metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­cyclo­hexyl­ammonium) μ-oxalato-κ4O1,O2:O1′,O2′-bis­­[aqua­(oxalato-κ2O1,O2)di­phenyl­stannate(IV)]

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: dlibasse@gmail.com

(Received 2 September 2010; accepted 11 November 2010; online 24 November 2010)

The structure of the title compound, (C12H24N)2[Sn2(C6H5)4(C2O4)3(H2O)2], consists of a bischelating oxalate ion, located on an inversion center, which is linked to two SnPh2 groups. The coordination sphere of the Sn(IV) ion is completed by a monochelating oxalate anion and a water mol­ecule. The Sn(IV) atoms are thus seven-coordinated. The discrete binuclear units are further connected by hydrogen bonds, leading to a supra­molecular crystal structure. The asymmetric unit contains one half dianion and one (Cy2NH2)+ cation.

Related literature

For background to organotin(IV) chemistry, see: Ballmann et al. (2009[Ballmann, J., Fuchs, M. G. G., Dechert, S., John, M. & Meyer, F. (2009). Inorg. Chem. 48, 90-99.]); Diallo et al. (2007[Diallo, W., Diop, C. A. K., Diop, L., Mahon, M. F., Molloy, K. C., Russo, U., Biesemans, M. & Willem, R. (2007). J. Organomet. Chem. 692, 2187-2192.]); Diassé-Sarr et al. (1997[Diassé-Sarr, A., Diop, L., Mahon, M. F. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223-229.]); Ng et al. (1992[Ng, S. W., Das, V. G. K., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19-25.]); Singh et al. (2008[Singh, N., Kumar, A., Molloy, K. C. & Kociok-Köhn, G. (2008). Acta Cryst. E64, m115.]); de Sousa et al. (2007[Sousa, G. F. de, Deflon, V. M., Manso, L. C. C., Ellena, J. E., Mascarenhas, Y. P., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). Transition Met. Chem. 32, 649-655.]); Wang et al. (2009[Wang, Z., Zhao, G. & Tian, L. (2009). Acta Cryst. E65, m528.]); Xanthopoulou et al. (2007[Xanthopoulou, M. N., Hadjikakou, S. K., Hadjiliadis, N., Kubicki, M., Skoulika, S., Bakas, T., baril, M. & Butler, I. S. (2007). Inorg. Chem. 46, 1187-1195.], 2008[Xanthopoulou, M. N., Kourkoumelis, N., Hadjikakou, S. K., Hadjiliadis, N., Kubicki, M., Karkabounas, S. & Bakas, T. (2008). Polyhedron, 27, 3318-3324.]); Zia-ur-Rahman et al. (2007[Zia-ur-Rahman, Ali, S., Muhammed, N. & Meetsma, A. (2007). Acta Cryst. E63, m89-m90.]). For related Sn(IV) structures, see: Diop et al. (2002[Diop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327-328.], 2003[Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881-882.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H24N)2[Sn2(C6H5)4(C2O4)3(H2O)2]

  • Mr = 1210.52

  • Monoclinic, P 21 /n

  • a = 13.1725 (4) Å

  • b = 14.6121 (4) Å

  • c = 14.1139 (4) Å

  • β = 100.869 (2)°

  • V = 2667.88 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 150 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.825, Tmax = 0.825

  • 48411 measured reflections

  • 6114 independent reflections

  • 4069 reflections with I > 2σ(I)

  • Rint = 0.126

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.082

  • S = 1.01

  • 6114 reflections

  • 341 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O4i 0.90 (4) 1.77 (4) 2.663 (3) 175 (4)
N—H1A⋯O3ii 0.84 (4) 2.12 (3) 2.910 (4) 155 (3)
N—H1A⋯O4ii 0.84 (4) 2.37 (4) 2.986 (4) 130 (3)
N—H1B⋯O6iii 0.91 (4) 2.08 (4) 2.960 (4) 164 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the dynamic of our research work on organotin(IV) chemistry (Diallo et al., 2007; Diassé-Sarr et al., 1997) because of several applications found (Xanthopoulou et al., 2007, 2008; Zia-ur-Rahman et al., 2007; Singh et al., 2008; Wang et al., 2009; Ballmann et al., 2009; de Sousa et al., 2007) and our interest in the coordinating behaviour of oxyanions in this family of compounds, we had yet reported the crystal structures of C2O4(SnPh3)2 (Diop et al., 2003) and SO4(SnPh3)2.H2O (Diop et al., 2002) and have initiated here the study of the interactions between (Cy2NH2)2C2O4.2H2O and C2O4(SnPh3)2 which has yielded the studied compound.

The asymmetric unit consists of one half of the molecule, located about an inversion centre at the mid-point of the C3—C3i bond (symmetry code i: -x, 1 - y, -z). In its units structure two SnPh2 residues are linked by a central bichelating oxalate ion [O5O6:O5O6] and every SnPh2 residue is then linked to another monochelating anion [O1, O2]. A water molecule completes the tin centre coordination to seven, which can be described as a distorted trans-C2SnO5 pentagonal bipyramidal geometry [C—Sn—C angle: 168.75 (13)°]. Within the bridging carboxylate all the C—O bonds are equal within experimental error, implying complete delocalization of double-bond character within this residue. The bond lengths C1—O1 and C2—O2, [1.273 (4) Å], and C2—O3, C1—O4 [1.225 (4) and 1.247 (4) Å] indicate respectively a single and double bond character; the bond length C1—O4 results from involvement of O4 in two distinct hydrogen bonds. Among the Sn—O bonds, Sn1—O6 is notably longer, O6 being the only oxygen of this kind involved in hydrogen bonding.

Every moiety is then connected to its neighbour by three types of hydrogen bonds: one O—H···O type involving an H atom of the water molecule and one O atom of monochelating oxalate [O7—H7B···O4], one N—H···O contact involving one O atom of the bichelating oxalate anion and the cation [N—H1B···O6] and a third bifurcated one also involving the cation [N—H1A···O3 and N—H1A···O4], giving a supramolecular crystal structure.

A similar structure, bearing butyl groups in place of phenyl, was previously reported (Ng et al., 1992).

Related literature top

For background to organotin(IV) chemistry, see: Ballmann et al. (2009); Diallo et al. (2007); Diassé-Sarr et al. (1997); Ng et al. (1992); Singh et al. (2008); de Sousa et al. (2007); Wang et al. (2009); Xanthopoulou et al. (2007, 2008); Zia-ur-Rahman et al. (2007). For related Sn(IV) structures, see: Diop et al. (2002, 2003).

Experimental top

Crystals of the title compound were obtained by allowing (Cy2NH2)2C2O4.2H2O (90 mmol in 15 ml e thanol) to react with C2O4(SnPh3)2 (45 mmol in 15 ml e thanol). The mixture was stirred during several hours and slow solvent evaporation afforded crystals suitable for X-rays studies.

Refinement top

All C–bonded H atoms were placed in idealized positions (C—H in the range 0.95 to 1.00 Å), while H atoms bonded to N and O atoms were considered as free atoms. Isotropic displacement parameters for H atoms were calculated from Ueq of their parent atoms.

Structure description top

In the dynamic of our research work on organotin(IV) chemistry (Diallo et al., 2007; Diassé-Sarr et al., 1997) because of several applications found (Xanthopoulou et al., 2007, 2008; Zia-ur-Rahman et al., 2007; Singh et al., 2008; Wang et al., 2009; Ballmann et al., 2009; de Sousa et al., 2007) and our interest in the coordinating behaviour of oxyanions in this family of compounds, we had yet reported the crystal structures of C2O4(SnPh3)2 (Diop et al., 2003) and SO4(SnPh3)2.H2O (Diop et al., 2002) and have initiated here the study of the interactions between (Cy2NH2)2C2O4.2H2O and C2O4(SnPh3)2 which has yielded the studied compound.

The asymmetric unit consists of one half of the molecule, located about an inversion centre at the mid-point of the C3—C3i bond (symmetry code i: -x, 1 - y, -z). In its units structure two SnPh2 residues are linked by a central bichelating oxalate ion [O5O6:O5O6] and every SnPh2 residue is then linked to another monochelating anion [O1, O2]. A water molecule completes the tin centre coordination to seven, which can be described as a distorted trans-C2SnO5 pentagonal bipyramidal geometry [C—Sn—C angle: 168.75 (13)°]. Within the bridging carboxylate all the C—O bonds are equal within experimental error, implying complete delocalization of double-bond character within this residue. The bond lengths C1—O1 and C2—O2, [1.273 (4) Å], and C2—O3, C1—O4 [1.225 (4) and 1.247 (4) Å] indicate respectively a single and double bond character; the bond length C1—O4 results from involvement of O4 in two distinct hydrogen bonds. Among the Sn—O bonds, Sn1—O6 is notably longer, O6 being the only oxygen of this kind involved in hydrogen bonding.

Every moiety is then connected to its neighbour by three types of hydrogen bonds: one O—H···O type involving an H atom of the water molecule and one O atom of monochelating oxalate [O7—H7B···O4], one N—H···O contact involving one O atom of the bichelating oxalate anion and the cation [N—H1B···O6] and a third bifurcated one also involving the cation [N—H1A···O3 and N—H1A···O4], giving a supramolecular crystal structure.

A similar structure, bearing butyl groups in place of phenyl, was previously reported (Ng et al., 1992).

For background to organotin(IV) chemistry, see: Ballmann et al. (2009); Diallo et al. (2007); Diassé-Sarr et al. (1997); Ng et al. (1992); Singh et al. (2008); de Sousa et al. (2007); Wang et al. (2009); Xanthopoulou et al. (2007, 2008); Zia-ur-Rahman et al. (2007). For related Sn(IV) structures, see: Diop et al. (2002, 2003).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A part of the crystal structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed bonds represent hydrogen bonds.
Bis(dicyclohexylammonium) µ-oxalato-κ4O1,O2:O1',O2'- bis[aqua(oxalato-κ2O1,O2)diphenylstannate(IV)] top
Crystal data top
(C12H24N)2[Sn2(C6H5)4(C2O4)3(H2O)2]F(000) = 1244
Mr = 1210.52Dx = 1.507 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 29450 reflections
a = 13.1725 (4) Åθ = 2.9–27.5°
b = 14.6121 (4) ŵ = 1.00 mm1
c = 14.1139 (4) ÅT = 150 K
β = 100.869 (2)°Irregular, colourless
V = 2667.88 (13) Å30.2 × 0.2 × 0.2 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
6114 independent reflections
Radiation source: fine-focus sealed tube4069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.126
293 2.0 degree images with φ and ω scansθmax = 27.5°, θmin = 4.1°
Absorption correction: multi-scan
(SORTAV;Blessing, 1995)
h = 1717
Tmin = 0.825, Tmax = 0.825k = 1818
48411 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.6086P]
where P = (Fo2 + 2Fc2)/3
6114 reflections(Δ/σ)max = 0.001
341 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 0.72 e Å3
0 constraints
Crystal data top
(C12H24N)2[Sn2(C6H5)4(C2O4)3(H2O)2]V = 2667.88 (13) Å3
Mr = 1210.52Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.1725 (4) ŵ = 1.00 mm1
b = 14.6121 (4) ÅT = 150 K
c = 14.1139 (4) Å0.2 × 0.2 × 0.2 mm
β = 100.869 (2)°
Data collection top
Nonius KappaCCD
diffractometer
6114 independent reflections
Absorption correction: multi-scan
(SORTAV;Blessing, 1995)
4069 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.825Rint = 0.126
48411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.54 e Å3
6114 reflectionsΔρmin = 0.72 e Å3
341 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.208644 (18)0.515508 (15)0.133115 (17)0.02034 (8)
O10.27245 (18)0.37817 (14)0.16466 (16)0.0235 (5)
O20.35282 (17)0.53257 (14)0.24319 (16)0.0242 (5)
O30.47106 (18)0.45574 (15)0.34724 (17)0.0285 (6)
O40.38762 (18)0.29623 (15)0.26721 (17)0.0275 (6)
O50.09563 (17)0.41884 (14)0.04184 (16)0.0230 (5)
O60.06436 (17)0.60103 (14)0.04207 (15)0.0210 (5)
O70.2413 (2)0.67274 (16)0.18266 (19)0.0292 (6)
H7A0.292 (2)0.669 (3)0.233 (2)0.052 (14)*
H7B0.197 (3)0.712 (3)0.202 (3)0.074 (16)*
N0.0015 (2)0.2042 (2)0.0277 (2)0.0214 (6)
H1A0.019 (3)0.170 (2)0.076 (3)0.027 (10)*
H1B0.027 (3)0.261 (3)0.044 (3)0.038 (11)*
C10.3500 (3)0.3702 (2)0.2332 (2)0.0216 (8)
C20.3979 (3)0.4602 (2)0.2795 (2)0.0211 (7)
C30.0088 (3)0.4480 (2)0.0001 (2)0.0196 (7)
C40.1110 (3)0.5052 (2)0.2372 (2)0.0225 (7)
C50.0459 (3)0.5767 (2)0.2523 (3)0.0277 (8)
H50.04670.63210.21720.033*
C60.0202 (3)0.5686 (3)0.3177 (3)0.0331 (9)
H60.06320.61850.32770.040*
C70.0237 (3)0.4886 (3)0.3681 (3)0.0356 (9)
H70.06900.48280.41270.043*
C80.0399 (3)0.4162 (3)0.3531 (3)0.0359 (9)
H80.03800.36070.38800.043*
C90.1059 (3)0.4239 (2)0.2882 (3)0.0295 (8)
H90.14820.37350.27810.035*
C100.2855 (3)0.5464 (2)0.0178 (3)0.0276 (8)
C110.3816 (3)0.5881 (3)0.0352 (3)0.0453 (11)
H110.41360.60270.09950.054*
C120.4320 (4)0.6091 (4)0.0408 (4)0.0664 (15)
H120.49790.63780.02760.080*
C130.3872 (4)0.5888 (3)0.1337 (3)0.0533 (13)
H130.42200.60320.18500.064*
C140.2922 (4)0.5477 (3)0.1528 (3)0.0485 (11)
H140.26090.53360.21740.058*
C150.2416 (3)0.5266 (3)0.0778 (3)0.0377 (9)
H150.17560.49810.09190.045*
C160.1143 (2)0.2108 (2)0.0052 (2)0.0218 (7)
H160.13440.25020.05330.026*
C170.1521 (3)0.2565 (2)0.0890 (2)0.0256 (8)
H17A0.13380.21830.14760.031*
H17B0.11800.31680.10240.031*
C180.2684 (3)0.2693 (2)0.0643 (3)0.0308 (9)
H18A0.28630.30990.00750.037*
H18B0.29270.29860.11920.037*
C190.3215 (3)0.1774 (3)0.0425 (3)0.0355 (9)
H19A0.39690.18690.02310.043*
H19B0.30920.13920.10150.043*
C200.2811 (3)0.1276 (3)0.0380 (3)0.0327 (9)
H20A0.31340.06630.04710.039*
H20B0.30180.16210.09900.039*
C210.1647 (3)0.1171 (2)0.0165 (3)0.0270 (8)
H21A0.14130.08940.07270.032*
H21B0.14390.07610.03960.032*
C220.0561 (3)0.1646 (2)0.0476 (2)0.0234 (8)
H220.03230.10010.06130.028*
C230.1710 (3)0.1642 (3)0.0064 (3)0.0332 (9)
H23A0.18470.12540.05210.040*
H23B0.19420.22720.01230.040*
C240.2322 (3)0.1273 (3)0.0812 (3)0.0368 (10)
H24A0.30710.13030.05420.044*
H24B0.21370.06230.09530.044*
C250.2087 (3)0.1823 (3)0.1736 (3)0.0371 (9)
H25A0.24620.15570.22160.045*
H25B0.23300.24610.16070.045*
C260.0935 (3)0.1823 (3)0.2141 (3)0.0402 (10)
H26A0.07060.11900.23210.048*
H26B0.07950.22030.27320.048*
C270.0316 (3)0.2196 (3)0.1407 (2)0.0324 (9)
H27A0.04940.28480.12710.039*
H27B0.04330.21580.16780.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01965 (13)0.01890 (12)0.02124 (13)0.00066 (11)0.00070 (8)0.00046 (11)
O10.0233 (14)0.0203 (12)0.0240 (13)0.0026 (10)0.0033 (11)0.0020 (10)
O20.0238 (13)0.0161 (13)0.0292 (13)0.0016 (9)0.0043 (10)0.0021 (10)
O30.0284 (14)0.0251 (13)0.0266 (14)0.0012 (10)0.0089 (11)0.0018 (10)
O40.0286 (14)0.0193 (13)0.0314 (14)0.0034 (10)0.0025 (11)0.0037 (10)
O50.0225 (13)0.0177 (12)0.0262 (13)0.0014 (10)0.0020 (11)0.0027 (10)
O60.0217 (13)0.0192 (12)0.0201 (12)0.0006 (10)0.0009 (10)0.0002 (10)
O70.0260 (16)0.0237 (14)0.0353 (16)0.0013 (11)0.0007 (13)0.0018 (12)
N0.0246 (17)0.0186 (17)0.0208 (17)0.0001 (12)0.0042 (14)0.0004 (14)
C10.021 (2)0.0227 (19)0.0225 (19)0.0008 (14)0.0082 (16)0.0007 (15)
C20.0206 (19)0.0233 (19)0.0203 (18)0.0011 (14)0.0060 (15)0.0010 (14)
C30.023 (2)0.0193 (17)0.0166 (16)0.0008 (14)0.0031 (14)0.0021 (13)
C40.0218 (17)0.027 (2)0.0175 (17)0.0008 (14)0.0009 (13)0.0022 (14)
C50.024 (2)0.029 (2)0.028 (2)0.0001 (15)0.0010 (16)0.0000 (15)
C60.021 (2)0.045 (2)0.033 (2)0.0008 (17)0.0036 (17)0.0033 (18)
C70.029 (2)0.048 (2)0.032 (2)0.0127 (18)0.0105 (17)0.0046 (19)
C80.036 (2)0.038 (2)0.034 (2)0.0119 (18)0.0066 (19)0.0024 (18)
C90.031 (2)0.027 (2)0.031 (2)0.0032 (16)0.0058 (17)0.0017 (16)
C100.029 (2)0.0265 (19)0.029 (2)0.0055 (15)0.0077 (16)0.0054 (15)
C110.030 (2)0.070 (3)0.036 (2)0.007 (2)0.0053 (19)0.008 (2)
C120.033 (3)0.105 (4)0.065 (4)0.011 (3)0.017 (3)0.019 (3)
C130.050 (3)0.072 (3)0.045 (3)0.015 (2)0.028 (2)0.016 (2)
C140.069 (3)0.048 (3)0.031 (2)0.004 (2)0.015 (2)0.0013 (19)
C150.048 (3)0.035 (2)0.033 (2)0.0038 (18)0.0124 (19)0.0001 (18)
C160.0198 (19)0.0236 (18)0.0212 (18)0.0027 (14)0.0020 (15)0.0001 (14)
C170.029 (2)0.0263 (19)0.0211 (19)0.0022 (15)0.0042 (16)0.0009 (15)
C180.026 (2)0.040 (2)0.028 (2)0.0013 (16)0.0100 (17)0.0019 (17)
C190.024 (2)0.045 (2)0.036 (2)0.0081 (17)0.0031 (17)0.0076 (18)
C200.027 (2)0.035 (2)0.034 (2)0.0090 (16)0.0025 (17)0.0011 (17)
C210.028 (2)0.0224 (19)0.029 (2)0.0033 (15)0.0002 (16)0.0016 (15)
C220.027 (2)0.0194 (18)0.0237 (19)0.0025 (14)0.0054 (16)0.0037 (14)
C230.030 (2)0.042 (2)0.028 (2)0.0047 (17)0.0056 (17)0.0043 (17)
C240.026 (2)0.049 (2)0.037 (2)0.0064 (18)0.0085 (18)0.0029 (19)
C250.032 (2)0.047 (2)0.035 (2)0.0018 (18)0.0132 (18)0.0056 (19)
C260.038 (3)0.058 (3)0.026 (2)0.010 (2)0.0104 (18)0.0021 (19)
C270.030 (2)0.043 (2)0.023 (2)0.0064 (17)0.0038 (17)0.0043 (17)
Geometric parameters (Å, º) top
Sn—C102.121 (3)C13—C141.368 (6)
Sn—C42.132 (3)C13—H130.9500
Sn—O12.189 (2)C14—C151.388 (5)
Sn—O22.229 (2)C14—H140.9500
Sn—O52.269 (2)C15—H150.9500
Sn—O72.416 (2)C16—C171.522 (4)
Sn—O62.430 (2)C16—C211.527 (4)
O1—C11.273 (4)C16—H161.0000
O2—C21.273 (4)C17—C181.517 (5)
O3—C21.225 (4)C17—H17A0.9900
O4—C11.247 (4)C17—H17B0.9900
O5—C31.259 (4)C18—C191.518 (5)
O6—C3i1.256 (4)C18—H18A0.9900
O7—H7A0.886 (19)C18—H18B0.9900
O7—H7B0.896 (19)C19—C201.527 (5)
N—C161.500 (4)C19—H19A0.9900
N—C221.507 (4)C19—H19B0.9900
N—H1A0.85 (4)C20—C211.514 (5)
N—H1B0.91 (4)C20—H20A0.9900
C1—C21.548 (5)C20—H20B0.9900
C3—O6i1.256 (4)C21—H21A0.9900
C3—C3i1.537 (7)C21—H21B0.9900
C4—C51.394 (5)C22—C231.516 (5)
C4—C91.397 (5)C22—C271.522 (5)
C5—C61.389 (5)C22—H221.0000
C5—H50.9500C23—C241.540 (5)
C6—C71.373 (5)C23—H23A0.9900
C6—H60.9500C23—H23B0.9900
C7—C81.390 (5)C24—C251.514 (5)
C7—H70.9500C24—H24A0.9900
C8—C91.382 (5)C24—H24B0.9900
C8—H80.9500C25—C261.518 (5)
C9—H90.9500C25—H25A0.9900
C10—C111.385 (5)C25—H25B0.9900
C10—C151.394 (5)C26—C271.534 (5)
C11—C121.398 (6)C26—H26A0.9900
C11—H110.9500C26—H26B0.9900
C12—C131.366 (7)C27—H27A0.9900
C12—H120.9500C27—H27B0.9900
C10—Sn—C4168.75 (13)C14—C15—C10121.4 (4)
C10—Sn—O197.50 (11)C14—C15—H15119.3
C4—Sn—O193.06 (10)C10—C15—H15119.3
C10—Sn—O292.53 (12)N—C16—C17109.4 (3)
C4—Sn—O294.18 (11)N—C16—C21111.8 (3)
O1—Sn—O273.55 (8)C17—C16—C21110.9 (3)
C10—Sn—O593.06 (12)N—C16—H16108.2
C4—Sn—O586.04 (10)C17—C16—H16108.2
O1—Sn—O574.35 (8)C21—C16—H16108.2
O2—Sn—O5147.87 (8)C18—C17—C16109.9 (3)
C10—Sn—O786.30 (11)C18—C17—H17A109.7
C4—Sn—O788.01 (10)C16—C17—H17A109.7
O1—Sn—O7140.57 (9)C18—C17—H17B109.7
O2—Sn—O767.06 (8)C16—C17—H17B109.7
O5—Sn—O7144.90 (8)H17A—C17—H17B108.2
C10—Sn—O685.62 (11)C17—C18—C19110.2 (3)
C4—Sn—O683.54 (10)C17—C18—H18A109.6
O1—Sn—O6144.21 (8)C19—C18—H18A109.6
O2—Sn—O6142.15 (7)C17—C18—H18B109.6
O5—Sn—O669.87 (8)C19—C18—H18B109.6
O7—Sn—O675.09 (8)H18A—C18—H18B108.1
C1—O1—Sn117.4 (2)C18—C19—C20111.1 (3)
C2—O2—Sn117.3 (2)C18—C19—H19A109.4
C3—O5—Sn119.8 (2)C20—C19—H19A109.4
C3i—O6—Sn114.2 (2)C18—C19—H19B109.4
Sn—O7—H7A104 (3)C20—C19—H19B109.4
Sn—O7—H7B127 (3)H19A—C19—H19B108.0
H7A—O7—H7B103 (4)C21—C20—C19112.4 (3)
C16—N—C22118.5 (3)C21—C20—H20A109.1
C16—N—H1A108 (2)C19—C20—H20A109.1
C22—N—H1A105 (2)C21—C20—H20B109.1
C16—N—H1B108 (2)C19—C20—H20B109.1
C22—N—H1B109 (2)H20A—C20—H20B107.9
H1A—N—H1B108 (3)C20—C21—C16109.6 (3)
O4—C1—O1125.1 (3)C20—C21—H21A109.8
O4—C1—C2118.2 (3)C16—C21—H21A109.8
O1—C1—C2116.6 (3)C20—C21—H21B109.8
O3—C2—O2126.6 (3)C16—C21—H21B109.8
O3—C2—C1118.9 (3)H21A—C21—H21B108.2
O2—C2—C1114.4 (3)N—C22—C23107.8 (3)
O6i—C3—O5125.2 (3)N—C22—C27110.8 (3)
O6i—C3—C3i117.5 (4)C23—C22—C27111.5 (3)
O5—C3—C3i117.2 (4)N—C22—H22108.9
C5—C4—C9117.9 (3)C23—C22—H22108.9
C5—C4—Sn121.4 (2)C27—C22—H22108.9
C9—C4—Sn120.6 (2)C22—C23—C24110.6 (3)
C6—C5—C4121.3 (3)C22—C23—H23A109.5
C6—C5—H5119.4C24—C23—H23A109.5
C4—C5—H5119.4C22—C23—H23B109.5
C7—C6—C5120.2 (3)C24—C23—H23B109.5
C7—C6—H6119.9H23A—C23—H23B108.1
C5—C6—H6119.9C25—C24—C23110.9 (3)
C6—C7—C8119.4 (3)C25—C24—H24A109.5
C6—C7—H7120.3C23—C24—H24A109.5
C8—C7—H7120.3C25—C24—H24B109.5
C9—C8—C7120.7 (3)C23—C24—H24B109.5
C9—C8—H8119.7H24A—C24—H24B108.1
C7—C8—H8119.7C24—C25—C26110.5 (3)
C8—C9—C4120.6 (3)C24—C25—H25A109.5
C8—C9—H9119.7C26—C25—H25A109.5
C4—C9—H9119.7C24—C25—H25B109.5
C11—C10—C15117.5 (3)C26—C25—H25B109.5
C11—C10—Sn120.6 (3)H25A—C25—H25B108.1
C15—C10—Sn121.9 (3)C25—C26—C27111.5 (3)
C10—C11—C12120.7 (4)C25—C26—H26A109.3
C10—C11—H11119.6C27—C26—H26A109.3
C12—C11—H11119.6C25—C26—H26B109.3
C13—C12—C11120.5 (4)C27—C26—H26B109.3
C13—C12—H12119.7H26A—C26—H26B108.0
C11—C12—H12119.7C22—C27—C26110.0 (3)
C12—C13—C14119.8 (4)C22—C27—H27A109.7
C12—C13—H13120.1C26—C27—H27A109.7
C14—C13—H13120.1C22—C27—H27B109.7
C13—C14—C15120.0 (4)C26—C27—H27B109.7
C13—C14—H14120.0H27A—C27—H27B108.2
C15—C14—H14120.0
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O4ii0.90 (4)1.77 (4)2.663 (3)175 (4)
N—H1A···O3iii0.84 (4)2.12 (3)2.910 (4)155 (3)
N—H1A···O4iii0.84 (4)2.37 (4)2.986 (4)130 (3)
N—H1B···O6i0.91 (4)2.08 (4)2.960 (4)164 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C12H24N)2[Sn2(C6H5)4(C2O4)3(H2O)2]
Mr1210.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)13.1725 (4), 14.6121 (4), 14.1139 (4)
β (°) 100.869 (2)
V3)2667.88 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV;Blessing, 1995)
Tmin, Tmax0.825, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
48411, 6114, 4069
Rint0.126
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.082, 1.01
No. of reflections6114
No. of parameters341
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.72

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O4i0.90 (4)1.77 (4)2.663 (3)175 (4)
N—H1A···O3ii0.84 (4)2.12 (3)2.910 (4)155 (3)
N—H1A···O4ii0.84 (4)2.37 (4)2.986 (4)130 (3)
N—H1B···O6iii0.91 (4)2.08 (4)2.960 (4)164 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBallmann, J., Fuchs, M. G. G., Dechert, S., John, M. & Meyer, F. (2009). Inorg. Chem. 48, 90–99.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDiallo, W., Diop, C. A. K., Diop, L., Mahon, M. F., Molloy, K. C., Russo, U., Biesemans, M. & Willem, R. (2007). J. Organomet. Chem. 692, 2187–2192.  Web of Science CSD CrossRef CAS Google Scholar
First citationDiassé-Sarr, A., Diop, L., Mahon, M. F. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223–229.  Google Scholar
First citationDiop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327–328.  CAS Google Scholar
First citationDiop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNg, S. W., Das, V. G. K., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19–25.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N., Kumar, A., Molloy, K. C. & Kociok-Köhn, G. (2008). Acta Cryst. E64, m115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSousa, G. F. de, Deflon, V. M., Manso, L. C. C., Ellena, J. E., Mascarenhas, Y. P., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). Transition Met. Chem. 32, 649–655.  Web of Science CSD CrossRef Google Scholar
First citationWang, Z., Zhao, G. & Tian, L. (2009). Acta Cryst. E65, m528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXanthopoulou, M. N., Hadjikakou, S. K., Hadjiliadis, N., Kubicki, M., Skoulika, S., Bakas, T., baril, M. & Butler, I. S. (2007). Inorg. Chem. 46, 1187–1195.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXanthopoulou, M. N., Kourkoumelis, N., Hadjikakou, S. K., Hadjiliadis, N., Kubicki, M., Karkabounas, S. & Bakas, T. (2008). Polyhedron, 27, 3318–3324.  Web of Science CSD CrossRef CAS Google Scholar
First citationZia-ur-Rahman, Ali, S., Muhammed, N. & Meetsma, A. (2007). Acta Cryst. E63, m89–m90.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds