metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)chlorido(1,4,7-tri­thia­cyclo­nonane-κ3S,S′,S′′)ruthenium(II) nitrate monohydrate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 14 October 2010; accepted 10 November 2010; online 13 November 2010)

In the title compound, [RuCl(C10H8N2)(C6H12S3)]NO3·H2O or [RuCl(bpy)([9]aneS3)]NO3·H2O, ([9]aneS3 is 1,4,7-tri­thia­cyclo­nonane and bpy is 2,2′-bipyridine), the RuII cation has a slightly distorted octa­hedral environment composed of three facially coordinated S atoms from ([9]aneS3), two N atoms from bpy and a chloride anion. The nitrate counter-ion and the water mol­ecule of crystallization are engaged in O—H⋯O hydrogen-bonding inter­actions, leading to a supra­molecular chain running parallel to the c axis.

Related literature

For general background on the cytotoxic activity of com­pounds with the (Ru[9]aneS3) unit, see: Bratsos et al. (2008[Bratsos, I., Jedner, S., Bergamo, A., Sava, G., Gianferrara, T., Zangrando, E. & Alessio, E. (2008). J. Inorg. Biochem. 102, 1120-1133.]); Serli et al. (2005[Serli, B., Zangrando, E., Gianferrara, T., Scolaro, C., Dyson, P. J., Bergamo, A. & Alessio, E. (2005). Eur. J. Inorg. Chem. pp. 3423-3434.]). For related compounds, see: Sala et al. (2004[Sala, X., Poater, A., Romero, I., Rodriguez, M., Llobet, A., Solans, X., Parella, T. & Santos, T. M. (2004). Eur. J. Inorg. Chem. pp. 612-618.]); Marques, Braga et al. (2009[Marques, J., Braga, T. M., Paz, F. A. A., Santos, T. M., Lopes, M. D. S. & Braga, S. S. (2009). Biometals, 22, 541-556.]); Marques, Santos et al. (2009[Marques, J., Santos, T. M., Marques, M. P. & Braga, S. S. (2009). Dalton Trans. pp. 9812-9819.]); Marques et al. (2008[Marques, J., Anjo, L., Marques, M. P. M., Santos, T. M., Paz, F. A. A. & Braga, S. S. (2008). J. Organomet. Chem. 693, 3021-3028.]). For compounds with the same cation as the title compound, see: Serli et al. (2005[Serli, B., Zangrando, E., Gianferrara, T., Scolaro, C., Dyson, P. J., Bergamo, A. & Alessio, E. (2005). Eur. J. Inorg. Chem. pp. 3423-3434.]); Goodfellow et al. (1997[Goodfellow, B. J., Félix, V., Pacheco, S. M. D., Jesus, J. P. & Drew, M. G. B. (1997). Polyhedron, 16, 393-401.]). For graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.])

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C10H8N2)(C6H12S3)]NO3·H2O

  • Mr = 553.07

  • Monoclinic, P 21 /c

  • a = 7.6523 (4) Å

  • b = 25.1887 (12) Å

  • c = 11.1099 (5) Å

  • β = 108.438 (2)°

  • V = 2031.52 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 150 K

  • 0.05 × 0.04 × 0.02 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.976

  • 21232 measured reflections

  • 5360 independent reflections

  • 4179 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.078

  • S = 1.08

  • 5360 reflections

  • 259 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1X⋯O3i 0.95 (3) 2.10 (3) 3.037 (4) 169 (4)
O1W—H1Y⋯O2ii 0.94 (3) 1.92 (2) 2.839 (4) 166 (4)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The ruthenium coordination complexes containing 1,4,7-trithiacyclonane ([9]aneS3) have been studied for their activity as antitumoral agents (Bratsos et al., 2008; Serli et al., 2005). Some members of this family of compounds have been tested as cytotoxic (Marques, Santos et al., 2009) and antimicrobial (Marques, Braga et al., 2009) agents, or as catalysts (Sala et al., 2004). We have also studied the solid-state properties of the inclusion compounds of a number of these ruthenium compounds in cyclodextrins (Marques et al., 2008). While reacting the RuII precursor [Ru([9]aneS3)(bpy)Cl]Cl with AgNO3 we isolated the title compound as a secondary product.

The asymmetric unit of the title compound (see Scheme) comprises a whole [Ru([9]aneS3)(bpy)Cl]+ cation, a charge-balancing nitrate anion and a water molecule of crystallization (Figure 1). A survey in the Cambridge Structural Database revealed that this RuII cation has already been described by other groups while co-crystallizing with different anions, namely chloride and trifluoromethanesulfonate (Serli et al., 2005; Goodfellow et al., 1997). This cation has an octahedral coordination environment for RuII with the tricoordinating [9]aneS3 molecule occupying one of the faces of the polyhedron [Ru—S distances ranging from 2.2800 (9) to 2.4379 (8) Å]. The remaining three coordination sites are occupied by a chelating 2,2'-bipyridine (bpy) [Ru—N distances of 2.088 (3) and 2.093 (3) Å], and a chlorido anion [Ru—Cl distance of 2.4379 (8) Å]. The octahedral angles of the coordination polyhedron fall within a short range of the ideal values: while the cis angles range from 77.86 (10) to 98.04 (7)°, the trans angles are in the 174.02 (8)–177.46 (3)° range.

The water molecule of crystallization and the charge-balancing nitrate anion interact via strong hydrogen bonds (Table 1), leading to a polymeric H1Y—{O1W—H1X···O3—N3—O2···H1Y} chain running parallel to the c-axis (dashed pink lines in Figure 2), which can be described by a C22 graph set motif (Grell et al., 1999). Noteworthy, these hydrogen bonds are of strong nature [O···O distances of 3.037 (4) and 2.839 (4) Å] and highly directional [O—H···O angles of 169 (4) and 166 (4)°].

The title compound, based on the [Ru([9]aneS3)(bpy)Cl]+ cation, is considerably different from the two previously related structures: while in our structure the charge-balancing nitrate co-crystallizes with one water molecule, the chloride and trifluoromethanesulfonate structures contain three and none of these entities, respectively (Goodfellow et al., 1997; Serli et al., 2005). Noteworthy, in the former structure (having three water molecules) the crystal packing exhibits a supramolecular two-dimensional network of hydrogen bonding interactions. In the title compound the presence of a single water molecule in the composition promotes the formation of only a one-dimensional supramolecular chain (see above). In summary, it is feasible to consider the title compound as an intermediary case between the two already known structures.

Related literature top

For general background to the cytotoxic activity of compounds with the (Ru[9]aneS3) unit, see: Bratsos et al. (2008); Serli et al. (2005). For related compounds, see: Sala et al. (2004); Marques, Braga et al. (2009); Marques, Santos et al. (2009); Marques et al. (2008). For compounds with the same cation as the title compound, see: Serli et al. (2005); Goodfellow et al. (1997). For graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999)

Experimental top

The RuII precursor [Ru([9]aneS3)(bpy)Cl]Cl was prepared according to reported methods (Goodfellow et al., 1997). Remaining chemicals were purchased from commercial sources and used as received without further purification. [Ru([9]aneS3)(bpy)Cl]Cl (105.6 mg; 0.21 mmol) was treated with AgNO3 (53.0 mg; 0.31 mmol) in order to produce an intermediate labile species by exchanging the coordinated Cl- ligand by a solvent molecule (20 minutes stirring at room temperature in 50 ml of commercial grade ethanol). A white precipitate (AgCl) was filtered off through Celite, and the volume of the remaining red-orange solution was reduced to half by evaporation at 50 °C in a rotatory evaporator. After one month at -18 °C, the title compound was isolated as orange crystals.

Refinement top

Hydrogen atoms bound to carbon were located at their idealized positions and were included in the final structural model in riding approximation with C—H = 0.95 Å (aromatic C—H) and 0.99 Å (—CH2). The isotropic thermal displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective parent carbon atom.

Hydrogen atoms associated with the water molecule of crystallization have been directly located from difference Fourier maps and were included in the final structural model with the distances restrained to 0.95 (1) Å and Uiso=1.5×Ueq of the respective parent oxygen atom.

Structure description top

The ruthenium coordination complexes containing 1,4,7-trithiacyclonane ([9]aneS3) have been studied for their activity as antitumoral agents (Bratsos et al., 2008; Serli et al., 2005). Some members of this family of compounds have been tested as cytotoxic (Marques, Santos et al., 2009) and antimicrobial (Marques, Braga et al., 2009) agents, or as catalysts (Sala et al., 2004). We have also studied the solid-state properties of the inclusion compounds of a number of these ruthenium compounds in cyclodextrins (Marques et al., 2008). While reacting the RuII precursor [Ru([9]aneS3)(bpy)Cl]Cl with AgNO3 we isolated the title compound as a secondary product.

The asymmetric unit of the title compound (see Scheme) comprises a whole [Ru([9]aneS3)(bpy)Cl]+ cation, a charge-balancing nitrate anion and a water molecule of crystallization (Figure 1). A survey in the Cambridge Structural Database revealed that this RuII cation has already been described by other groups while co-crystallizing with different anions, namely chloride and trifluoromethanesulfonate (Serli et al., 2005; Goodfellow et al., 1997). This cation has an octahedral coordination environment for RuII with the tricoordinating [9]aneS3 molecule occupying one of the faces of the polyhedron [Ru—S distances ranging from 2.2800 (9) to 2.4379 (8) Å]. The remaining three coordination sites are occupied by a chelating 2,2'-bipyridine (bpy) [Ru—N distances of 2.088 (3) and 2.093 (3) Å], and a chlorido anion [Ru—Cl distance of 2.4379 (8) Å]. The octahedral angles of the coordination polyhedron fall within a short range of the ideal values: while the cis angles range from 77.86 (10) to 98.04 (7)°, the trans angles are in the 174.02 (8)–177.46 (3)° range.

The water molecule of crystallization and the charge-balancing nitrate anion interact via strong hydrogen bonds (Table 1), leading to a polymeric H1Y—{O1W—H1X···O3—N3—O2···H1Y} chain running parallel to the c-axis (dashed pink lines in Figure 2), which can be described by a C22 graph set motif (Grell et al., 1999). Noteworthy, these hydrogen bonds are of strong nature [O···O distances of 3.037 (4) and 2.839 (4) Å] and highly directional [O—H···O angles of 169 (4) and 166 (4)°].

The title compound, based on the [Ru([9]aneS3)(bpy)Cl]+ cation, is considerably different from the two previously related structures: while in our structure the charge-balancing nitrate co-crystallizes with one water molecule, the chloride and trifluoromethanesulfonate structures contain three and none of these entities, respectively (Goodfellow et al., 1997; Serli et al., 2005). Noteworthy, in the former structure (having three water molecules) the crystal packing exhibits a supramolecular two-dimensional network of hydrogen bonding interactions. In the title compound the presence of a single water molecule in the composition promotes the formation of only a one-dimensional supramolecular chain (see above). In summary, it is feasible to consider the title compound as an intermediary case between the two already known structures.

For general background to the cytotoxic activity of compounds with the (Ru[9]aneS3) unit, see: Bratsos et al. (2008); Serli et al. (2005). For related compounds, see: Sala et al. (2004); Marques, Braga et al. (2009); Marques, Santos et al. (2009); Marques et al. (2008). For compounds with the same cation as the title compound, see: Serli et al. (2005); Goodfellow et al. (1997). For graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999)

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound. Non-hydrogen atoms are represented as thermal ellipsoids drawn at the 50% probability level while hydrogen atoms are drawn as small spheres with arbitrary radii. The labelling scheme is provided for all non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the a axis. The C22 chain is highlighted in dashed pink lines. For geometrical details on the represented hydrogen bonding interactions see Table 1.
(2,2'-Bipyridine-κ2N,N')chlorido(1,4,7-trithiacyclononane- κ3S,S',S'')ruthenium(II) nitrate monohydrate top
Crystal data top
[RuCl(C10H8N2)(C6H12S3)]NO3·H2OF(000) = 1120
Mr = 553.07Dx = 1.808 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5581 reflections
a = 7.6523 (4) Åθ = 2.5–30.4°
b = 25.1887 (12) ŵ = 1.24 mm1
c = 11.1099 (5) ÅT = 150 K
β = 108.438 (2)°Block, orange
V = 2031.52 (17) Å30.05 × 0.04 × 0.02 mm
Z = 4
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
5360 independent reflections
Radiation source: fine-focus sealed tube4179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω and φ scansθmax = 29.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 109
Tmin = 0.941, Tmax = 0.976k = 3429
21232 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.026P)2 + 1.766P]
where P = (Fo2 + 2Fc2)/3
5360 reflections(Δ/σ)max = 0.002
259 parametersΔρmax = 0.74 e Å3
3 restraintsΔρmin = 0.60 e Å3
Crystal data top
[RuCl(C10H8N2)(C6H12S3)]NO3·H2OV = 2031.52 (17) Å3
Mr = 553.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6523 (4) ŵ = 1.24 mm1
b = 25.1887 (12) ÅT = 150 K
c = 11.1099 (5) Å0.05 × 0.04 × 0.02 mm
β = 108.438 (2)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
5360 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4179 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.976Rint = 0.048
21232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.74 e Å3
5360 reflectionsΔρmin = 0.60 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.57746 (4)0.910714 (10)0.22233 (2)0.01142 (7)
S10.38460 (11)0.90192 (3)0.01591 (7)0.01507 (17)
S20.68086 (11)0.82613 (3)0.20539 (7)0.01433 (17)
S30.35078 (11)0.87415 (3)0.28829 (7)0.01582 (17)
Cl10.81988 (11)0.94626 (3)0.14642 (7)0.01768 (17)
N10.5087 (4)0.98857 (10)0.2537 (2)0.0143 (6)
N20.7509 (4)0.92503 (10)0.4070 (2)0.0147 (6)
N30.9073 (4)0.70605 (11)0.2395 (3)0.0225 (7)
O10.7828 (3)0.70188 (10)0.1357 (2)0.0280 (6)
O21.0661 (4)0.71932 (12)0.2423 (2)0.0385 (7)
O30.8748 (4)0.69717 (11)0.3408 (2)0.0355 (7)
C10.3886 (5)1.02027 (13)0.1688 (3)0.0189 (7)
H10.32431.00630.08740.023*
C20.3555 (5)1.07204 (13)0.1954 (3)0.0206 (7)
H20.26821.09280.13350.025*
C30.4493 (5)1.09354 (14)0.3120 (3)0.0233 (8)
H30.42841.12920.33170.028*
C40.5749 (5)1.06186 (14)0.3996 (3)0.0199 (7)
H40.64241.07580.48040.024*
C50.6021 (4)1.00952 (13)0.3691 (3)0.0143 (7)
C60.7357 (4)0.97384 (13)0.4554 (3)0.0153 (7)
C70.8451 (5)0.98784 (14)0.5772 (3)0.0187 (7)
H70.83251.02190.61040.022*
C80.9720 (5)0.95207 (15)0.6495 (3)0.0224 (8)
H81.04580.96100.73320.027*
C90.9903 (5)0.90346 (14)0.5989 (3)0.0214 (8)
H91.07860.87860.64640.026*
C100.8781 (5)0.89129 (14)0.4777 (3)0.0185 (7)
H100.89170.85770.44300.022*
C110.4255 (5)0.83499 (13)0.0368 (3)0.0179 (7)
H11A0.33330.81010.02340.021*
H11B0.40980.83580.12870.021*
C120.6176 (5)0.81530 (13)0.0351 (3)0.0172 (7)
H12A0.70760.83370.00240.021*
H12B0.62480.77690.01890.021*
C130.5226 (5)0.78117 (13)0.2499 (3)0.0169 (7)
H13A0.42280.77020.17270.020*
H13B0.59010.74890.29000.020*
C140.4398 (5)0.80803 (13)0.3412 (3)0.0179 (7)
H14A0.53500.81090.42550.022*
H14B0.33850.78570.35080.022*
C150.1622 (4)0.85625 (14)0.1442 (3)0.0191 (7)
H15A0.17800.81900.12110.023*
H15B0.04330.85890.16140.023*
C160.1581 (4)0.89212 (14)0.0344 (3)0.0189 (7)
H16A0.10750.92710.04720.023*
H16B0.07430.87670.04480.023*
O1W0.1468 (4)0.72516 (12)0.0102 (3)0.0371 (7)
H1X0.058 (4)0.7458 (15)0.051 (3)0.056*
H1Y0.106 (5)0.7187 (17)0.080 (2)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01225 (13)0.01040 (12)0.01162 (11)0.00014 (11)0.00379 (9)0.00145 (10)
S10.0154 (4)0.0154 (4)0.0138 (3)0.0000 (3)0.0038 (3)0.0017 (3)
S20.0147 (4)0.0127 (4)0.0161 (4)0.0002 (3)0.0057 (3)0.0014 (3)
S30.0167 (4)0.0155 (4)0.0169 (4)0.0006 (4)0.0077 (3)0.0015 (3)
Cl10.0169 (4)0.0177 (4)0.0201 (4)0.0022 (3)0.0082 (3)0.0017 (3)
N10.0150 (14)0.0133 (14)0.0166 (12)0.0005 (12)0.0078 (11)0.0011 (10)
N20.0174 (15)0.0122 (14)0.0152 (12)0.0022 (12)0.0062 (11)0.0004 (10)
N30.0270 (18)0.0167 (15)0.0242 (15)0.0051 (14)0.0085 (13)0.0028 (12)
O10.0273 (15)0.0213 (14)0.0292 (14)0.0035 (12)0.0002 (11)0.0024 (11)
O20.0268 (16)0.0520 (19)0.0373 (16)0.0106 (15)0.0109 (12)0.0049 (14)
O30.0439 (18)0.0402 (17)0.0278 (14)0.0133 (15)0.0187 (13)0.0132 (12)
C10.0197 (18)0.0180 (18)0.0209 (16)0.0022 (15)0.0094 (14)0.0007 (13)
C20.0216 (19)0.0142 (17)0.0294 (18)0.0067 (15)0.0126 (15)0.0052 (14)
C30.029 (2)0.0152 (17)0.0317 (18)0.0002 (17)0.0179 (16)0.0038 (14)
C40.0220 (19)0.0204 (18)0.0211 (16)0.0023 (16)0.0124 (14)0.0053 (14)
C50.0139 (16)0.0161 (17)0.0173 (15)0.0035 (14)0.0114 (13)0.0020 (12)
C60.0155 (17)0.0163 (17)0.0163 (15)0.0073 (14)0.0080 (13)0.0025 (12)
C70.0206 (18)0.0195 (18)0.0167 (15)0.0086 (15)0.0078 (13)0.0065 (13)
C80.0209 (19)0.031 (2)0.0132 (15)0.0135 (17)0.0025 (13)0.0018 (14)
C90.0181 (18)0.0226 (19)0.0202 (16)0.0038 (16)0.0019 (13)0.0050 (14)
C100.0184 (18)0.0172 (17)0.0181 (15)0.0027 (15)0.0028 (13)0.0002 (13)
C110.0224 (18)0.0160 (17)0.0147 (15)0.0014 (15)0.0053 (13)0.0066 (12)
C120.0242 (19)0.0137 (16)0.0162 (15)0.0012 (15)0.0096 (13)0.0034 (12)
C130.0205 (18)0.0113 (15)0.0204 (16)0.0001 (14)0.0085 (13)0.0027 (13)
C140.0217 (18)0.0162 (17)0.0180 (16)0.0017 (15)0.0095 (14)0.0031 (13)
C150.0111 (17)0.0217 (18)0.0237 (17)0.0013 (15)0.0046 (13)0.0044 (14)
C160.0123 (17)0.0213 (18)0.0215 (16)0.0006 (15)0.0031 (13)0.0016 (13)
O1W0.0376 (17)0.0435 (18)0.0324 (15)0.0048 (15)0.0139 (13)0.0038 (13)
Geometric parameters (Å, º) top
Ru1—N12.088 (3)C5—C61.467 (5)
Ru1—N22.093 (3)C6—C71.392 (4)
Ru1—S32.2800 (9)C7—C81.381 (5)
Ru1—S22.3012 (8)C7—H70.9500
Ru1—S12.3120 (8)C8—C91.372 (5)
Ru1—Cl12.4379 (8)C8—H80.9500
S1—C161.825 (3)C9—C101.382 (4)
S1—C111.843 (3)C9—H90.9500
S2—C121.819 (3)C10—H100.9500
S2—C131.836 (3)C11—C121.517 (5)
S3—C141.825 (3)C11—H11A0.9900
S3—C151.841 (3)C11—H11B0.9900
N1—C11.350 (4)C12—H12A0.9900
N1—C51.361 (4)C12—H12B0.9900
N2—C101.343 (4)C13—C141.515 (4)
N2—C61.361 (4)C13—H13A0.9900
N3—O11.247 (4)C13—H13B0.9900
N3—O31.247 (4)C14—H14A0.9900
N3—O21.251 (4)C14—H14B0.9900
C1—C21.378 (5)C15—C161.510 (5)
C1—H10.9500C15—H15A0.9900
C2—C31.378 (5)C15—H15B0.9900
C2—H20.9500C16—H16A0.9900
C3—C41.385 (5)C16—H16B0.9900
C3—H30.9500O1W—H1X0.95 (3)
C4—C51.393 (4)O1W—H1Y0.94 (3)
C4—H40.9500
N1—Ru1—N277.86 (10)C7—C6—C5124.1 (3)
N1—Ru1—S393.92 (8)C8—C7—C6119.8 (3)
N2—Ru1—S393.76 (8)C8—C7—H7120.1
N1—Ru1—S2174.02 (8)C6—C7—H7120.1
N2—Ru1—S296.43 (8)C9—C8—C7119.2 (3)
S3—Ru1—S288.19 (3)C9—C8—H8120.4
N1—Ru1—S198.04 (7)C7—C8—H8120.4
N2—Ru1—S1175.57 (8)C8—C9—C10119.0 (3)
S3—Ru1—S188.18 (3)C8—C9—H9120.5
S2—Ru1—S187.61 (3)C10—C9—H9120.5
N1—Ru1—Cl188.41 (8)N2—C10—C9122.7 (3)
N2—Ru1—Cl187.70 (8)N2—C10—H10118.6
S3—Ru1—Cl1177.46 (3)C9—C10—H10118.6
S2—Ru1—Cl189.59 (3)C12—C11—S1111.4 (2)
S1—Ru1—Cl190.51 (3)C12—C11—H11A109.3
C16—S1—C11100.05 (16)S1—C11—H11A109.3
C16—S1—Ru1103.44 (11)C12—C11—H11B109.3
C11—S1—Ru1106.47 (10)S1—C11—H11B109.3
C12—S2—C13101.89 (15)H11A—C11—H11B108.0
C12—S2—Ru1103.80 (11)C11—C12—S2113.2 (2)
C13—S2—Ru1106.02 (11)C11—C12—H12A108.9
C14—S3—C1599.61 (16)S2—C12—H12A108.9
C14—S3—Ru1103.17 (11)C11—C12—H12B108.9
C15—S3—Ru1106.61 (11)S2—C12—H12B108.9
C1—N1—C5117.8 (3)H12A—C12—H12B107.8
C1—N1—Ru1126.2 (2)C14—C13—S2110.8 (2)
C5—N1—Ru1115.9 (2)C14—C13—H13A109.5
C10—N2—C6118.5 (3)S2—C13—H13A109.5
C10—N2—Ru1125.6 (2)C14—C13—H13B109.5
C6—N2—Ru1115.8 (2)S2—C13—H13B109.5
O1—N3—O3120.4 (3)H13A—C13—H13B108.1
O1—N3—O2119.8 (3)C13—C14—S3112.6 (2)
O3—N3—O2119.7 (3)C13—C14—H14A109.1
N1—C1—C2122.8 (3)S3—C14—H14A109.1
N1—C1—H1118.6C13—C14—H14B109.1
C2—C1—H1118.6S3—C14—H14B109.1
C3—C2—C1119.7 (3)H14A—C14—H14B107.8
C3—C2—H2120.1C16—C15—S3111.5 (2)
C1—C2—H2120.1C16—C15—H15A109.3
C2—C3—C4118.3 (3)S3—C15—H15A109.3
C2—C3—H3120.8C16—C15—H15B109.3
C4—C3—H3120.8S3—C15—H15B109.3
C3—C4—C5119.9 (3)H15A—C15—H15B108.0
C3—C4—H4120.1C15—C16—S1113.2 (2)
C5—C4—H4120.1C15—C16—H16A108.9
N1—C5—C4121.5 (3)S1—C16—H16A108.9
N1—C5—C6115.3 (3)C15—C16—H16B108.9
C4—C5—C6123.2 (3)S1—C16—H16B108.9
N2—C6—C7120.8 (3)H16A—C16—H16B107.8
N2—C6—C5115.1 (3)H1X—O1W—H1Y109.6 (15)
N1—Ru1—S1—C1676.63 (14)Ru1—N1—C1—C2177.6 (2)
S3—Ru1—S1—C1617.07 (12)N1—C1—C2—C31.1 (5)
S2—Ru1—S1—C16105.33 (12)C1—C2—C3—C40.2 (5)
Cl1—Ru1—S1—C16165.10 (12)C2—C3—C4—C50.6 (5)
N1—Ru1—S1—C11178.43 (14)C1—N1—C5—C40.3 (4)
S3—Ru1—S1—C1187.87 (12)Ru1—N1—C5—C4177.1 (2)
S2—Ru1—S1—C110.39 (12)C1—N1—C5—C6177.7 (3)
Cl1—Ru1—S1—C1189.96 (12)Ru1—N1—C5—C61.0 (3)
N2—Ru1—S2—C12158.31 (14)C3—C4—C5—N10.6 (5)
S3—Ru1—S2—C12108.11 (12)C3—C4—C5—C6178.5 (3)
S1—Ru1—S2—C1219.86 (12)C10—N2—C6—C72.2 (4)
Cl1—Ru1—S2—C1270.67 (12)Ru1—N2—C6—C7179.6 (2)
N2—Ru1—S2—C1394.76 (13)C10—N2—C6—C5176.1 (3)
S3—Ru1—S2—C131.18 (11)Ru1—N2—C6—C51.3 (3)
S1—Ru1—S2—C1387.07 (11)N1—C5—C6—N21.5 (4)
Cl1—Ru1—S2—C13177.60 (11)C4—C5—C6—N2176.5 (3)
N1—Ru1—S3—C14154.39 (13)N1—C5—C6—C7179.7 (3)
N2—Ru1—S3—C1476.32 (13)C4—C5—C6—C71.7 (5)
S2—Ru1—S3—C1420.01 (11)N2—C6—C7—C80.6 (5)
S1—Ru1—S3—C14107.67 (11)C5—C6—C7—C8177.5 (3)
N1—Ru1—S3—C15101.21 (14)C6—C7—C8—C91.2 (5)
N2—Ru1—S3—C15179.28 (14)C7—C8—C9—C101.3 (5)
S2—Ru1—S3—C1584.39 (12)C6—N2—C10—C92.1 (5)
S1—Ru1—S3—C153.27 (12)Ru1—N2—C10—C9179.2 (2)
N2—Ru1—N1—C1176.7 (3)C8—C9—C10—N20.3 (5)
S3—Ru1—N1—C190.3 (3)C16—S1—C11—C12133.3 (2)
S1—Ru1—N1—C11.6 (3)Ru1—S1—C11—C1226.0 (2)
Cl1—Ru1—N1—C188.7 (3)S1—C11—C12—S245.9 (3)
N2—Ru1—N1—C50.2 (2)C13—S2—C12—C1167.2 (3)
S3—Ru1—N1—C593.2 (2)Ru1—S2—C12—C1142.9 (2)
S1—Ru1—N1—C5178.1 (2)C12—S2—C13—C14136.2 (2)
Cl1—Ru1—N1—C587.8 (2)Ru1—S2—C13—C1427.9 (2)
N1—Ru1—N2—C10176.6 (3)S2—C13—C14—S348.1 (3)
S3—Ru1—N2—C1090.2 (3)C15—S3—C14—C1365.5 (3)
S2—Ru1—N2—C101.6 (3)Ru1—S3—C14—C1344.2 (3)
Cl1—Ru1—N2—C1087.7 (3)C14—S3—C15—C16135.6 (2)
N1—Ru1—N2—C60.6 (2)Ru1—S3—C15—C1628.6 (3)
S3—Ru1—N2—C692.6 (2)S3—C15—C16—S146.3 (3)
S2—Ru1—N2—C6178.8 (2)C11—S1—C16—C1569.2 (3)
Cl1—Ru1—N2—C689.5 (2)Ru1—S1—C16—C1540.6 (3)
C5—N1—C1—C21.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···O3i0.95 (3)2.10 (3)3.037 (4)169 (4)
O1W—H1Y···O2ii0.94 (3)1.92 (2)2.839 (4)166 (4)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[RuCl(C10H8N2)(C6H12S3)]NO3·H2O
Mr553.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)7.6523 (4), 25.1887 (12), 11.1099 (5)
β (°) 108.438 (2)
V3)2031.52 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.05 × 0.04 × 0.02
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.941, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
21232, 5360, 4179
Rint0.048
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.078, 1.08
No. of reflections5360
No. of parameters259
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.60

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···O3i0.95 (3)2.10 (3)3.037 (4)169 (4)
O1W—H1Y···O2ii0.94 (3)1.916 (15)2.839 (4)166 (4)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF), for funding the BII programme and for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBratsos, I., Jedner, S., Bergamo, A., Sava, G., Gianferrara, T., Zangrando, E. & Alessio, E. (2008). J. Inorg. Biochem. 102, 1120–1133.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoodfellow, B. J., Félix, V., Pacheco, S. M. D., Jesus, J. P. & Drew, M. G. B. (1997). Polyhedron, 16, 393–401.  CSD CrossRef CAS Web of Science Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarques, J., Anjo, L., Marques, M. P. M., Santos, T. M., Paz, F. A. A. & Braga, S. S. (2008). J. Organomet. Chem. 693, 3021–3028.  Web of Science CrossRef CAS Google Scholar
First citationMarques, J., Braga, T. M., Paz, F. A. A., Santos, T. M., Lopes, M. D. S. & Braga, S. S. (2009). Biometals, 22, 541–556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarques, J., Santos, T. M., Marques, M. P. & Braga, S. S. (2009). Dalton Trans. pp. 9812–9819.  Web of Science CrossRef Google Scholar
First citationSala, X., Poater, A., Romero, I., Rodriguez, M., Llobet, A., Solans, X., Parella, T. & Santos, T. M. (2004). Eur. J. Inorg. Chem. pp. 612–618.  Web of Science CSD CrossRef Google Scholar
First citationSerli, B., Zangrando, E., Gianferrara, T., Scolaro, C., Dyson, P. J., Bergamo, A. & Alessio, E. (2005). Eur. J. Inorg. Chem. pp. 3423–3434.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds