organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-hy­dr­oxy-3,5-dimeth­­oxy­phen­yl)-6-phenyl­nicotino­nitrile

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: yhzhou1966@yahoo.com.cn

(Received 15 September 2010; accepted 30 September 2010; online 9 October 2010)

In the title compound, C20H17N3O3, the dihedral angles between the central pyridine ring and the two terminal rings are 15.07 (3) and 43.24 (3)°. The dihedral angle between the two terminal rings is 37.49 (4)° In the crystal, inter­molecular amine N—H⋯Nnitrile hydrogen-bonding inter­actions form inversion dimers, which are linked into chains through amine N—H⋯Ometh­oxy hydrogen bonds.

Related literature

For literature on the biological applications of nicotine derivatives, see Hökelek & Necefouglu (1996[Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128-1131.], 1999[Hökelek, T. & Necefouglu, H. (1999). Acta Cryst. C55, 1438-1440.]). For literature on mol­ecules containing the cyano­pyridine moiety and their ability to act as ligands towards transition metal ions and new drugs, see: Alyoubi (2000[Alyoubi, A. O. (2000). Spectrochim. Acta, A56, 2397-2404.]); Desai & Shah (2003[Desai, J. M. & Shah, V. H. (2003). Indian J. Chem. Sect. B, 42, 382-385.]); Murata et al. (2004[Murata, T., et al. (2004). Bioorg. Med. Chem. Lett. 14, 4019-4022.]). For a related structure, see: Fun et al. (1996[Fun, H.-K., Sivakumar, K., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P. & You, X.-Z. (1996). Acta Cryst. C52, 986-988.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3O3

  • Mr = 347.37

  • Triclinic, [P \overline 1]

  • a = 8.1320 (16) Å

  • b = 10.497 (2) Å

  • c = 10.914 (2) Å

  • α = 77.28 (3)°

  • β = 68.36 (3)°

  • γ = 84.66 (3)°

  • V = 844.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 four-circle diffractometer

  • Absorption correction: ψ scan (semi-empirical, using intensity measurements; North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.981, Tmax = 0.991

  • 3294 measured reflections

  • 3058 independent reflections

  • 1776 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.169

  • S = 1.01

  • 3058 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.27 3.101 (4) 162
N2—H2B⋯N3ii 0.86 2.31 3.098 (5) 152
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2004[Bruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nicotine derivatives have a wide range of biological applications. Niacin is a vitamin that contains nicotinamide, deficiency of which makes the body lose copper, thereby giving rise to the pellagra disease (Hökelek & Necefouglu, 1999). The nicotinic acid derivative N,N-diethylnicotinamide, which is commonly known as DENA, has a respiratory stimulating property (Hökelek & Necefouglu, 1996). In addition, it has been demonstrated that molecules containing the cyanopyridine moiety may be able to act as ligands towards transition-metal ions (Alyoubi, 2000), new drugs (Murata et al., 2004; Desai & Shah, 2003) and significant intermediates for the synthesis of important vitamins such as nicotinic acids and nicotinamides. For these reasons, the synthesis of new derived cyanopyridine compounds is strongly desired. Against this background and in order to obtain detailed information on molecular conformation in the solid state, the X-ray study of the title compound C20H17N3O3 (I) was carried out and the results are presented here.

In the molecular structure of (I) (Fig. 1), the pyridine ring is almost planar, with a maximum deviation from the plane of 0.031 (5) Å for C10, and it forms a dihedral angle of 15.07 (3)° with the mean plane through benzene ring and another dihedral angle of 43.24 (3)° with the mean plane through the 4-hydroxy-3,5-dimethoxy-substituted benzene ring. The hydroxy group gives an interaction with a methoxy-O acceptor [2.654 (4) Å]. The dihedral angle between the planes of the pyridine and the second phenyl rings [15.07 (3)°] is slightly larger than that reported for a related structure [9.04 (6)°] (Fun et al., 1996). In (I) the ring conformation is stabilized by the presence of a short intramolecular aromatic ring C1—H···N1pyridine interaction [2.790 (5) Å]. The methoxy substituent groups lie slightly out of plane of the benzene ring [torsion angles C20—O2—C16—C17, -18.0 (5)° and C19—O1—C14—C13, 27.2 (7)°]. The crystal packing of the title compound is stabilized by intermolecular amine N—H···Nnitrile hydrogen-bonding interactions forming centrosymmetric cyclic dimers which are linked through amine N—H···Omethoxy hydrogen bonds into one-dimensional chains which extend along the b cell direction (Fig. 2).

Related literature top

For literature on the biological applications of nicotine derivatives, see Hökelek & Necefouglu (1996, 1999). For literature on molecules containing the cyanopyridine moiety and their ability to act as ligands towards transition metal ions and new drugs, see: Alyoubi (2000); Desai & Shah (2003); Murata et al. (2004). For a related structure, see: Fun et al. (1996).

Experimental top

To a refluxing solution of acetophenone (2 mmol) in ethanol (10 ml), malononitrile (2 mmol), 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde) (2 mmol) and ammonium acetate (2 mmol) were added, and the resulting solution was refluxed for 6 h. The solvent was distilled off under reduced pressure and the resulting residue was purified by column chromatography using silica gel eluent (100–200 mesh). Single crystals were obtained by slow evaporation using a petroleum ether/ethyl acetate (1: 3) solvent system.

Refinement top

The H atoms were fixed geometrically and allowed to ride on the attached non-H atoms, with O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93–0.96 Å, and with Uiso(H)= 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other atoms.

Structure description top

Nicotine derivatives have a wide range of biological applications. Niacin is a vitamin that contains nicotinamide, deficiency of which makes the body lose copper, thereby giving rise to the pellagra disease (Hökelek & Necefouglu, 1999). The nicotinic acid derivative N,N-diethylnicotinamide, which is commonly known as DENA, has a respiratory stimulating property (Hökelek & Necefouglu, 1996). In addition, it has been demonstrated that molecules containing the cyanopyridine moiety may be able to act as ligands towards transition-metal ions (Alyoubi, 2000), new drugs (Murata et al., 2004; Desai & Shah, 2003) and significant intermediates for the synthesis of important vitamins such as nicotinic acids and nicotinamides. For these reasons, the synthesis of new derived cyanopyridine compounds is strongly desired. Against this background and in order to obtain detailed information on molecular conformation in the solid state, the X-ray study of the title compound C20H17N3O3 (I) was carried out and the results are presented here.

In the molecular structure of (I) (Fig. 1), the pyridine ring is almost planar, with a maximum deviation from the plane of 0.031 (5) Å for C10, and it forms a dihedral angle of 15.07 (3)° with the mean plane through benzene ring and another dihedral angle of 43.24 (3)° with the mean plane through the 4-hydroxy-3,5-dimethoxy-substituted benzene ring. The hydroxy group gives an interaction with a methoxy-O acceptor [2.654 (4) Å]. The dihedral angle between the planes of the pyridine and the second phenyl rings [15.07 (3)°] is slightly larger than that reported for a related structure [9.04 (6)°] (Fun et al., 1996). In (I) the ring conformation is stabilized by the presence of a short intramolecular aromatic ring C1—H···N1pyridine interaction [2.790 (5) Å]. The methoxy substituent groups lie slightly out of plane of the benzene ring [torsion angles C20—O2—C16—C17, -18.0 (5)° and C19—O1—C14—C13, 27.2 (7)°]. The crystal packing of the title compound is stabilized by intermolecular amine N—H···Nnitrile hydrogen-bonding interactions forming centrosymmetric cyclic dimers which are linked through amine N—H···Omethoxy hydrogen bonds into one-dimensional chains which extend along the b cell direction (Fig. 2).

For literature on the biological applications of nicotine derivatives, see Hökelek & Necefouglu (1996, 1999). For literature on molecules containing the cyanopyridine moiety and their ability to act as ligands towards transition metal ions and new drugs, see: Alyoubi (2000); Desai & Shah (2003); Murata et al. (2004). For a related structure, see: Fun et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the title compound, viewed along the a axis of the unit cell. Dashed lines indicate hydrogen bonds. For symmetry codes, see Table 1.
2-Amino-4-(4-hydroxy-3,5-dimethoxyphenyl)-6-phenylnicotinonitrile top
Crystal data top
C20H17N3O3Z = 2
Mr = 347.37F(000) = 364
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1320 (16) ÅCell parameters from 25 reflections
b = 10.497 (2) Åθ = 9–12°
c = 10.914 (2) ŵ = 0.09 mm1
α = 77.28 (3)°T = 293 K
β = 68.36 (3)°Block, colourless
γ = 84.66 (3)°0.20 × 0.10 × 0.10 mm
V = 844.6 (3) Å3
Data collection top
Enraf–Nonius CAD-4 four-circle
diffractometer
1776 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 09
Absorption correction: ψ scan
(semi-empirical (using intensity measurements); North et al., 1968)
k = 1212
Tmin = 0.981, Tmax = 0.991l = 1213
3294 measured reflections3 standard reflections every 200 reflections
3058 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
3058 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H17N3O3γ = 84.66 (3)°
Mr = 347.37V = 844.6 (3) Å3
Triclinic, P1Z = 2
a = 8.1320 (16) ÅMo Kα radiation
b = 10.497 (2) ŵ = 0.09 mm1
c = 10.914 (2) ÅT = 293 K
α = 77.28 (3)°0.20 × 0.10 × 0.10 mm
β = 68.36 (3)°
Data collection top
Enraf–Nonius CAD-4 four-circle
diffractometer
1776 reflections with I > 2σ(I)
Absorption correction: ψ scan
(semi-empirical (using intensity measurements); North et al., 1968)
Rint = 0.031
Tmin = 0.981, Tmax = 0.9913 standard reflections every 200 reflections
3294 measured reflections intensity decay: 1%
3058 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.01Δρmax = 0.37 e Å3
3058 reflectionsΔρmin = 0.25 e Å3
235 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2727 (5)0.1198 (2)1.0345 (3)0.0793 (13)
O20.2820 (4)0.0923 (2)0.5979 (3)0.0590 (10)
O30.2628 (3)0.2323 (2)0.8421 (2)0.0535 (9)
N10.4176 (4)0.5786 (2)0.6850 (3)0.0442 (10)
N20.2265 (4)0.6279 (3)0.5721 (3)0.0598 (11)
N30.0259 (5)0.3444 (3)0.5868 (4)0.0697 (14)
C10.6885 (5)0.6715 (3)0.7396 (4)0.0529 (12)
C20.8049 (5)0.7227 (4)0.7807 (4)0.0641 (16)
C30.8678 (5)0.6491 (4)0.8747 (4)0.0630 (16)
C40.8153 (5)0.5217 (4)0.9273 (4)0.0600 (14)
C50.6991 (5)0.4705 (3)0.8868 (4)0.0512 (11)
C60.6330 (4)0.5439 (3)0.7930 (3)0.0433 (11)
C70.5053 (4)0.4907 (3)0.7504 (3)0.0413 (11)
C80.4765 (5)0.3580 (3)0.7747 (3)0.0459 (11)
C90.3556 (4)0.3108 (3)0.7332 (3)0.0429 (11)
C100.2667 (4)0.4028 (3)0.6648 (3)0.0436 (11)
C110.3040 (4)0.5356 (3)0.6404 (3)0.0423 (11)
C120.3250 (4)0.1688 (3)0.7618 (4)0.0453 (11)
C130.3115 (5)0.0937 (3)0.8868 (4)0.0528 (14)
C140.2894 (5)0.0402 (3)0.9136 (4)0.0496 (11)
C150.2843 (4)0.1017 (3)0.8137 (3)0.0395 (11)
C160.2939 (4)0.0246 (3)0.6902 (3)0.0428 (11)
C170.3166 (4)0.1081 (3)0.6633 (3)0.0438 (11)
C180.1322 (5)0.3671 (3)0.6226 (4)0.0477 (11)
C190.2036 (7)0.0690 (5)1.1506 (5)0.096 (2)
C200.2425 (5)0.0191 (4)0.4867 (4)0.0641 (16)
H1B0.647200.722900.675600.0630*
H2A0.251000.708800.559400.0720*
H2B0.152500.606000.541100.0720*
H2C0.841200.808700.744100.0770*
H3A0.945200.684900.902600.0750*
H3B0.259700.262000.919000.0800*
H4A0.858400.470300.990200.0720*
H5A0.664000.384300.923300.0620*
H8A0.538900.299500.819400.0550*
H13A0.317200.133700.953200.0640*
H17A0.326400.157300.578900.0520*
H19A0.200100.136401.226900.1430*
H19B0.085900.036101.161400.1430*
H19C0.276900.000701.143900.1430*
H20A0.238500.076600.430500.0970*
H20B0.332300.044900.435800.0970*
H20C0.129800.024000.518100.0970*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.144 (3)0.0382 (15)0.0645 (19)0.0084 (16)0.051 (2)0.0079 (13)
O20.092 (2)0.0321 (13)0.0648 (17)0.0016 (13)0.0419 (16)0.0090 (12)
O30.0714 (17)0.0284 (12)0.0605 (16)0.0096 (11)0.0277 (14)0.0025 (11)
N10.0520 (18)0.0311 (14)0.0546 (18)0.0009 (12)0.0285 (15)0.0023 (13)
N20.078 (2)0.0320 (16)0.088 (2)0.0033 (15)0.057 (2)0.0006 (15)
N30.079 (2)0.055 (2)0.098 (3)0.0013 (17)0.060 (2)0.0120 (19)
C10.059 (2)0.043 (2)0.061 (2)0.0062 (17)0.033 (2)0.0034 (17)
C20.069 (3)0.042 (2)0.086 (3)0.0160 (19)0.038 (2)0.002 (2)
C30.054 (2)0.062 (3)0.083 (3)0.015 (2)0.036 (2)0.009 (2)
C40.055 (2)0.057 (2)0.075 (3)0.0006 (19)0.040 (2)0.002 (2)
C50.056 (2)0.0345 (18)0.067 (2)0.0051 (16)0.032 (2)0.0010 (17)
C60.040 (2)0.0341 (17)0.056 (2)0.0037 (15)0.0184 (17)0.0061 (16)
C70.047 (2)0.0307 (17)0.048 (2)0.0006 (15)0.0227 (17)0.0021 (15)
C80.053 (2)0.0314 (17)0.061 (2)0.0061 (15)0.0336 (19)0.0043 (16)
C90.053 (2)0.0290 (17)0.051 (2)0.0014 (15)0.0240 (18)0.0082 (15)
C100.049 (2)0.0335 (17)0.053 (2)0.0024 (15)0.0237 (18)0.0080 (15)
C110.048 (2)0.0345 (18)0.049 (2)0.0027 (15)0.0250 (18)0.0056 (15)
C120.049 (2)0.0311 (17)0.061 (2)0.0032 (15)0.0280 (19)0.0067 (16)
C130.069 (3)0.0368 (19)0.063 (2)0.0020 (17)0.037 (2)0.0086 (17)
C140.064 (2)0.0323 (18)0.056 (2)0.0017 (16)0.030 (2)0.0019 (17)
C150.0369 (19)0.0266 (16)0.051 (2)0.0017 (13)0.0140 (16)0.0021 (15)
C160.043 (2)0.0313 (17)0.055 (2)0.0010 (14)0.0181 (17)0.0102 (16)
C170.050 (2)0.0322 (17)0.051 (2)0.0021 (15)0.0241 (18)0.0011 (15)
C180.060 (2)0.0331 (18)0.058 (2)0.0024 (16)0.032 (2)0.0077 (16)
C190.113 (4)0.086 (4)0.071 (3)0.020 (3)0.026 (3)0.001 (3)
C200.077 (3)0.057 (2)0.075 (3)0.000 (2)0.048 (2)0.011 (2)
Geometric parameters (Å, º) top
O1—C141.364 (5)C10—C111.401 (5)
O1—C191.387 (6)C10—C181.440 (5)
O2—C161.389 (4)C12—C171.389 (5)
O2—C201.413 (5)C12—C131.388 (5)
O3—C151.350 (4)C13—C141.386 (5)
O3—H3B0.8200C14—C151.398 (5)
N1—C71.354 (4)C15—C161.390 (4)
N1—C111.342 (5)C16—C171.374 (5)
N2—C111.344 (5)C1—H1B0.9300
N3—C181.134 (6)C2—H2C0.9300
N2—H2B0.8600C3—H3A0.9300
N2—H2A0.8600C4—H4A0.9300
C1—C21.378 (6)C5—H5A0.9300
C1—C61.383 (5)C8—H8A0.9300
C2—C31.370 (6)C13—H13A0.9300
C3—C41.374 (6)C17—H17A0.9300
C4—C51.373 (6)C19—H19A0.9600
C5—C61.383 (5)C19—H19B0.9600
C6—C71.478 (5)C19—H19C0.9600
C7—C81.385 (5)C20—H20A0.9600
C8—C91.391 (5)C20—H20B0.9600
C9—C101.401 (5)C20—H20C0.9600
C9—C121.479 (5)
C14—O1—C19119.3 (3)O3—C15—C16122.4 (3)
C16—O2—C20117.4 (3)C14—C15—C16118.3 (3)
C15—O3—H3B109.00O2—C16—C15114.9 (3)
C7—N1—C11119.1 (3)C15—C16—C17121.4 (3)
C11—N2—H2B120.00O2—C16—C17123.7 (3)
H2A—N2—H2B120.00C12—C17—C16120.1 (3)
C11—N2—H2A120.00N3—C18—C10177.1 (4)
C2—C1—C6120.3 (4)C2—C1—H1B120.00
C1—C2—C3121.1 (4)C6—C1—H1B120.00
C2—C3—C4119.2 (4)C1—C2—H2C119.00
C3—C4—C5119.9 (4)C3—C2—H2C119.00
C4—C5—C6121.7 (3)C2—C3—H3A120.00
C5—C6—C7122.2 (3)C4—C3—H3A120.00
C1—C6—C5117.9 (3)C3—C4—H4A120.00
C1—C6—C7119.9 (3)C5—C4—H4A120.00
C6—C7—C8122.3 (3)C4—C5—H5A119.00
N1—C7—C8121.2 (3)C6—C5—H5A119.00
N1—C7—C6116.5 (3)C7—C8—H8A120.00
C7—C8—C9121.0 (3)C9—C8—H8A119.00
C8—C9—C10117.2 (3)C12—C13—H13A120.00
C8—C9—C12120.1 (3)C14—C13—H13A120.00
C10—C9—C12122.7 (3)C12—C17—H17A120.00
C9—C10—C11119.3 (3)C16—C17—H17A120.00
C9—C10—C18122.6 (3)O1—C19—H19A109.00
C11—C10—C18118.0 (3)O1—C19—H19B109.00
N1—C11—C10122.1 (3)O1—C19—H19C109.00
N2—C11—C10122.0 (3)H19A—C19—H19B109.00
N1—C11—N2115.9 (3)H19A—C19—H19C109.00
C13—C12—C17119.2 (3)H19B—C19—H19C109.00
C9—C12—C13119.9 (3)O2—C20—H20A109.00
C9—C12—C17120.9 (3)O2—C20—H20B110.00
C12—C13—C14120.6 (3)O2—C20—H20C110.00
O1—C14—C15116.0 (3)H20A—C20—H20B109.00
C13—C14—C15120.2 (3)H20A—C20—H20C109.00
O1—C14—C13123.8 (3)H20B—C20—H20C109.00
O3—C15—C14119.2 (3)
C19—O1—C14—C1327.2 (7)C12—C9—C10—C11179.4 (3)
C19—O1—C14—C15153.2 (4)C12—C9—C10—C183.1 (5)
C20—O2—C16—C15163.1 (3)C8—C9—C12—C1342.3 (5)
C20—O2—C16—C1718.0 (5)C8—C9—C12—C17135.1 (4)
C11—N1—C7—C6178.0 (3)C10—C9—C12—C13137.6 (4)
C11—N1—C7—C81.6 (5)C10—C9—C12—C1745.0 (5)
C7—N1—C11—N2177.7 (3)C9—C10—C11—N12.6 (5)
C7—N1—C11—C103.1 (5)C9—C10—C11—N2178.1 (3)
C6—C1—C2—C30.1 (6)C18—C10—C11—N1175.0 (3)
C2—C1—C6—C50.6 (5)C18—C10—C11—N24.3 (5)
C2—C1—C6—C7178.7 (3)C9—C12—C13—C14177.6 (4)
C1—C2—C3—C40.8 (6)C17—C12—C13—C140.2 (6)
C2—C3—C4—C51.0 (6)C9—C12—C17—C16177.9 (3)
C3—C4—C5—C60.3 (6)C13—C12—C17—C160.5 (5)
C4—C5—C6—C10.5 (6)C12—C13—C14—O1179.1 (4)
C4—C5—C6—C7178.9 (3)C12—C13—C14—C151.4 (6)
C1—C6—C7—N115.1 (5)O1—C14—C15—O30.4 (5)
C1—C6—C7—C8164.5 (3)O1—C14—C15—C16177.6 (4)
C5—C6—C7—N1164.2 (3)C13—C14—C15—O3179.9 (4)
C5—C6—C7—C816.2 (5)C13—C14—C15—C162.8 (6)
N1—C7—C8—C90.3 (5)O3—C15—C16—O20.8 (5)
C6—C7—C8—C9179.9 (3)O3—C15—C16—C17179.7 (3)
C7—C8—C9—C100.8 (5)C14—C15—C16—O2177.9 (3)
C7—C8—C9—C12179.2 (3)C14—C15—C16—C173.2 (5)
C8—C9—C10—C110.7 (4)O2—C16—C17—C12179.2 (3)
C8—C9—C10—C18176.8 (3)C15—C16—C17—C122.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.273.101 (4)162
N2—H2B···N3ii0.862.313.098 (5)152
O3—H3B···O10.822.192.654 (4)116
C1—H1B···N10.932.472.790 (5)100
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H17N3O3
Mr347.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1320 (16), 10.497 (2), 10.914 (2)
α, β, γ (°)77.28 (3), 68.36 (3), 84.66 (3)
V3)844.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4 four-circle
Absorption correctionψ scan
(semi-empirical (using intensity measurements); North et al., 1968)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3294, 3058, 1776
Rint0.031
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.169, 1.01
No. of reflections3058
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: SMART (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.273.101 (4)162
N2—H2B···N3ii0.862.313.098 (5)152
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the President of the Chinese Academy of Forestry Foundation (grant No. CAFYBB2008009).

References

First citationAlyoubi, A. O. (2000). Spectrochim. Acta, A56, 2397–2404.  CrossRef Google Scholar
First citationBruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, J. M. & Shah, V. H. (2003). Indian J. Chem. Sect. B, 42, 382–385.  Google Scholar
First citationFun, H.-K., Sivakumar, K., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P. & You, X.-Z. (1996). Acta Cryst. C52, 986–988.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1999). Acta Cryst. C55, 1438–1440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurata, T., et al. (2004). Bioorg. Med. Chem. Lett. 14, 4019–4022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds