organic compounds
4-Chloro-N-methyl-2-(1,2,3,4-tetrahydroisoquinolin-1-yl)aniline
aLaboratoire de Chimie de Coordination, Faculté des Sciences-Semlalia BP 2390, 40001 Marrakech, Morocco, and bDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain
*Correspondence e-mail: pedro.valerga@uca.es
The racemic title compound, C16H17ClN2, shows a tetrahydroisoquinoline skeleton with a 4-chloro-N-methylaniline group linked to the C atom at position 1. The dihedral angle between the benzene rings is 85.82 (4)°. An intramolecular N—H⋯N hydrogen bond occurs. In the crystal, molecules are linked through intermolecular C—H⋯π interactions.
Related literature
For the use of diamine ligands in enantioselective hydrogenation of et al. (2009); Morilla et al. (2007); Aitali et al. (1995, 2000a); Ohkuma et al. (1995). For related structures, see: Aitali et al. (2000b); Nakahara et al. (1998); Suna (2003); Vedejs et al. (1999).
see: XieExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810046568/bg2371sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046568/bg2371Isup2.hkl
(-)-1-[5-chloro-2-(methylamino)-phenyl]-1,2,3–4-tetrahydro-isoquinoline tartrate was purchased from Aldrich chemical companies (98% purity) and used without further purification. NMR studies were performed on a Bruker Avance 300 spectrometer in CDCl3, chemicals shifts are given in p.p.m. relative to external TMS and coupling constant (J) in Hz. Preparation of ligands: In a typical experiment, a solution of (-)-1-[5-chloro-2-(methylamino)-phenyl] -1,2,3–4-tetrahydro-isoquinoline tartrate (2 g, 2.8 mmol) in 50 ml of H2O distilled, was add to Na2CO3 (1.18 g, 11.2 mmol) in 10 ml of distilled H2O. The mixture was stirred for appropriate time at room temperature, and extracted with diethyl ether (3*25 ml), the organic layer was dried over Na2SO4, and the solvent was evaporated to dryness leading to a yellow solid with 96% yielding. The solid was recrystallized from ethyl acetate solution. 1H NMR: 2.65(m, 2H), 2.70 (s, 3H), 2.92 (m, 2H), 4.02 (br, s, 1H, NH); 4.54 (s, 1H), 6.81–6.88 (m, 3H, Ar), 7.0- 7.43 (m, 4H, Ar), 13C NMR: 32.9, 35.78, 44.4, 53.5, 114.06, 122.4, 125.7, 126.2, 127.3, 128.03, 128.12, 128.23, 129.03, 139.48, 141.86, 143. 25.
H atoms were positioned geometrically; those attached to C were treated as riding, while the coordinates of those attached to N were refined. In all cases, Uiso(H) = 1.2 Ueq(Host).
We have been focusing our research on the use of diamines which can lead to the synthesis of chiral metal complexes with application, for example, as catalysts in asymmetric hydrogenation processes (Xie et al., 2009; Ohkuma et al., 1995); in the asymmetric transfer hydrogenation (Aitali et al., 2000a; Morilla et al., 2007; Aitali et al., 1995). As part of our study, we came across (-)-1-[5-chloro-2-(methylamino)-phenyl]-1,2,3–4-tetrahydro-isoquinolin, an interesting chiral diamine capable of forming chelates with transition metal centres (Aitali et al., 2000b). Here we report the π interactions (Table 1, Fig.2). These interactions build molecular rows in the direction parallel to the b axis (Fig.3).
of a racemic melange containing R and S diamine forms (S.G. C2/c) . The molecule shows a tetrahydro-isoquinoline skeleton with a [4-chloro-phenyl]-N-methyl- amine group linked to carbon 1. Bond lengths and angles are normal and correspond to those observed in related compounds (Nakahara et al. (1998); Suna (2003); Vedejs et al. (1999)). The dihedral angle formed by the two flat six-membered rings is 85.82 (4)°. The molecule contains an intramolecular hydrogen bond between N2 of the amine side-chain and the quinoline N1 with a N–N distance of 2.907 (2) Å. In the crystal, molecules are linked through intermolecular C—H···For the use of diamine ligands in enantioselective hydrogenation of
see: Xie et al. (2009); Morilla et al. (2007); Aitali et al. (2000a); Aitali et al. (1995); Ohkuma et al. (1995). For related structures, see: Aitali et al. (2000b); Nakahara et al. (1998); Suna (2003); Vedejs et al. (1999).Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (-Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecule of (I), with the atomic numbering and 50% probability displacement ellipsoids, showing intramolecular N—H···N hydrogen bond. | |
Fig. 2. A view normal to (010) of the C–H···centroids interactions (dotted lines) in the crystal structure of the title compound; Cg1 and Cg2 denote the centroids of the C1-C4,C8,C9 and C10-C15 rings respectively. Symmetry: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x+1/2, -y+1/2, -z; (iii) -x+1, y, -z+1/2. | |
Fig. 3. Packing diagram of the title molecule showing molecular alignment along b axis. |
C16H17ClN2 | F(000) = 1152 |
Mr = 272.77 | Dx = 1.316 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 8084 reflections |
a = 22.055 (4) Å | θ = 2.2–27.5° |
b = 6.9269 (14) Å | µ = 0.27 mm−1 |
c = 20.699 (4) Å | T = 100 K |
β = 119.46 (3)° | Block, orange |
V = 2753.4 (12) Å3 | 0.57 × 0.54 × 0.34 mm |
Z = 8 |
Bruker SMART APEX CCD area-detector diffractometer | 3133 independent reflections |
Radiation source: sealed X-ray tube, Bruker SMART APEX | 2995 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
1700 ω scan frames, 0.3 deg, 10 sec | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −28→24 |
Tmin = 0.854, Tmax = 0.917 | k = −8→8 |
10809 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0498P)2 + 2.3515P] where P = (Fo2 + 2Fc2)/3 |
3133 reflections | (Δ/σ)max < 0.001 |
179 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C16H17ClN2 | V = 2753.4 (12) Å3 |
Mr = 272.77 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.055 (4) Å | µ = 0.27 mm−1 |
b = 6.9269 (14) Å | T = 100 K |
c = 20.699 (4) Å | 0.57 × 0.54 × 0.34 mm |
β = 119.46 (3)° |
Bruker SMART APEX CCD area-detector diffractometer | 3133 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2995 reflections with I > 2σ(I) |
Tmin = 0.854, Tmax = 0.917 | Rint = 0.021 |
10809 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.39 e Å−3 |
3133 reflections | Δρmin = −0.23 e Å−3 |
179 parameters |
Experimental. Bruker SMART APEX three-circle diffractometer with CCD area detector, sealed X-ray tube, graphite monochromator. A hemisphere of the reciprocal space up to theta(max) = 27.53 ° was measured by omega scan frames with delta(omega) = 0.30 ° and 10 sec per frame, 1700 frames were recorded using program SMART (Bruker). Frame data evaluation and integration were done with program SAINT+(Bruker); Lattice parameters by least-squares refinement of the geometric parameters of the strongest reflections with program SAINT + (Bruker). Correction for absorption and crystal decay (insignificant) were applied by semi-empirical method from equivalents using program SADABS (G.M. Sheldrick, version of 2001, University of Goettingen, Germany). Data reduction was done with program XPREP (BRUKER). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.108112 (14) | 0.57631 (5) | 0.118305 (16) | 0.02561 (11) | |
N1 | 0.37252 (6) | 0.11416 (15) | 0.18002 (6) | 0.0220 (2) | |
H1A | 0.4240 (9) | 0.385 (3) | 0.2397 (9) | 0.029* | |
N2 | 0.41317 (5) | 0.49781 (15) | 0.24404 (5) | 0.0187 (2) | |
H2A | 0.3514 (8) | 0.060 (2) | 0.2039 (9) | 0.024* | |
C1 | 0.43262 (6) | 0.30992 (18) | 0.02866 (6) | 0.0218 (2) | |
H1 | 0.4685 | 0.2439 | 0.0249 | 0.026* | |
C2 | 0.40605 (7) | 0.47964 (19) | −0.01047 (7) | 0.0239 (3) | |
H2 | 0.4238 | 0.5298 | −0.0406 | 0.029* | |
C3 | 0.35321 (7) | 0.57662 (18) | −0.00561 (7) | 0.0237 (3) | |
H3 | 0.3348 | 0.6934 | −0.0322 | 0.028* | |
C4 | 0.32747 (6) | 0.50152 (17) | 0.03840 (6) | 0.0202 (2) | |
H4 | 0.2912 | 0.5676 | 0.0415 | 0.024* | |
C5 | 0.32195 (6) | 0.24498 (16) | 0.12260 (6) | 0.0176 (2) | |
H5 | 0.2810 | 0.1655 | 0.0877 | 0.021* | |
C6 | 0.39284 (7) | −0.03821 (18) | 0.14479 (8) | 0.0257 (3) | |
H6A | 0.3508 | −0.0954 | 0.1027 | 0.031* | |
H6B | 0.4184 | −0.1418 | 0.1811 | 0.031* | |
C7 | 0.43893 (7) | 0.05077 (18) | 0.11740 (7) | 0.0237 (3) | |
H7A | 0.4851 | 0.0803 | 0.1604 | 0.028* | |
H7B | 0.4458 | −0.0435 | 0.0856 | 0.028* | |
C8 | 0.40763 (6) | 0.23365 (17) | 0.07376 (6) | 0.0185 (2) | |
C9 | 0.35403 (6) | 0.33045 (16) | 0.07817 (6) | 0.0167 (2) | |
C10 | 0.29589 (6) | 0.39723 (16) | 0.15549 (6) | 0.0164 (2) | |
C11 | 0.34221 (6) | 0.51954 (16) | 0.21409 (6) | 0.0163 (2) | |
C12 | 0.31372 (6) | 0.66378 (17) | 0.23897 (6) | 0.0190 (2) | |
H12 | 0.3440 | 0.7486 | 0.2775 | 0.023* | |
C13 | 0.24199 (6) | 0.68467 (17) | 0.20830 (6) | 0.0201 (2) | |
H13 | 0.2234 | 0.7840 | 0.2251 | 0.024* | |
C14 | 0.19822 (6) | 0.55940 (17) | 0.15324 (6) | 0.0188 (2) | |
C15 | 0.22449 (6) | 0.41698 (16) | 0.12642 (6) | 0.0178 (2) | |
H15 | 0.1935 | 0.3329 | 0.0881 | 0.021* | |
C16 | 0.46083 (6) | 0.59747 (19) | 0.31214 (7) | 0.0237 (3) | |
H16A | 0.4575 | 0.7370 | 0.3031 | 0.036* | |
H16B | 0.5086 | 0.5544 | 0.3286 | 0.036* | |
H16C | 0.4486 | 0.5683 | 0.3506 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01574 (16) | 0.03106 (18) | 0.03046 (17) | 0.00491 (11) | 0.01170 (12) | 0.00590 (11) |
N1 | 0.0285 (5) | 0.0173 (5) | 0.0266 (5) | 0.0049 (4) | 0.0185 (5) | 0.0048 (4) |
N2 | 0.0156 (5) | 0.0195 (5) | 0.0213 (5) | −0.0006 (4) | 0.0093 (4) | −0.0021 (4) |
C1 | 0.0184 (5) | 0.0266 (6) | 0.0220 (5) | −0.0013 (5) | 0.0113 (5) | −0.0037 (5) |
C2 | 0.0261 (6) | 0.0278 (6) | 0.0216 (5) | −0.0048 (5) | 0.0147 (5) | −0.0015 (5) |
C3 | 0.0282 (6) | 0.0220 (6) | 0.0217 (6) | 0.0010 (5) | 0.0129 (5) | 0.0031 (4) |
C4 | 0.0213 (6) | 0.0201 (6) | 0.0199 (5) | 0.0014 (4) | 0.0107 (4) | −0.0008 (4) |
C5 | 0.0187 (5) | 0.0153 (5) | 0.0208 (5) | −0.0009 (4) | 0.0112 (4) | −0.0020 (4) |
C6 | 0.0320 (7) | 0.0160 (5) | 0.0347 (6) | 0.0045 (5) | 0.0208 (6) | 0.0022 (5) |
C7 | 0.0236 (6) | 0.0221 (6) | 0.0280 (6) | 0.0057 (5) | 0.0147 (5) | 0.0018 (5) |
C8 | 0.0171 (5) | 0.0191 (5) | 0.0185 (5) | −0.0013 (4) | 0.0083 (4) | −0.0032 (4) |
C9 | 0.0171 (5) | 0.0175 (5) | 0.0157 (5) | −0.0020 (4) | 0.0082 (4) | −0.0026 (4) |
C10 | 0.0181 (5) | 0.0157 (5) | 0.0180 (5) | −0.0003 (4) | 0.0109 (4) | 0.0006 (4) |
C11 | 0.0169 (5) | 0.0164 (5) | 0.0175 (5) | −0.0005 (4) | 0.0100 (4) | 0.0015 (4) |
C12 | 0.0207 (6) | 0.0186 (5) | 0.0191 (5) | −0.0012 (4) | 0.0109 (4) | −0.0023 (4) |
C13 | 0.0228 (6) | 0.0194 (5) | 0.0226 (5) | 0.0038 (4) | 0.0146 (5) | 0.0014 (4) |
C14 | 0.0147 (5) | 0.0222 (6) | 0.0205 (5) | 0.0027 (4) | 0.0094 (4) | 0.0049 (4) |
C15 | 0.0177 (5) | 0.0187 (5) | 0.0174 (5) | −0.0013 (4) | 0.0088 (4) | 0.0013 (4) |
C16 | 0.0177 (5) | 0.0293 (6) | 0.0213 (5) | −0.0015 (5) | 0.0074 (5) | −0.0023 (5) |
Cl1—C14 | 1.7528 (13) | C6—C7 | 1.5173 (18) |
N1—C6 | 1.4724 (15) | C6—H6A | 0.9900 |
N1—C5 | 1.4744 (15) | C6—H6B | 0.9900 |
N1—H2A | 0.909 (16) | C7—C8 | 1.5112 (16) |
N2—C11 | 1.3791 (15) | C7—H7A | 0.9900 |
N2—C16 | 1.4529 (16) | C7—H7B | 0.9900 |
N2—H1A | 0.837 (17) | C8—C9 | 1.4004 (16) |
C1—C2 | 1.3837 (18) | C10—C15 | 1.3887 (16) |
C1—C8 | 1.4003 (16) | C10—C11 | 1.4190 (16) |
C1—H1 | 0.9500 | C11—C12 | 1.4059 (15) |
C2—C3 | 1.3910 (18) | C12—C13 | 1.3925 (17) |
C2—H2 | 0.9500 | C12—H12 | 0.9500 |
C3—C4 | 1.3898 (17) | C13—C14 | 1.3789 (17) |
C3—H3 | 0.9500 | C13—H13 | 0.9500 |
C4—C9 | 1.3966 (16) | C14—C15 | 1.3906 (16) |
C4—H4 | 0.9500 | C15—H15 | 0.9500 |
C5—C10 | 1.5136 (15) | C16—H16A | 0.9800 |
C5—C9 | 1.5287 (15) | C16—H16B | 0.9800 |
C5—H5 | 1.0000 | C16—H16C | 0.9800 |
C6—N1—C5 | 109.58 (9) | C8—C7—H7B | 109.3 |
C6—N1—H2A | 109.7 (10) | C6—C7—H7B | 109.3 |
C5—N1—H2A | 107.7 (10) | H7A—C7—H7B | 107.9 |
C11—N2—C16 | 120.25 (10) | C1—C8—C9 | 118.98 (11) |
C11—N2—H1A | 112.1 (11) | C1—C8—C7 | 120.05 (10) |
C16—N2—H1A | 116.1 (11) | C9—C8—C7 | 120.97 (10) |
C2—C1—C8 | 121.22 (11) | C4—C9—C8 | 119.39 (10) |
C2—C1—H1 | 119.4 | C4—C9—C5 | 119.93 (10) |
C8—C1—H1 | 119.4 | C8—C9—C5 | 120.60 (10) |
C1—C2—C3 | 119.79 (11) | C15—C10—C11 | 119.86 (10) |
C1—C2—H2 | 120.1 | C15—C10—C5 | 118.31 (10) |
C3—C2—H2 | 120.1 | C11—C10—C5 | 121.83 (10) |
C2—C3—C4 | 119.57 (11) | N2—C11—C12 | 121.72 (10) |
C2—C3—H3 | 120.2 | N2—C11—C10 | 119.99 (10) |
C4—C3—H3 | 120.2 | C12—C11—C10 | 118.28 (10) |
C3—C4—C9 | 121.04 (11) | C13—C12—C11 | 121.27 (11) |
C3—C4—H4 | 119.5 | C13—C12—H12 | 119.4 |
C9—C4—H4 | 119.5 | C11—C12—H12 | 119.4 |
N1—C5—C10 | 111.69 (9) | C14—C13—C12 | 119.21 (11) |
N1—C5—C9 | 109.42 (9) | C14—C13—H13 | 120.4 |
C10—C5—C9 | 113.04 (9) | C12—C13—H13 | 120.4 |
N1—C5—H5 | 107.5 | C13—C14—C15 | 121.10 (11) |
C10—C5—H5 | 107.5 | C13—C14—Cl1 | 119.33 (9) |
C9—C5—H5 | 107.5 | C15—C14—Cl1 | 119.56 (9) |
N1—C6—C7 | 108.48 (10) | C10—C15—C14 | 120.22 (11) |
N1—C6—H6A | 110.0 | C10—C15—H15 | 119.9 |
C7—C6—H6A | 110.0 | C14—C15—H15 | 119.9 |
N1—C6—H6B | 110.0 | N2—C16—H16A | 109.5 |
C7—C6—H6B | 110.0 | N2—C16—H16B | 109.5 |
H6A—C6—H6B | 108.4 | H16A—C16—H16B | 109.5 |
C8—C7—C6 | 111.76 (10) | N2—C16—H16C | 109.5 |
C8—C7—H7A | 109.3 | H16A—C16—H16C | 109.5 |
C6—C7—H7A | 109.3 | H16B—C16—H16C | 109.5 |
C8—C1—C2—C3 | −0.41 (18) | C10—C5—C9—C8 | 149.59 (10) |
C1—C2—C3—C4 | −0.20 (18) | N1—C5—C10—C15 | −126.07 (11) |
C2—C3—C4—C9 | 0.30 (18) | C9—C5—C10—C15 | 110.02 (11) |
C6—N1—C5—C10 | 176.42 (10) | N1—C5—C10—C11 | 54.53 (14) |
C6—N1—C5—C9 | −57.66 (12) | C9—C5—C10—C11 | −69.39 (13) |
C5—N1—C6—C7 | 71.95 (13) | C16—N2—C11—C12 | 12.46 (16) |
N1—C6—C7—C8 | −48.54 (14) | C16—N2—C11—C10 | −168.94 (10) |
C2—C1—C8—C9 | 0.93 (17) | C15—C10—C11—N2 | 178.75 (10) |
C2—C1—C8—C7 | −178.41 (11) | C5—C10—C11—N2 | −1.85 (16) |
C6—C7—C8—C1 | −163.97 (11) | C15—C10—C11—C12 | −2.59 (16) |
C6—C7—C8—C9 | 16.70 (16) | C5—C10—C11—C12 | 176.81 (10) |
C3—C4—C9—C8 | 0.22 (17) | N2—C11—C12—C13 | 179.92 (10) |
C3—C4—C9—C5 | −176.50 (10) | C10—C11—C12—C13 | 1.29 (16) |
C1—C8—C9—C4 | −0.82 (16) | C11—C12—C13—C14 | 0.99 (17) |
C7—C8—C9—C4 | 178.51 (11) | C12—C13—C14—C15 | −2.02 (17) |
C1—C8—C9—C5 | 175.88 (10) | C12—C13—C14—Cl1 | 176.31 (9) |
C7—C8—C9—C5 | −4.79 (16) | C11—C10—C15—C14 | 1.64 (16) |
N1—C5—C9—C4 | −158.88 (10) | C5—C10—C15—C14 | −177.78 (10) |
C10—C5—C9—C4 | −33.73 (14) | C13—C14—C15—C10 | 0.71 (17) |
N1—C5—C9—C8 | 24.44 (14) | Cl1—C14—C15—C10 | −177.62 (8) |
Cg1 and Cg2 are the centroids of the C1–C4,C8,C9 and C10–C15 rings respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1A···N1 | 0.837 (17) | 2.225 (17) | 2.9074 (15) | 138.8 (15) |
C13—H13···Cg2i | 0.95 | 2.55 | 3.4307 (12) | 154 |
C15—H15···Cg1ii | 0.95 | 2.40 | 3.3495 (15) | 174 |
C16—H16B···Cg1iii | 0.98 | 2.89 | 3.6381 (19) | 134 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, −y+1/2, −z; (iii) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H17ClN2 |
Mr | 272.77 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 22.055 (4), 6.9269 (14), 20.699 (4) |
β (°) | 119.46 (3) |
V (Å3) | 2753.4 (12) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.57 × 0.54 × 0.34 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.854, 0.917 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10809, 3133, 2995 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.092, 1.05 |
No. of reflections | 3133 |
No. of parameters | 179 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.23 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 (-Farrugia, 1997).
Cg1 and Cg2 are the centroids of the C1–C4,C8,C9 and C10–C15 rings respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1A···N1 | 0.837 (17) | 2.225 (17) | 2.9074 (15) | 138.8 (15) |
C13—H13···Cg2i | 0.95 | 2.55 | 3.4307 (12) | 153.9 |
C15—H15···Cg1ii | 0.95 | 2.40 | 3.3495 (15) | 174.3 |
C16—H16B···Cg1iii | 0.98 | 2.89 | 3.6381 (19) | 134.3 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, −y+1/2, −z; (iii) −x+1, y, −z+1/2. |
Acknowledgements
We thank the SCCYT (Universidad de Cádiz) for the data collection and the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía for financial support.
References
Aitali, M., Allaoud, S., Karim, A., Roucoux, A. & Mortreux, A. (1995). Tetrahedron Asymmetry, 6, 369–370. CrossRef Google Scholar
Aitali, M., Allaoud, S., Meliet, C., Mortreux, A. & Karim, A. (2000a). Tetrahedron Asymmetry, 11, 1367–1374. Web of Science CrossRef CAS Google Scholar
Aitali, M., El Firdoussi, L., Karim, A., Barrero, A. F. & Quirós, M. (2000b). Acta Cryst. C56, 1088–1089. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Morilla, M. E., Rodriguez, P., Belderrain, T. R., Graiff, C., Tiripiccho, A., Nicasio, M. C. & Perez, P. (2007). Inorg. Chem. 46, 9405–9414. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nakahara, H., Takeuchi, M., Naito, R., Kurihara, H., Nagano, N., Isomura, Y. & Mase, T. (1998). Acta Cryst. C54, 651–653. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ohkuma, T., Ooka, H., Hashiguchi, S., Ikariya, T. & Noyori, R. (1995). J. Am. Chem. Soc. 117, 2675–2676. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suna, E. (2003). Synthesis, 2, 251–254. Web of Science CSD CrossRef Google Scholar
Vedejs, E., Kruger, A. W. & Suna, E. (1999). J. Org. Chem. 64, 7863–7870. Web of Science CSD CrossRef CAS Google Scholar
Xie, J., Kong, W., Wang, X., Bai, W., Wang, L. & Zhou, Q. (2009). Front. Chem. China, 4, 299–306. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We have been focusing our research on the use of diamines which can lead to the synthesis of chiral metal complexes with application, for example, as catalysts in asymmetric hydrogenation processes (Xie et al., 2009; Ohkuma et al., 1995); in the asymmetric transfer hydrogenation (Aitali et al., 2000a; Morilla et al., 2007; Aitali et al., 1995). As part of our study, we came across (-)-1-[5-chloro-2-(methylamino)-phenyl]-1,2,3–4-tetrahydro-isoquinolin, an interesting chiral diamine capable of forming chelates with transition metal centres (Aitali et al., 2000b). Here we report the crystal structure of a racemic melange containing R and S diamine forms (S.G. C2/c) . The molecule shows a tetrahydro-isoquinoline skeleton with a [4-chloro-phenyl]-N-methyl- amine group linked to carbon 1. Bond lengths and angles are normal and correspond to those observed in related compounds (Nakahara et al. (1998); Suna (2003); Vedejs et al. (1999)). The dihedral angle formed by the two flat six-membered rings is 85.82 (4)°. The molecule contains an intramolecular hydrogen bond between N2 of the amine side-chain and the quinoline N1 with a N–N distance of 2.907 (2) Å. In the crystal, molecules are linked through intermolecular C—H···π interactions (Table 1, Fig.2). These interactions build molecular rows in the direction parallel to the b axis (Fig.3).