. & Lai, T.-S. (2007). Cryst. Growth Des. 7, 1058-1068.]). For background to complexes with ZnII, see: Lin et al. (2008[Lin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des. 8, 3345-3353.]); Liu et al. (2010[Liu, S.-L., Yang, Y., Qi, Y.-F., Meng, X.-R. & Hou, H.-W. (2010). J. Mol. Struct. 975, 154-159.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(SO4)(C9H8N6)(H2O)4]·2H2O

  • Mr = 469.74

  • Triclinic, [P \overline 1]

  • a = 7.5439 (15) Å

  • b = 7.9573 (16) Å

  • c = 16.151 (3) Å

  • α = 99.60 (3)°

  • β = 92.16 (3)°

  • γ = 112.24 (3)°

  • V = 879.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 293 K

  • 0.24 × 0.23 × 0.21 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.703, Tmax = 0.733

  • 7688 measured reflections

  • 3442 independent reflections

  • 3130 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.070

  • S = 1.04

  • 3442 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O3′ 0.85 2.29 2.793 (14) 118
O10—H10A⋯O1 0.85 2.09 2.938 (2) 178
O10—H10A⋯O2′ 0.85 2.51 3.028 (8) 120
O5—H5B⋯O4i 0.85 1.94 2.761 (5) 163
O5—H5B⋯O4′i 0.85 2.19 2.988 (13) 156
O7—H7B⋯O1i 0.85 1.98 2.823 (2) 170
O5—H5A⋯O10ii 0.85 1.90 2.731 (2) 165
O6—H6A⋯O4iii 0.85 1.94 2.752 (5) 159
O6—H6A⋯O4′iii 0.85 1.94 2.778 (8) 171
O6—H6B⋯O10iv 0.85 1.96 2.808 (2) 172
O7—H7A⋯O2′iv 0.85 1.84 2.684 (7) 171
O7—H7A⋯O2iv 0.85 1.87 2.701 (4) 164
O8—H8B⋯O9v 0.85 1.82 2.673 (3) 177
O8—H8A⋯N2vi 0.85 2.37 3.122 (3) 148
O9—H9B⋯O3vii 0.85 2.03 2.837 (8) 159
O9—H9B⋯O2′vii 0.85 2.22 2.919 (17) 139
O9—H9B⋯O3′vii 0.85 2.48 3.266 (17) 154
O9—H9A⋯N6viii 0.85 2.01 2.854 (3) 174
O10—H10B⋯O2ix 0.85 1.99 2.806 (10) 159
O10—H10B⋯O4′ix 0.85 2.08 2.836 (15) 147
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y-1, z; (vi) x, y-1, z; (vii) x, y+1, z; (viii) -x+1, -y+1, -z; (ix) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Up to now, numerous complexes with one-, two- and three-dimensional structure motifs based on symmetrical N-heterocyclic ligands have been synthesized and reported (Fan & Hanson, 2005; Zhao et al., 2007), whereas complexes based on unsymmetrical N-heterocyclic ligands are relatively scarce. Focused on complexes with ZnII, this ion is able to coordinate to different donors simultaneously and the final products can exhibit promising luminescent properties (Lin et al., 2008; Liu et al., 2010). In this work, through the reaction of 1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole (bmt) with zinc sulfate at room temperature, we obtained the title complex [Zn(bmt)(SO4)(H2O)4](H2O)2, which is reported here.

As shown in Figure 1, the ZnII ion displays a distorted octahedral coordination defined by five oxygen atoms from four water molecules and one monodentate sulfate anion and by one nitrogen atom from the bmt ligand. Atoms O1, O5, O6, O8 and Zn1 are nearly co-planar (the mean deviation from the plane is 0.0258 Å), and atoms O7 and N1 are located in the apical positions. The SO4 tetrahedron is rotationally disordered about its S—O axis passing through O1 and S1 atoms. O—H···O and O—H···N hydrogen bonds including coordinated and uncoordinated water molecules, the cations and anions consolidate the crystal packing (Figure 2).

Related literature top

For background to complexes based on symmetrical N-heterocyclic ligands, see: Fan & Hanson (2005); Zhao et al. (2007). For background to complexes with ZnII, see: Lin et al. (2008); Liu et al. (2010).

Experimental top

The ligand 1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole (0.1 mmol) in methanol (5 ml) was added dropwise to an aqueous solution (2 ml) of zinc sulfate (0.1 mmol). The resulting solution was allowed to stand at room temperature. After three weeks, colorless crystals with good quality were obtained from the filtrate and were dried in air.

Refinement top

The disordered sulfate anion has been modeled by splitting it into two combined parts (O2, O3, O4 and O2', O3', O4'), the site occupation factors of which refined in a ratio of 0.618 (19):0.382 (19). H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) and 0.97 (CH2) Å and O-H = 0.85 Å, and with Uiso(H) = 1.2 Ueq(C,O).

Structure description top

Up to now, numerous complexes with one-, two- and three-dimensional structure motifs based on symmetrical N-heterocyclic ligands have been synthesized and reported (Fan & Hanson, 2005; Zhao et al., 2007), whereas complexes based on unsymmetrical N-heterocyclic ligands are relatively scarce. Focused on complexes with ZnII, this ion is able to coordinate to different donors simultaneously and the final products can exhibit promising luminescent properties (Lin et al., 2008; Liu et al., 2010). In this work, through the reaction of 1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole (bmt) with zinc sulfate at room temperature, we obtained the title complex [Zn(bmt)(SO4)(H2O)4](H2O)2, which is reported here.

As shown in Figure 1, the ZnII ion displays a distorted octahedral coordination defined by five oxygen atoms from four water molecules and one monodentate sulfate anion and by one nitrogen atom from the bmt ligand. Atoms O1, O5, O6, O8 and Zn1 are nearly co-planar (the mean deviation from the plane is 0.0258 Å), and atoms O7 and N1 are located in the apical positions. The SO4 tetrahedron is rotationally disordered about its S—O axis passing through O1 and S1 atoms. O—H···O and O—H···N hydrogen bonds including coordinated and uncoordinated water molecules, the cations and anions consolidate the crystal packing (Figure 2).

For background to complexes based on symmetrical N-heterocyclic ligands, see: Fan & Hanson (2005); Zhao et al. (2007). For background to complexes with ZnII, see: Lin et al. (2008); Liu et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labelling of the atoms. Displacement ellipsoids are displayed at the 30% probability level. H atoms are omitted for clarity; only one orientation of the disordered SO4 tetrahedron is shown.
[Figure 2] Fig. 2. View of the title complex, showing the packing of the structure. Hydrogen bonds are indicated by dashed lines.
Tetraaqua{1-[(1H-1,2,3-benzotriazol-1-yl)methyl]-1H- 1,2,4-triazole}sulfatozinc(II) dihydrate top
Crystal data top
[Zn(SO4)(C9H8N6)(H2O)4]·2H2OZ = 2
Mr = 469.74F(000) = 484
Triclinic, P1Dx = 1.774 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5439 (15) ÅCell parameters from 2915 reflections
b = 7.9573 (16) Åθ = 2.6–27.9°
c = 16.151 (3) ŵ = 1.58 mm1
α = 99.60 (3)°T = 293 K
β = 92.16 (3)°Prism, colourless
γ = 112.24 (3)°0.24 × 0.23 × 0.21 mm
V = 879.4 (3) Å3
Data collection top
Rigaku Saturn CCD
diffractometer
3442 independent reflections
Radiation source: fine-focus sealed tube3130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 98
Tmin = 0.703, Tmax = 0.733l = 1919
7688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.4616P]
where P = (Fo2 + 2Fc2)/3
3442 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn(SO4)(C9H8N6)(H2O)4]·2H2Oγ = 112.24 (3)°
Mr = 469.74V = 879.4 (3) Å3
Triclinic, P1Z = 2
a = 7.5439 (15) ÅMo Kα radiation
b = 7.9573 (16) ŵ = 1.58 mm1
c = 16.151 (3) ÅT = 293 K
α = 99.60 (3)°0.24 × 0.23 × 0.21 mm
β = 92.16 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
3442 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
3130 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.733Rint = 0.018
7688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3442 reflectionsΔρmin = 0.27 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn11.09002 (3)0.17235 (3)0.371640 (15)0.02549 (9)
S10.62271 (7)0.14764 (7)0.35463 (3)0.02418 (12)
O10.7976 (2)0.0142 (2)0.39731 (9)0.0305 (3)
O20.4569 (4)0.1335 (9)0.3924 (5)0.0409 (19)0.618 (19)
O30.6021 (13)0.1670 (12)0.2661 (5)0.0369 (14)0.618 (19)
O40.6445 (10)0.3168 (6)0.3758 (5)0.0414 (14)0.618 (19)
O2'0.4634 (9)0.0755 (15)0.3547 (9)0.057 (3)0.382 (19)
O3'0.656 (2)0.189 (2)0.2635 (9)0.043 (3)0.382 (19)
O4'0.574 (2)0.2951 (11)0.3977 (6)0.044 (3)0.382 (19)
O51.1162 (2)0.3281 (2)0.49352 (9)0.0349 (4)
H5B1.17540.30120.53180.042*
H5A1.16770.44570.50280.042*
O61.3836 (2)0.3225 (2)0.35396 (11)0.0375 (4)
H6A1.43830.43970.36160.045*
H6B1.46810.30820.38520.045*
O71.1822 (2)0.0011 (2)0.42915 (10)0.0342 (4)
H7A1.27060.03240.40950.041*
H7B1.17430.01380.48030.041*
O81.0517 (2)0.0077 (2)0.25848 (10)0.0378 (4)
H8B1.15140.01030.23650.045*
H8A0.97780.12010.25640.045*
N10.9899 (3)0.3421 (2)0.31394 (11)0.0288 (4)
N20.9472 (3)0.5789 (2)0.27075 (12)0.0344 (4)
N30.7996 (2)0.4154 (2)0.23720 (11)0.0265 (4)
N40.6884 (3)0.4047 (2)0.09507 (11)0.0285 (4)
N50.6883 (3)0.2466 (3)0.04821 (13)0.0395 (5)
N60.7300 (3)0.2763 (3)0.02657 (13)0.0419 (5)
C11.0571 (3)0.5274 (3)0.31691 (14)0.0328 (5)
H11.17100.61060.34880.039*
C20.8284 (3)0.2775 (3)0.26262 (14)0.0324 (5)
H20.74690.15330.24670.039*
C30.6397 (3)0.4063 (3)0.18067 (13)0.0308 (5)
H3A0.52760.29520.18230.037*
H3B0.60730.51230.19970.037*
C40.7304 (3)0.5407 (3)0.04844 (13)0.0272 (4)
C50.7419 (3)0.7219 (3)0.06513 (15)0.0349 (5)
H50.72300.77720.11760.042*
C60.7834 (4)0.8139 (4)0.00128 (18)0.0442 (6)
H60.79180.93520.00660.053*
C70.8134 (4)0.7313 (4)0.08015 (18)0.0495 (7)
H70.84310.80000.12270.059*
C80.8003 (4)0.5530 (4)0.09633 (16)0.0452 (6)
H80.81860.49810.14900.054*
C90.7578 (3)0.4563 (3)0.02981 (14)0.0334 (5)
O90.3572 (3)0.9693 (2)0.18654 (11)0.0443 (4)
H9B0.40720.92010.21820.053*
H9A0.33260.90270.13730.053*
O100.6604 (2)0.3016 (2)0.46855 (11)0.0408 (4)
H10A0.69790.21740.44710.049*
H10B0.60700.26620.51150.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02551 (14)0.02764 (14)0.02428 (14)0.01074 (10)0.00097 (9)0.00719 (9)
S10.0209 (3)0.0230 (3)0.0249 (3)0.0055 (2)0.00115 (19)0.00244 (19)
O10.0240 (8)0.0301 (8)0.0281 (8)0.0012 (6)0.0017 (6)0.0035 (6)
O20.0209 (14)0.041 (3)0.056 (3)0.0108 (14)0.0063 (15)0.0004 (19)
O30.037 (4)0.047 (2)0.024 (2)0.014 (2)0.002 (2)0.0040 (16)
O40.047 (3)0.0268 (17)0.050 (3)0.0147 (17)0.006 (2)0.0086 (16)
O2'0.038 (3)0.072 (4)0.081 (6)0.038 (3)0.017 (3)0.030 (5)
O3'0.033 (6)0.056 (5)0.028 (3)0.010 (4)0.008 (4)0.010 (3)
O4'0.059 (6)0.025 (3)0.040 (4)0.005 (3)0.002 (3)0.012 (2)
O50.0417 (9)0.0287 (8)0.0281 (8)0.0092 (7)0.0044 (7)0.0019 (6)
O60.0274 (8)0.0326 (9)0.0499 (10)0.0066 (7)0.0016 (7)0.0138 (7)
O70.0405 (9)0.0412 (9)0.0315 (8)0.0248 (8)0.0071 (7)0.0136 (7)
O80.0347 (9)0.0374 (9)0.0307 (9)0.0050 (7)0.0065 (7)0.0000 (7)
N10.0273 (9)0.0283 (9)0.0295 (10)0.0079 (8)0.0017 (8)0.0102 (7)
N20.0347 (10)0.0249 (9)0.0392 (11)0.0083 (8)0.0037 (8)0.0046 (8)
N30.0269 (9)0.0266 (9)0.0244 (9)0.0079 (8)0.0015 (7)0.0075 (7)
N40.0327 (10)0.0301 (10)0.0254 (9)0.0161 (8)0.0012 (7)0.0047 (7)
N50.0481 (12)0.0356 (11)0.0374 (12)0.0224 (10)0.0033 (9)0.0012 (9)
N60.0474 (13)0.0468 (12)0.0338 (11)0.0259 (10)0.0003 (9)0.0029 (9)
C10.0302 (12)0.0288 (11)0.0337 (12)0.0072 (10)0.0057 (9)0.0035 (9)
C20.0307 (12)0.0258 (11)0.0349 (12)0.0038 (9)0.0045 (9)0.0096 (9)
C30.0276 (11)0.0376 (12)0.0284 (11)0.0131 (10)0.0007 (9)0.0100 (9)
C40.0228 (10)0.0333 (11)0.0253 (11)0.0109 (9)0.0022 (8)0.0064 (9)
C50.0342 (13)0.0329 (12)0.0358 (13)0.0125 (10)0.0006 (10)0.0041 (9)
C60.0396 (14)0.0378 (14)0.0557 (17)0.0112 (11)0.0003 (12)0.0208 (12)
C70.0378 (14)0.0657 (19)0.0470 (16)0.0131 (13)0.0049 (12)0.0333 (14)
C80.0404 (14)0.0727 (19)0.0276 (12)0.0246 (14)0.0088 (10)0.0158 (12)
C90.0295 (11)0.0442 (13)0.0269 (11)0.0169 (10)0.0010 (9)0.0029 (9)
O90.0512 (11)0.0463 (10)0.0343 (9)0.0215 (9)0.0003 (8)0.0003 (7)
O100.0422 (10)0.0314 (9)0.0502 (10)0.0153 (8)0.0090 (8)0.0087 (7)
Geometric parameters (Å, º) top
Zn1—O82.0615 (17)N3—C21.320 (3)
Zn1—O72.0869 (15)N3—C31.457 (3)
Zn1—N12.0979 (18)N4—N51.356 (3)
Zn1—O52.1028 (17)N4—C41.367 (3)
Zn1—O62.1385 (18)N4—C31.443 (3)
Zn1—O12.1824 (16)N5—N61.297 (3)
S1—O4'1.401 (7)N6—C91.377 (3)
S1—O31.409 (8)C1—H10.9300
S1—O21.446 (3)C2—H20.9300
S1—O11.4912 (16)C3—H3A0.9700
S1—O3'1.505 (13)C3—H3B0.9700
S1—O41.507 (4)C4—C51.390 (3)
S1—O2'1.516 (7)C4—C91.390 (3)
O5—H5B0.8500C5—C61.378 (3)
O5—H5A0.8500C5—H50.9300
O6—H6A0.8499C6—C71.400 (4)
O6—H6B0.8499C6—H60.9300
O7—H7A0.8500C7—C81.364 (4)
O7—H7B0.8501C7—H70.9300
O8—H8B0.8500C8—C91.401 (3)
O8—H8A0.8500C8—H80.9300
N1—C21.321 (3)O9—H9B0.8499
N1—C11.357 (3)O9—H9A0.8501
N2—C11.313 (3)O10—H10A0.8499
N2—N31.360 (3)O10—H10B0.8500
O8—Zn1—O787.82 (7)Zn1—O8—H8A116.6
O8—Zn1—N191.97 (7)H8B—O8—H8A105.9
O7—Zn1—N1178.51 (7)C2—N1—C1103.23 (18)
O8—Zn1—O5173.22 (6)C2—N1—Zn1123.15 (15)
O7—Zn1—O586.93 (6)C1—N1—Zn1133.61 (15)
N1—Zn1—O593.18 (7)C1—N2—N3102.46 (17)
O8—Zn1—O690.69 (7)C2—N3—N2110.19 (17)
O7—Zn1—O688.10 (7)C2—N3—C3128.18 (18)
N1—Zn1—O693.38 (7)N2—N3—C3121.62 (17)
O5—Zn1—O693.40 (8)N5—N4—C4110.63 (18)
O8—Zn1—O191.05 (7)N5—N4—C3119.25 (18)
O7—Zn1—O188.44 (7)C4—N4—C3130.06 (18)
N1—Zn1—O190.10 (7)N6—N5—N4108.29 (19)
O5—Zn1—O184.54 (7)N5—N6—C9108.93 (19)
O6—Zn1—O1176.06 (6)N2—C1—N1114.12 (19)
O4'—S1—O3124.8 (5)N2—C1—H1122.9
O4'—S1—O279.7 (5)N1—C1—H1122.9
O3—S1—O2112.6 (3)N3—C2—N1109.99 (19)
O4'—S1—O1112.3 (3)N3—C2—H2125.0
O3—S1—O1113.5 (4)N1—C2—H2125.0
O2—S1—O1108.19 (15)N4—C3—N3111.05 (18)
O4'—S1—O3'116.6 (7)N4—C3—H3A109.4
O3—S1—O3'19.3 (5)N3—C3—H3A109.4
O2—S1—O3'131.0 (4)N4—C3—H3B109.4
O1—S1—O3'106.7 (6)N3—C3—H3B109.4
O4'—S1—O427.9 (4)H3A—C3—H3B108.0
O3—S1—O4108.6 (4)N4—C4—C5133.5 (2)
O2—S1—O4107.4 (2)N4—C4—C9103.73 (19)
O1—S1—O4106.24 (19)C5—C4—C9122.8 (2)
O3'—S1—O494.5 (6)C6—C5—C4115.5 (2)
O4'—S1—O2'109.8 (4)C6—C5—H5122.3
O3—S1—O2'86.4 (4)C4—C5—H5122.3
O2—S1—O2'31.9 (3)C5—C6—C7122.4 (2)
O1—S1—O2'104.9 (3)C5—C6—H6118.8
O3'—S1—O2'105.8 (5)C7—C6—H6118.8
O4—S1—O2'135.7 (4)C8—C7—C6121.8 (2)
S1—O1—Zn1138.82 (9)C8—C7—H7119.1
Zn1—O5—H5B114.8C6—C7—H7119.1
Zn1—O5—H5A120.7C7—C8—C9116.9 (2)
H5B—O5—H5A103.1C7—C8—H8121.6
Zn1—O6—H6A124.8C9—C8—H8121.6
Zn1—O6—H6B116.0N6—C9—C4108.4 (2)
H6A—O6—H6B96.0N6—C9—C8130.9 (2)
Zn1—O7—H7A119.6C4—C9—C8120.7 (2)
Zn1—O7—H7B126.2H9B—O9—H9A107.2
H7A—O7—H7B110.1H10A—O10—H10B105.2
Zn1—O8—H8B118.1
O4'—S1—O1—Zn1116.9 (8)C2—N1—C1—N20.1 (3)
O3—S1—O1—Zn131.3 (4)Zn1—N1—C1—N2179.33 (16)
O2—S1—O1—Zn1157.0 (4)N2—N3—C2—N11.1 (3)
O3'—S1—O1—Zn112.0 (7)C3—N3—C2—N1179.8 (2)
O4—S1—O1—Zn188.0 (4)C1—N1—C2—N30.6 (3)
O2'—S1—O1—Zn1123.9 (7)Zn1—N1—C2—N3178.71 (14)
O8—Zn1—O1—S14.72 (15)N5—N4—C3—N376.6 (2)
O7—Zn1—O1—S192.51 (15)C4—N4—C3—N3106.4 (2)
N1—Zn1—O1—S187.25 (15)C2—N3—C3—N495.9 (3)
O5—Zn1—O1—S1179.57 (15)N2—N3—C3—N483.0 (2)
O6—Zn1—O1—S1120.9 (8)N5—N4—C4—C5177.5 (2)
O8—Zn1—N1—C249.15 (19)C3—N4—C4—C50.3 (4)
O7—Zn1—N1—C233 (3)N5—N4—C4—C90.6 (2)
O5—Zn1—N1—C2126.43 (19)C3—N4—C4—C9177.8 (2)
O6—Zn1—N1—C2139.96 (19)N4—C4—C5—C6177.9 (2)
O1—Zn1—N1—C241.90 (19)C9—C4—C5—C60.2 (3)
O8—Zn1—N1—C1131.7 (2)C4—C5—C6—C70.5 (4)
O7—Zn1—N1—C1147 (2)C5—C6—C7—C81.0 (4)
O5—Zn1—N1—C152.7 (2)C6—C7—C8—C90.9 (4)
O6—Zn1—N1—C140.9 (2)N5—N6—C9—C40.2 (3)
O1—Zn1—N1—C1137.2 (2)N5—N6—C9—C8178.1 (2)
C1—N2—N3—C21.1 (2)N4—C4—C9—N60.4 (2)
C1—N2—N3—C3179.8 (2)C5—C4—C9—N6177.9 (2)
C4—N4—N5—N60.5 (2)N4—C4—C9—C8178.7 (2)
C3—N4—N5—N6178.03 (19)C5—C4—C9—C80.4 (3)
N4—N5—N6—C90.2 (3)C7—C8—C9—N6177.9 (2)
N3—N2—C1—N10.7 (3)C7—C8—C9—C40.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O30.852.292.793 (14)118
O10—H10A···O10.852.092.938 (2)178
O10—H10A···O20.852.513.028 (8)120
O5—H5B···O4i0.851.942.761 (5)163
O5—H5B···O4i0.852.192.988 (13)156
O7—H7B···O1i0.851.982.823 (2)170
O5—H5A···O10ii0.851.902.731 (2)165
O6—H6A···O4iii0.851.942.752 (5)159
O6—H6A···O4iii0.851.942.778 (8)171
O6—H6B···O10iv0.851.962.808 (2)172
O7—H7A···O2iv0.851.842.684 (7)171
O7—H7A···O2iv0.851.872.701 (4)164
O8—H8B···O9v0.851.822.673 (3)177
O8—H8A···N2vi0.852.373.122 (3)148
O9—H9B···O3vii0.852.032.837 (8)159
O9—H9B···O2vii0.852.222.919 (17)139
O9—H9B···O3vii0.852.483.266 (17)154
O9—H9A···N6viii0.852.012.854 (3)174
O10—H10B···O2ix0.851.992.806 (10)159
O10—H10B···O4ix0.852.082.836 (15)147
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y1, z; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+1, y+1, z; (ix) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(SO4)(C9H8N6)(H2O)4]·2H2O
Mr469.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5439 (15), 7.9573 (16), 16.151 (3)
α, β, γ (°)99.60 (3), 92.16 (3), 112.24 (3)
V3)879.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.24 × 0.23 × 0.21
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.703, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
7688, 3442, 3130
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.04
No. of reflections3442
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O3'0.852.292.793 (14)118.0
O10—H10A···O10.852.092.938 (2)178.2
O10—H10A···O2'0.852.513.028 (8)120.1
O5—H5B···O4i0.851.942.761 (5)163.2
O5—H5B···O4'i0.852.192.988 (13)156.0
O7—H7B···O1i0.851.982.823 (2)170.3
O5—H5A···O10ii0.851.902.731 (2)165.4
O6—H6A···O4iii0.851.942.752 (5)158.9
O6—H6A···O4'iii0.851.942.778 (8)170.6
O6—H6B···O10iv0.851.962.808 (2)172.3
O7—H7A···O2'iv0.851.842.684 (7)170.7
O7—H7A···O2iv0.851.872.701 (4)163.9
O8—H8B···O9v0.851.822.673 (3)176.6
O8—H8A···N2vi0.852.373.122 (3)147.9
O9—H9B···O3vii0.852.032.837 (8)159.2
O9—H9B···O2'vii0.852.222.919 (17)139.4
O9—H9B···O3'vii0.852.483.266 (17)154.4
O9—H9A···N6viii0.852.012.854 (3)174.2
O10—H10B···O2ix0.851.992.806 (10)159.4
O10—H10B···O4'ix0.852.082.836 (15)147.4
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y1, z; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+1, y+1, z; (ix) x+1, y, z+1.
 

Acknowledgements

The study was supported by the Science and Technology Department of Henan Province (grant No. 082102330003).

References

First citationFan, J. & Hanson, B. E. (2005). Inorg. Chem. 44, 6998–7008.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des. 8, 3345–3353.  Web of Science CrossRef CAS Google Scholar
First citationLiu, S.-L., Yang, Y., Qi, Y.-F., Meng, X.-R. & Hou, H.-W. (2010). J. Mol. Struct. 975, 154–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, X.-X., Ma, J.-P., Dong, Y.-B., Huang, R.-Q. & Lai, T.-S. (2007). Cryst. Growth Des. 7, 1058–1068.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds