metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(3-nitro­benzoato-κO1)bis­­[1H-5-(3-pyrid­yl)-3-(4-pyrid­yl)-1H-1,2,4-triazole-κN5]cobalt(II) dihydrate

aDepartment of Pharmacy, Shaoyang Medical College, Shaoyang, Hunan 422000, People's Republic of China
*Correspondence e-mail: yunliangz2009@163.com

(Received 6 September 2010; accepted 10 November 2010; online 17 November 2010)

In the centrosymmetric title compound, [Co(C7H4NO4)2(C12H9N5)2(H2O)2]·2H2O, the CoII atom, located on an inversion center, is coordinated by two N atoms [Co—N = 2.155 (3) Å] and four O atoms [Co—O = 2.099 (2)–2.117 (3) Å] in a distorted octa­hedral geometry. Inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link the components into a three-dimensional supramolecular framework.

Related literature

For background to triazole-containing compounds, see: Huang et al. (2010a[Huang, F.-P., Tian, J.-L., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010a). Cryst. Growth Des. 10, 1145-1154.]); Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]); Liu & Zhang (2009[Liu, T.-L. & Zhang, Y.-L. (2009). Acta Cryst. E65, m913.]). For related structures, see: Xie et al. (2009[Xie, X.-F., Chen, S.-P., Xia, Z.-Q. & Gao, S.-L. (2009). Polyhedron, 28, 679-688.]); Du et al. (2007[Du, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984-3995.]); Huang et al. (2010b[Huang, F.-P., Tian, J.-L., Li, D.-D., Chen, G.-J., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010b). Inorg. Chem. 49, 2525-2529.]); Dong (2009[Dong, L. Y. (2009). Acta Cryst. E65, m487-m488.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4NO4)2(C12H9N5)2(H2O)2]·2H2O

  • Mr = 909.70

  • Triclinic, [P \overline 1]

  • a = 8.7080 (17) Å

  • b = 9.850 (2) Å

  • c = 12.488 (3) Å

  • α = 81.97 (3)°

  • β = 85.74 (3)°

  • γ = 71.36 (3)°

  • V = 1004.5 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.835, Tmax = 0.945

  • 5815 measured reflections

  • 3518 independent reflections

  • 2642 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.146

  • S = 1.03

  • 3518 reflections

  • 306 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O6i 0.85 (3) 1.94 (3) 2.778 (5) 169 (3)
O5—H5A⋯N2ii 0.84 (3) 2.02 (3) 2.856 (4) 174 (4)
O5—H5B⋯O2iii 0.87 (3) 1.79 (3) 2.644 (4) 167 (5)
O6—H6A⋯N5iv 0.85 (4) 2.05 (4) 2.873 (5) 166 (3)
O6—H6B⋯O2v 0.85 (3) 1.93 (4) 2.735 (4) 158 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1; (iv) -x, -y, -z+1; (v) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The attractive biological and pharmacological activity of the complexes with triazole caused a growing interest in the synthesis and characterization of new compounds with 1,2,4-triazole group (Huang et al., 2010a; Klingele & Brooker, 2003; Liu et al., 2009). We report here the synthesis and crystal structure of a new cobalt(II) complex [Co(C7H4NO4)2(C12H9N5)2(H2O)2].2H2O, (I). The molecule of the title complex, (Fig. 1), is centrosymmetric, so pairs of equivalent ligands lie trans to each other in a slightly distorted octahedral coordination geometry, cis angles deviating from 90° by less than 4°. with Co—O bond length in the range 2.099–2.117 Å and Co—N bond length 2.155 Å. These bond distances compare well with the bond lenghths in the literatures (Dong, 2009; Du et al., 2007; Huang et al., 2010b).

The intermolecular packing is mainly further controlled by hydrogen bonds (O—H···O, O—H···N and N—H···O, Table 1) among the pyridine N atoms, the triazole N atoms, coordinated water molecules and lattice water molecules. As is well known, a water molecule has two hydrogen atoms and two lone-electron pairs, which enables it to participate in four hydrogen bonds in a tetrahedral configuration, but it also frequently shows a 3-coordinate configuration (Xie et al., 2009). In the title compound, the lattice water O6 also shows a 3-coordinate mode. Through these hydrogen bonds, the molecule is assembled into a three-dimensional supramolecular architecture, as shown in Fig. 2.

Related literature top

For background to triazole-containing compounds, see: Huang et al. (2010a); Klingele & Brooker, (2003); Liu et al. (2009). For related structures, see: Xie et al. (2009); Du et al. (2007); Huang et al. (2010b); Dong (2009).

Experimental top

A mixture of 3-nitrobenzoic acid (0.5 mmol, 0.084 g), CoCl2.6H2O (0.5 mmol, 0.112 g), NaOH (1 mmol, 0.040 g), 1H-3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (0.5 mmol, 0.112 g), and water (12 ml) were placed in a 23-ml Teflon-lined Parr bomb. The bomb was heated at 403 K for 3 d. The red block-shapped crystals were filtered off and washed with water and acetone (yield 65%, based on Co).

Refinement top

Hydrogen atoms of water molecules were located in a difference Fourier map and refined with distance restraints of O—H = 0.85 (2) Å and H···H = 1.39 (2) Å. H atoms on C and N atoms were positoned geometrically and refined using a riding model with C—H = 0.93 Å and N—H = 0.85 Å.

Structure description top

The attractive biological and pharmacological activity of the complexes with triazole caused a growing interest in the synthesis and characterization of new compounds with 1,2,4-triazole group (Huang et al., 2010a; Klingele & Brooker, 2003; Liu et al., 2009). We report here the synthesis and crystal structure of a new cobalt(II) complex [Co(C7H4NO4)2(C12H9N5)2(H2O)2].2H2O, (I). The molecule of the title complex, (Fig. 1), is centrosymmetric, so pairs of equivalent ligands lie trans to each other in a slightly distorted octahedral coordination geometry, cis angles deviating from 90° by less than 4°. with Co—O bond length in the range 2.099–2.117 Å and Co—N bond length 2.155 Å. These bond distances compare well with the bond lenghths in the literatures (Dong, 2009; Du et al., 2007; Huang et al., 2010b).

The intermolecular packing is mainly further controlled by hydrogen bonds (O—H···O, O—H···N and N—H···O, Table 1) among the pyridine N atoms, the triazole N atoms, coordinated water molecules and lattice water molecules. As is well known, a water molecule has two hydrogen atoms and two lone-electron pairs, which enables it to participate in four hydrogen bonds in a tetrahedral configuration, but it also frequently shows a 3-coordinate configuration (Xie et al., 2009). In the title compound, the lattice water O6 also shows a 3-coordinate mode. Through these hydrogen bonds, the molecule is assembled into a three-dimensional supramolecular architecture, as shown in Fig. 2.

For background to triazole-containing compounds, see: Huang et al. (2010a); Klingele & Brooker, (2003); Liu et al. (2009). For related structures, see: Xie et al. (2009); Du et al. (2007); Huang et al. (2010b); Dong (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids (arbitrary spheres for the H atoms). Atoms with the suffix A are generated by the symmetry operation (-x + 2, -y + 1, -z + 1).
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dotted lines.
Diaquabis(3-nitrobenzoato-κO1)bis[1H-5-(3-pyridyl)- 3-(4-pyridyl)-1H-1,2,4-triazole-κN5]cobalt(II) dihydrate top
Crystal data top
[Co(C7H4NO4)2(C12H9N5)2(H2O)2]·2H2OZ = 1
Mr = 909.70F(000) = 469
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7080 (17) ÅCell parameters from 2567 reflections
b = 9.850 (2) Åθ = 1.5–25.0°
c = 12.488 (3) ŵ = 0.51 mm1
α = 81.97 (3)°T = 293 K
β = 85.74 (3)°Block, red
γ = 71.36 (3)°0.40 × 0.20 × 0.12 mm
V = 1004.5 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3518 independent reflections
Radiation source: fine-focus sealed tube2642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.835, Tmax = 0.945k = 1111
5815 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
3518 reflections(Δ/σ)max < 0.001
306 parametersΔρmax = 0.43 e Å3
7 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Co(C7H4NO4)2(C12H9N5)2(H2O)2]·2H2Oγ = 71.36 (3)°
Mr = 909.70V = 1004.5 (4) Å3
Triclinic, P1Z = 1
a = 8.7080 (17) ÅMo Kα radiation
b = 9.850 (2) ŵ = 0.51 mm1
c = 12.488 (3) ÅT = 293 K
α = 81.97 (3)°0.40 × 0.20 × 0.12 mm
β = 85.74 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3518 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2642 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.945Rint = 0.054
5815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0637 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.43 e Å3
3518 reflectionsΔρmin = 0.68 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50000.50000.0338 (2)
C10.8882 (5)0.5642 (5)0.2676 (3)0.0402 (10)
C20.8606 (4)0.5027 (4)0.1685 (3)0.0381 (9)
C30.9466 (5)0.3630 (5)0.1493 (3)0.0559 (11)
H3A1.02240.30420.19850.067*
C40.9203 (6)0.3103 (5)0.0571 (4)0.0649 (13)
H4A0.98030.21710.04400.078*
C50.8061 (6)0.3954 (5)0.0147 (3)0.0567 (12)
H50.78770.36080.07650.068*
C60.7193 (5)0.5333 (5)0.0068 (3)0.0429 (10)
C70.7445 (4)0.5889 (4)0.0965 (3)0.0397 (9)
H7A0.68490.68260.10870.048*
C80.7649 (4)0.3339 (4)0.4794 (3)0.0364 (9)
H8A0.83210.30940.41900.044*
C90.6321 (4)0.2837 (4)0.4974 (3)0.0328 (8)
C100.5367 (4)0.3156 (4)0.5896 (3)0.0382 (9)
H10A0.44820.28220.60560.046*
C110.5751 (4)0.3979 (4)0.6575 (3)0.0426 (10)
H11A0.51200.42140.71970.051*
C120.7069 (4)0.4449 (4)0.6328 (3)0.0372 (9)
H12A0.73190.49980.67970.045*
C130.6008 (4)0.1986 (4)0.4186 (3)0.0352 (9)
C140.4831 (4)0.0989 (4)0.3271 (3)0.0361 (9)
C150.3665 (4)0.0439 (4)0.2817 (3)0.0371 (9)
C160.2248 (4)0.0407 (4)0.3380 (3)0.0424 (10)
H16A0.20230.07150.40620.051*
C170.1174 (5)0.0086 (5)0.2919 (3)0.0524 (11)
H17A0.02360.01140.33160.063*
C180.2767 (5)0.0503 (5)0.1408 (3)0.0558 (12)
H18A0.29580.08130.07260.067*
C190.3924 (5)0.0047 (5)0.1808 (3)0.0483 (11)
H19A0.48710.00630.14050.058*
N10.8013 (3)0.4154 (3)0.5443 (2)0.0338 (7)
N20.4570 (3)0.1725 (3)0.4117 (2)0.0357 (7)
N30.7120 (3)0.1453 (4)0.3446 (2)0.0440 (8)
N40.6339 (4)0.0816 (4)0.2875 (3)0.0431 (8)
N50.1390 (4)0.0527 (4)0.1940 (3)0.0526 (9)
N60.5966 (5)0.6266 (5)0.0687 (3)0.0576 (10)
O10.9798 (3)0.4763 (3)0.33767 (19)0.0411 (7)
O20.8182 (4)0.6953 (3)0.2740 (2)0.0514 (7)
O30.5106 (4)0.7427 (4)0.0446 (3)0.0811 (11)
O40.5802 (4)0.5808 (5)0.1515 (3)0.0949 (13)
O51.1510 (3)0.2825 (3)0.5207 (2)0.0410 (7)
O60.1644 (3)0.0713 (3)0.8675 (2)0.0491 (7)
H5A1.237 (3)0.253 (4)0.484 (3)0.062 (14)*
H40.687 (4)0.042 (4)0.234 (2)0.046 (11)*
H6A0.073 (4)0.061 (5)0.861 (4)0.098 (19)*
H5B1.177 (6)0.285 (7)0.586 (2)0.13 (3)*
H6B0.164 (5)0.155 (3)0.839 (4)0.084 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0306 (4)0.0402 (5)0.0342 (4)0.0127 (3)0.0013 (3)0.0139 (3)
C10.046 (2)0.054 (3)0.030 (2)0.027 (2)0.0032 (18)0.009 (2)
C20.041 (2)0.044 (3)0.0316 (19)0.016 (2)0.0003 (17)0.0089 (18)
C30.062 (3)0.055 (3)0.045 (2)0.009 (3)0.011 (2)0.009 (2)
C40.079 (3)0.048 (3)0.063 (3)0.004 (3)0.002 (3)0.030 (2)
C50.070 (3)0.061 (3)0.043 (2)0.018 (3)0.005 (2)0.020 (2)
C60.049 (2)0.052 (3)0.032 (2)0.020 (2)0.0007 (18)0.0097 (19)
C70.044 (2)0.041 (3)0.037 (2)0.015 (2)0.0036 (18)0.0104 (18)
C80.0296 (18)0.042 (3)0.037 (2)0.0077 (18)0.0020 (16)0.0117 (18)
C90.0306 (18)0.030 (2)0.0369 (19)0.0078 (17)0.0032 (16)0.0058 (16)
C100.0325 (19)0.045 (3)0.040 (2)0.0159 (19)0.0000 (16)0.0075 (18)
C110.037 (2)0.054 (3)0.039 (2)0.015 (2)0.0055 (17)0.0135 (19)
C120.0339 (19)0.042 (3)0.037 (2)0.0103 (19)0.0002 (16)0.0146 (18)
C130.0309 (18)0.036 (2)0.041 (2)0.0124 (18)0.0007 (16)0.0115 (17)
C140.0349 (19)0.033 (2)0.043 (2)0.0107 (18)0.0012 (17)0.0117 (18)
C150.0341 (19)0.035 (2)0.042 (2)0.0078 (18)0.0064 (17)0.0082 (17)
C160.039 (2)0.040 (3)0.049 (2)0.0102 (19)0.0005 (18)0.0144 (19)
C170.035 (2)0.055 (3)0.069 (3)0.013 (2)0.001 (2)0.018 (2)
C180.059 (3)0.062 (3)0.054 (3)0.024 (3)0.002 (2)0.021 (2)
C190.045 (2)0.061 (3)0.048 (2)0.024 (2)0.0039 (19)0.020 (2)
N10.0301 (15)0.037 (2)0.0351 (16)0.0090 (14)0.0009 (13)0.0116 (14)
N20.0330 (15)0.039 (2)0.0385 (17)0.0128 (15)0.0000 (13)0.0122 (14)
N30.0365 (17)0.054 (2)0.0498 (19)0.0192 (17)0.0049 (15)0.0240 (17)
N40.0352 (17)0.054 (2)0.0458 (19)0.0159 (17)0.0052 (16)0.0251 (17)
N50.0453 (19)0.056 (3)0.063 (2)0.0192 (19)0.0048 (18)0.0200 (19)
N60.066 (2)0.071 (3)0.039 (2)0.021 (2)0.0080 (18)0.011 (2)
O10.0430 (14)0.0474 (19)0.0355 (14)0.0159 (14)0.0033 (12)0.0087 (13)
O20.0730 (19)0.042 (2)0.0392 (15)0.0145 (17)0.0036 (14)0.0128 (13)
O30.095 (3)0.073 (3)0.065 (2)0.002 (2)0.0267 (19)0.0183 (19)
O40.102 (3)0.118 (4)0.056 (2)0.006 (3)0.0311 (19)0.038 (2)
O50.0344 (14)0.0447 (19)0.0428 (15)0.0066 (14)0.0028 (13)0.0178 (13)
O60.0490 (17)0.049 (2)0.0525 (17)0.0168 (16)0.0001 (14)0.0135 (15)
Geometric parameters (Å, º) top
Co1—O12.099 (2)C11—C121.369 (5)
Co1—O1i2.099 (2)C11—H11A0.9300
Co1—O5i2.117 (3)C12—N11.335 (4)
Co1—O52.117 (3)C12—H12A0.9300
Co1—N1i2.155 (3)C13—N31.321 (4)
Co1—N12.155 (3)C13—N21.367 (4)
C1—O21.251 (5)C14—N21.329 (4)
C1—O11.266 (5)C14—N41.335 (4)
C1—C21.518 (5)C14—C151.473 (4)
C2—C31.385 (6)C15—C161.381 (5)
C2—C71.387 (5)C15—C191.387 (5)
C3—C41.389 (5)C16—C171.375 (5)
C3—H3A0.9300C16—H16A0.9300
C4—C51.373 (6)C17—N51.335 (5)
C4—H4A0.9300C17—H17A0.9300
C5—C61.379 (6)C18—N51.332 (5)
C5—H50.9300C18—C191.376 (5)
C6—C71.374 (5)C18—H18A0.9300
C6—N61.468 (5)C19—H19A0.9300
C7—H7A0.9300N3—N41.354 (4)
C8—N11.335 (4)N4—H40.850 (18)
C8—C91.388 (4)N6—O31.214 (5)
C8—H8A0.9300N6—O41.219 (4)
C9—C101.382 (5)O5—H5A0.84 (3)
C9—C131.470 (5)O5—H5B0.87 (3)
C10—C111.376 (5)O6—H6A0.85 (4)
C10—H10A0.9300O6—H6B0.85 (3)
O1—Co1—O1i180.00C12—C11—C10119.5 (3)
O1—Co1—O5i92.14 (11)C12—C11—H11A120.2
O1i—Co1—O5i87.86 (11)C10—C11—H11A120.2
O1—Co1—O587.86 (11)N1—C12—C11122.9 (3)
O1i—Co1—O592.14 (11)N1—C12—H12A118.6
O5i—Co1—O5180.00C11—C12—H12A118.6
O1—Co1—N1i90.32 (10)N3—C13—N2114.5 (3)
O1i—Co1—N1i89.68 (10)N3—C13—C9121.0 (3)
O5i—Co1—N1i86.07 (11)N2—C13—C9124.5 (3)
O5—Co1—N1i93.93 (11)N2—C14—N4109.5 (3)
O1—Co1—N189.68 (10)N2—C14—C15126.5 (3)
O1i—Co1—N190.32 (10)N4—C14—C15124.0 (3)
O5i—Co1—N193.93 (11)C16—C15—C19117.3 (3)
O5—Co1—N186.07 (11)C16—C15—C14120.8 (3)
N1i—Co1—N1180.00C19—C15—C14121.9 (3)
O2—C1—O1125.7 (3)C17—C16—C15119.1 (3)
O2—C1—C2118.0 (4)C17—C16—H16A120.5
O1—C1—C2116.3 (4)C15—C16—H16A120.5
C3—C2—C7119.6 (3)N5—C17—C16124.3 (4)
C3—C2—C1121.7 (4)N5—C17—H17A117.8
C7—C2—C1118.7 (4)C16—C17—H17A117.8
C2—C3—C4120.4 (4)N5—C18—C19123.9 (4)
C2—C3—H3A119.8N5—C18—H18A118.1
C4—C3—H3A119.8C19—C18—H18A118.1
C5—C4—C3120.2 (4)C18—C19—C15119.4 (3)
C5—C4—H4A119.9C18—C19—H19A120.3
C3—C4—H4A119.9C15—C19—H19A120.3
C4—C5—C6118.6 (4)C8—N1—C12117.4 (3)
C4—C5—H5120.7C8—N1—Co1119.6 (2)
C6—C5—H5120.7C12—N1—Co1123.0 (2)
C7—C6—C5122.4 (4)C14—N2—C13102.9 (3)
C7—C6—N6117.8 (4)C13—N3—N4102.2 (3)
C5—C6—N6119.8 (4)C14—N4—N3110.9 (3)
C6—C7—C2118.7 (4)C14—N4—H4133 (2)
C6—C7—H7A120.6N3—N4—H4116 (2)
C2—C7—H7A120.6C18—N5—C17116.0 (3)
N1—C8—C9123.5 (3)O3—N6—O4122.5 (4)
N1—C8—H8A118.3O3—N6—C6119.4 (3)
C9—C8—H8A118.3O4—N6—C6118.1 (4)
C10—C9—C8117.8 (3)C1—O1—Co1128.0 (2)
C10—C9—C13123.3 (3)Co1—O5—H5A123 (3)
C8—C9—C13118.8 (3)Co1—O5—H5B95 (4)
C11—C10—C9118.8 (3)H5A—O5—H5B108 (3)
C11—C10—H10A120.6H6A—O6—H6B110 (3)
C9—C10—H10A120.6
O2—C1—C2—C3172.9 (3)C9—C8—N1—C122.4 (5)
O1—C1—C2—C37.8 (5)C9—C8—N1—Co1175.1 (3)
O2—C1—C2—C78.0 (5)C11—C12—N1—C81.3 (6)
O1—C1—C2—C7171.3 (3)C11—C12—N1—Co1176.1 (3)
C7—C2—C3—C41.7 (6)O1—Co1—N1—C822.1 (3)
C1—C2—C3—C4179.1 (3)O1i—Co1—N1—C8157.9 (3)
C2—C3—C4—C51.4 (7)O5i—Co1—N1—C8114.2 (3)
C3—C4—C5—C60.2 (7)O5—Co1—N1—C865.8 (3)
C4—C5—C6—C70.8 (6)O1—Co1—N1—C12155.3 (3)
C4—C5—C6—N6179.9 (4)O1i—Co1—N1—C1224.7 (3)
C5—C6—C7—C20.5 (5)O5i—Co1—N1—C1263.2 (3)
N6—C6—C7—C2179.7 (3)O5—Co1—N1—C12116.8 (3)
C3—C2—C7—C60.7 (5)N4—C14—N2—C130.6 (4)
C1—C2—C7—C6179.9 (3)C15—C14—N2—C13179.1 (4)
N1—C8—C9—C102.6 (6)N3—C13—N2—C140.4 (4)
N1—C8—C9—C13178.0 (3)C9—C13—N2—C14177.1 (4)
C8—C9—C10—C111.5 (6)N2—C13—N3—N40.0 (4)
C13—C9—C10—C11179.1 (4)C9—C13—N3—N4177.6 (3)
C9—C10—C11—C120.6 (6)N2—C14—N4—N30.7 (5)
C10—C11—C12—N10.5 (6)C15—C14—N4—N3179.1 (3)
C10—C9—C13—N3165.6 (4)C13—N3—N4—C140.4 (4)
C8—C9—C13—N313.7 (6)C19—C18—N5—C170.6 (7)
C10—C9—C13—N217.1 (6)C16—C17—N5—C181.5 (7)
C8—C9—C13—N2163.6 (4)C7—C6—N6—O37.5 (5)
N2—C14—C15—C1612.9 (6)C5—C6—N6—O3173.4 (4)
N4—C14—C15—C16167.4 (4)C7—C6—N6—O4175.9 (4)
N2—C14—C15—C19166.2 (4)C5—C6—N6—O43.3 (5)
N4—C14—C15—C1913.6 (6)O2—C1—O1—Co117.2 (5)
C19—C15—C16—C170.4 (6)C2—C1—O1—Co1162.0 (2)
C14—C15—C16—C17178.7 (4)O5i—Co1—O1—C17.9 (3)
C15—C16—C17—N51.0 (7)O5—Co1—O1—C1172.1 (3)
N5—C18—C19—C150.8 (7)N1i—Co1—O1—C194.0 (3)
C16—C15—C19—C181.3 (6)N1—Co1—O1—C186.0 (3)
C14—C15—C19—C18177.8 (4)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O6ii0.85 (3)1.94 (3)2.778 (5)169 (3)
O5—H5A···N2iii0.84 (3)2.02 (3)2.856 (4)174 (4)
O5—H5B···O2i0.87 (3)1.79 (3)2.644 (4)167 (5)
O6—H6A···N5iv0.85 (4)2.05 (4)2.873 (5)166 (3)
O6—H6B···O2v0.85 (3)1.93 (4)2.735 (4)158 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C7H4NO4)2(C12H9N5)2(H2O)2]·2H2O
Mr909.70
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7080 (17), 9.850 (2), 12.488 (3)
α, β, γ (°)81.97 (3), 85.74 (3), 71.36 (3)
V3)1004.5 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.40 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.835, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
5815, 3518, 2642
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.146, 1.03
No. of reflections3518
No. of parameters306
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.68

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O6i0.85 (3)1.94 (3)2.778 (5)169 (3)
O5—H5A···N2ii0.84 (3)2.02 (3)2.856 (4)174 (4)
O5—H5B···O2iii0.87 (3)1.79 (3)2.644 (4)167 (5)
O6—H6A···N5iv0.85 (4)2.05 (4)2.873 (5)166 (3)
O6—H6B···O2v0.85 (3)1.93 (4)2.735 (4)158 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x, y, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

We acknowledge financial support from the Science & Technology Foundation of Shaoyang, Hunan, China (grant No. J0966), the Scientific Research Foundation of Hunan Provincial Education Department (grant No. 10C0297) and the Foundation of Shaoyang Medical College, China (grant No. XK200804)

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, L. Y. (2009). Acta Cryst. E65, m487–m488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDu, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984–3995.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, F.-P., Tian, J.-L., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010a). Cryst. Growth Des. 10, 1145–1154.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, F.-P., Tian, J.-L., Li, D.-D., Chen, G.-J., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010b). Inorg. Chem. 49, 2525–2529.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationLiu, T.-L. & Zhang, Y.-L. (2009). Acta Cryst. E65, m913.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, X.-F., Chen, S.-P., Xia, Z.-Q. & Gao, S.-L. (2009). Polyhedron, 28, 679–688.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds