organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-[1-(2-Chloro­phen­yl)-2-meth­­oxy-2-oxoeth­yl][2-(thio­phen-2-yl)eth­yl]ammonium (+)-camphor-10-sulfonate acetone monosolvate

aTianjin University of Commerce, Tianjin 300134, People's Republic of China, bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and cTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: liudk@tjipr.com

(Received 9 October 2010; accepted 4 November 2010; online 10 November 2010)

The title compound, C15H17ClNO2S+·C10H15O4S·C3H6O, was synthesized by N-alkyl­ation of α-amino-(2-chloro­phen­yl)acetate with 2-thienylethyl p-toluene­sulfonate, followed by reaction with (+)-camphor-10-sulfonic acid. In the crystal, the cations and anions are linked through N—H⋯O hydrogen bonds. The thio­phene ring of the cation was found to be disordered over two sites, with refined occupancies of 0.798 (4) and 0.202 (4).

Related literature

For background to the anti­platelet agent clopidogrel, see: Kang et al. (2007[Kang, W., Theman, T. E., Reed, J. F., Stoltzfus, J. & Weger, N. (2007). J. Surg. Educ. 64, 88-92.]). For the preparation of the title compound, an inter­mediate of clopidogrel, see: Descamps & Radisson (1992[Descamps, M. & Radisson, J. (1992). Eur. Patent EP 0 466569.]). For a database of bond lengths and angles, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17ClNO2S+·C10H15O4S·C3H6O

  • Mr = 600.16

  • Orthorhombic, P 21 21 21

  • a = 12.101 (3) Å

  • b = 14.209 (4) Å

  • c = 18.325 (5) Å

  • V = 3150.7 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 294 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART-CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.912, Tmax = 0.943

  • 18154 measured reflections

  • 6435 independent reflections

  • 4010 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 0.99

  • 6435 reflections

  • 402 parameters

  • 70 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2828 Friedel pairs

  • Flack parameter: −0.04 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3 0.93 (3) 1.82 (3) 2.729 (3) 164 (3)
N1—H1A⋯O5i 0.88 (3) 2.63 (2) 3.180 (3) 121.1 (19)
N1—H1A⋯O4i 0.88 (3) 1.99 (3) 2.856 (3) 169 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Clopidogrel treatment is associated with a reduction in thrombotic complications in coronary stent placement, improved outcome after acute coronary syndromes, and decreased mortality in patients with coronary artery disease (Kang et al., 2007). Now, we present the crystal structure of the title compound, (I), an intermediate of Clopidogrel (Fig. 1, Table 1).

All bond lengths and angles in (I) are within normal ranges (Bruno et al., 2004). In the cation, C5 to C9, N1, O1 and O2 are almost coplanar (r.m.s. deviation 0.0363 Å and maximum deviation 0.0610 (2) Å). In the anion, the dihedral angles formed between C17 to C20 plane and C17/C20/C21 plane, C17/C20/C21 plane and C17/C20/C24/C25 plane are 54.45 (2)° and 54.47 (3)°, respectively. The crystal is stabilized by N—H···O hydrogen bonds between the cations and the anions, which link the molecules into sheets in the bc plane (Fig. 2, Table 2).

Related literature top

For background to the antiplatelet agent clopidogrel, see: Kang et al. (2007). For the preparation of the title compound, an intermediate of clopidogrel, see: Descamps & Radisson (1992). For a database of bond lengths and angles, see: Bruno et al. (2004).

Experimental top

(I) was prepared according to the method of Descamps & Radisson (1992). 12.5 g of methyl alpha-amino(2-chlorophenyl)acetate was released from its hydrochloride by reaction with 9 g of NaHCO3 in the presence of 200 ml of CH2Cl2 and 65 ml of water. The resulting amine was dissolved in 65 ml of acetonitrile; 6.2 g of NaHCO3 and 15.6 g of 2-thienylethyl-para-toluenesulfonate were then introduced; the mixture was kept at 353 K for 22 h and the volatile products were then evaporated off under reduced pressure. The residue was dissolved in 200 ml of ethyl acetate and 65 ml of water; the organic phase was separated off. After the usual treatments the aminoester was obtained and dissolved in 70 ml of acetone, then 8.7 g of (+)-10-camphorsulfonic acid was introduced. The mixture was stirred at room temperature for 12 h to get precipitate, and 11 g of camphorsulfonate was thus obtained. The camphorsulfonate was suspended in 50 ml of refluxing acetone and 25 ml of methyl ethyl ketone to obtain complete dissolution. The mixture was standing under 298 K, then white crystals were grown slowly. The crystals were washed with cold acetone, yield 6.8 g, m.p. 368 K.

Refinement top

2828 Friedel pairs were used in the Flack parameter refinement. The thiophene ring was found to be disordered and was refined with the restraints d(C—S) = 1.72 Å, d(C—C) = 1.50 Å and d(CC) = 1.34 Å, respectively. Ammonium H atoms were initially located in a difference map and refined with the restraints N—H = 0.85 (2) Å. Other H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Clopidogrel treatment is associated with a reduction in thrombotic complications in coronary stent placement, improved outcome after acute coronary syndromes, and decreased mortality in patients with coronary artery disease (Kang et al., 2007). Now, we present the crystal structure of the title compound, (I), an intermediate of Clopidogrel (Fig. 1, Table 1).

All bond lengths and angles in (I) are within normal ranges (Bruno et al., 2004). In the cation, C5 to C9, N1, O1 and O2 are almost coplanar (r.m.s. deviation 0.0363 Å and maximum deviation 0.0610 (2) Å). In the anion, the dihedral angles formed between C17 to C20 plane and C17/C20/C21 plane, C17/C20/C21 plane and C17/C20/C24/C25 plane are 54.45 (2)° and 54.47 (3)°, respectively. The crystal is stabilized by N—H···O hydrogen bonds between the cations and the anions, which link the molecules into sheets in the bc plane (Fig. 2, Table 2).

For background to the antiplatelet agent clopidogrel, see: Kang et al. (2007). For the preparation of the title compound, an intermediate of clopidogrel, see: Descamps & Radisson (1992). For a database of bond lengths and angles, see: Bruno et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram for (I) with hydrogen bonds drawn as dashed lines.
(R)-[1-(2-Chlorophenyl)-2-methoxy-2-oxoethyl][2-(thiophen-2- yl)ethyl]ammonium (+)-camphor-10-sulfonate acetone monosolvate top
Crystal data top
C15H17ClNO2S+·C10H15O4S·C3H6ODx = 1.265 Mg m3
Mr = 600.16Melting point: 368 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4370 reflections
a = 12.101 (3) Åθ = 2.2–23.4°
b = 14.209 (4) ŵ = 0.30 mm1
c = 18.325 (5) ÅT = 294 K
V = 3150.7 (14) Å3Block, colourless
Z = 40.26 × 0.24 × 0.20 mm
F(000) = 1272
Data collection top
Bruker SMART-CCD area-detector
diffractometer
6435 independent reflections
Radiation source: fine-focus sealed tube4010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.912, Tmax = 0.943k = 1717
18154 measured reflectionsl = 1322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0457P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.003
6435 reflectionsΔρmax = 0.17 e Å3
402 parametersΔρmin = 0.18 e Å3
70 restraintsAbsolute structure: Flack (1983), 2828 Friedel pairs
0 constraintsAbsolute structure parameter: 0.04 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H17ClNO2S+·C10H15O4S·C3H6OV = 3150.7 (14) Å3
Mr = 600.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.101 (3) ŵ = 0.30 mm1
b = 14.209 (4) ÅT = 294 K
c = 18.325 (5) Å0.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART-CCD area-detector
diffractometer
6435 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4010 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.943Rint = 0.039
18154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.17 e Å3
S = 0.99Δρmin = 0.18 e Å3
6435 reflectionsAbsolute structure: Flack (1983), 2828 Friedel pairs
402 parametersAbsolute structure parameter: 0.04 (6)
70 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.41386 (6)0.37358 (5)0.48307 (4)0.0722 (2)
S20.77423 (6)0.77371 (5)0.58832 (4)0.04884 (18)
O10.60127 (19)0.69806 (14)0.40519 (11)0.0766 (6)
O20.62818 (19)0.55299 (14)0.36419 (11)0.0779 (7)
O30.65698 (14)0.75282 (13)0.58489 (10)0.0617 (5)
O40.83735 (15)0.72491 (13)0.53212 (9)0.0610 (5)
O50.79800 (15)0.87314 (12)0.58933 (11)0.0653 (5)
O60.6787 (2)0.60281 (18)0.75506 (17)0.1049 (9)
N10.4941 (2)0.64436 (14)0.52533 (12)0.0421 (5)
S10.40689 (11)0.62354 (14)0.78089 (8)0.0841 (6)0.798 (4)
C10.2895 (5)0.5925 (5)0.8266 (3)0.0692 (18)0.798 (4)
H10.28880.56520.87270.083*0.798 (4)
C20.1991 (5)0.6124 (5)0.7880 (3)0.0622 (16)0.798 (4)
H20.12750.60250.80470.075*0.798 (4)
C30.2257 (5)0.6518 (10)0.7158 (5)0.0578 (19)0.798 (4)
H30.17310.67060.68190.069*0.798 (4)
C40.3347 (2)0.65728 (18)0.70495 (14)0.0510 (7)0.798 (4)
S1'0.1970 (7)0.6383 (13)0.7155 (7)0.082 (3)0.202 (4)
C1'0.2174 (16)0.594 (2)0.8011 (11)0.058 (8)0.202 (4)
H1'0.16670.55670.82580.069*0.202 (4)
C2'0.3154 (17)0.6201 (16)0.8281 (7)0.050 (6)0.202 (4)
H2'0.33680.61230.87650.060*0.202 (4)
C3'0.3863 (12)0.6634 (16)0.7701 (6)0.077 (8)0.202 (4)
H3'0.45530.69040.77770.092*0.202 (4)
C4'0.3347 (2)0.65728 (18)0.70495 (14)0.0510 (7)0.202 (4)
C50.3906 (2)0.69093 (18)0.63647 (15)0.0569 (7)
H5A0.45200.73160.64940.068*
H5B0.33870.72760.60790.068*
C60.4329 (2)0.60951 (17)0.59081 (14)0.0534 (7)
H6A0.48160.57070.62020.064*
H6B0.37120.57090.57520.064*
C70.5266 (2)0.56885 (16)0.47250 (14)0.0444 (6)
H70.45880.54250.45170.053*
C80.5905 (2)0.61535 (19)0.41131 (14)0.0496 (6)
C90.6918 (3)0.5885 (2)0.30261 (18)0.0890 (12)
H9A0.64640.62960.27380.133*
H9B0.71620.53670.27310.133*
H9C0.75480.62260.32030.133*
C100.5895 (2)0.48914 (16)0.50914 (14)0.0430 (6)
C110.6942 (2)0.50530 (19)0.53687 (16)0.0614 (8)
H110.72510.56500.53320.074*
C120.7536 (3)0.4337 (2)0.56997 (18)0.0763 (10)
H120.82370.44560.58860.092*
C130.7088 (3)0.3454 (2)0.5751 (2)0.0829 (10)
H130.74890.29750.59740.100*
C140.6057 (3)0.3269 (2)0.54794 (18)0.0684 (9)
H140.57600.26660.55130.082*
C150.5459 (2)0.39861 (18)0.51539 (14)0.0506 (7)
C160.8220 (2)0.7252 (2)0.67130 (14)0.0610 (7)
H16A0.81470.65730.66790.073*
H16B0.90040.73880.67500.073*
C170.7675 (2)0.75628 (18)0.74299 (13)0.0502 (7)
C180.6771 (3)0.8337 (2)0.74243 (16)0.0683 (9)
H18A0.69800.88540.71070.082*
H18B0.60680.80840.72620.082*
C190.6703 (3)0.8666 (3)0.82296 (18)0.0803 (10)
H19A0.69230.93190.82790.096*
H19B0.59630.85870.84230.096*
C200.7528 (3)0.8007 (3)0.86121 (17)0.0772 (10)
H200.77770.82270.90920.093*
C210.8457 (2)0.7907 (2)0.80388 (15)0.0661 (8)
C220.9343 (3)0.7182 (3)0.8242 (2)0.1106 (14)
H22A0.90140.65680.82680.166*
H22B0.96570.73410.87070.166*
H22C0.99130.71820.78770.166*
C230.9031 (3)0.8840 (3)0.7847 (2)0.1080 (13)
H23A0.94790.90390.82500.162*
H23B0.84830.93110.77460.162*
H23C0.94880.87530.74240.162*
C240.7097 (3)0.6759 (3)0.7821 (2)0.0713 (8)
C250.7012 (3)0.7047 (3)0.86146 (19)0.0928 (11)
H25A0.62470.70720.87730.111*
H25B0.74170.66170.89270.111*
O70.5385 (3)1.09004 (19)0.51597 (19)0.1357 (12)
C260.5766 (4)0.9442 (3)0.4603 (2)0.1191 (15)
H26A0.51820.90980.43690.179*
H26B0.62770.90080.48210.179*
H26C0.61450.98190.42480.179*
C270.5296 (3)1.0056 (2)0.5173 (2)0.0789 (10)
C280.4691 (3)0.9580 (3)0.5765 (2)0.0971 (12)
H28A0.43561.00420.60770.146*
H28B0.51950.92020.60450.146*
H28C0.41270.91840.55600.146*
H1A0.451 (2)0.6847 (18)0.5023 (14)0.051 (8)*
H1B0.558 (3)0.676 (2)0.5390 (16)0.074 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0766 (5)0.0706 (5)0.0693 (5)0.0249 (4)0.0075 (4)0.0046 (4)
S20.0504 (4)0.0544 (4)0.0417 (4)0.0062 (3)0.0027 (3)0.0028 (3)
O10.1156 (17)0.0536 (12)0.0607 (13)0.0068 (11)0.0315 (13)0.0019 (10)
O20.1170 (17)0.0568 (12)0.0599 (13)0.0153 (12)0.0358 (13)0.0003 (11)
O30.0508 (10)0.0817 (14)0.0527 (11)0.0132 (10)0.0003 (10)0.0086 (11)
O40.0678 (11)0.0693 (11)0.0459 (10)0.0107 (10)0.0147 (10)0.0115 (10)
O50.0747 (12)0.0535 (11)0.0677 (12)0.0128 (10)0.0109 (11)0.0007 (10)
O60.0981 (19)0.0734 (16)0.143 (3)0.0087 (14)0.0256 (17)0.0057 (16)
N10.0442 (13)0.0422 (12)0.0399 (13)0.0020 (11)0.0032 (11)0.0029 (11)
S10.0663 (8)0.1282 (14)0.0576 (7)0.0092 (9)0.0056 (6)0.0178 (8)
C10.079 (4)0.076 (5)0.052 (3)0.006 (3)0.004 (3)0.015 (2)
C20.060 (3)0.067 (3)0.060 (3)0.022 (3)0.019 (2)0.018 (3)
C30.056 (4)0.068 (4)0.049 (3)0.010 (4)0.003 (3)0.023 (2)
C40.0581 (18)0.0524 (16)0.0424 (17)0.0046 (13)0.0077 (14)0.0041 (13)
S1'0.065 (4)0.096 (7)0.086 (5)0.005 (4)0.023 (3)0.018 (4)
C1'0.056 (11)0.063 (11)0.054 (10)0.006 (8)0.002 (8)0.010 (7)
C2'0.063 (9)0.050 (10)0.036 (8)0.025 (7)0.002 (7)0.001 (6)
C3'0.071 (11)0.094 (11)0.065 (11)0.019 (8)0.017 (8)0.028 (8)
C4'0.0581 (18)0.0524 (16)0.0424 (17)0.0046 (13)0.0077 (14)0.0041 (13)
C50.0706 (19)0.0489 (16)0.0512 (17)0.0003 (14)0.0159 (15)0.0015 (13)
C60.0604 (16)0.0541 (15)0.0456 (15)0.0022 (13)0.0114 (14)0.0070 (14)
C70.0494 (15)0.0435 (14)0.0402 (14)0.0003 (11)0.0014 (13)0.0018 (13)
C80.0573 (15)0.0470 (16)0.0443 (15)0.0071 (13)0.0043 (14)0.0038 (14)
C90.114 (3)0.090 (2)0.063 (2)0.024 (2)0.040 (2)0.0068 (19)
C100.0486 (15)0.0442 (14)0.0363 (14)0.0024 (12)0.0067 (13)0.0012 (11)
C110.0599 (18)0.0531 (16)0.071 (2)0.0039 (14)0.0038 (16)0.0038 (15)
C120.066 (2)0.077 (2)0.086 (2)0.0147 (17)0.0086 (17)0.0120 (19)
C130.095 (3)0.069 (2)0.085 (2)0.029 (2)0.008 (2)0.0193 (18)
C140.088 (2)0.0448 (16)0.072 (2)0.0057 (17)0.0225 (19)0.0111 (15)
C150.0631 (17)0.0475 (15)0.0412 (15)0.0047 (13)0.0167 (14)0.0008 (13)
C160.0644 (17)0.0670 (18)0.0516 (16)0.0198 (15)0.0014 (14)0.0017 (16)
C170.0508 (14)0.0588 (16)0.0410 (14)0.0080 (13)0.0049 (13)0.0004 (12)
C180.074 (2)0.082 (2)0.0488 (18)0.0280 (17)0.0007 (15)0.0035 (15)
C190.081 (2)0.094 (2)0.067 (2)0.018 (2)0.0122 (19)0.019 (2)
C200.080 (2)0.110 (3)0.0417 (16)0.009 (2)0.0022 (16)0.0083 (18)
C210.0567 (17)0.095 (2)0.0466 (17)0.0077 (18)0.0010 (15)0.0069 (17)
C220.079 (2)0.181 (4)0.072 (2)0.048 (3)0.018 (2)0.004 (3)
C230.085 (2)0.124 (3)0.115 (3)0.023 (3)0.015 (3)0.036 (3)
C240.0628 (19)0.074 (2)0.077 (2)0.0079 (18)0.0106 (19)0.0023 (19)
C250.093 (3)0.119 (3)0.067 (2)0.017 (2)0.023 (2)0.021 (2)
O70.187 (3)0.0668 (16)0.153 (3)0.0252 (18)0.005 (3)0.0062 (18)
C260.156 (4)0.107 (3)0.095 (3)0.026 (3)0.020 (3)0.021 (3)
C270.088 (2)0.065 (2)0.084 (3)0.0090 (19)0.024 (2)0.005 (2)
C280.115 (3)0.087 (2)0.090 (3)0.009 (2)0.008 (2)0.007 (2)
Geometric parameters (Å, º) top
Cl1—C151.741 (3)C11—H110.9300
S2—O51.4418 (18)C12—C131.370 (4)
S2—O31.4510 (18)C12—H120.9300
S2—O41.4577 (18)C13—C141.369 (5)
S2—C161.767 (3)C13—H130.9300
O1—C81.188 (3)C14—C151.385 (4)
O2—C81.319 (3)C14—H140.9300
O2—C91.456 (4)C16—C171.535 (4)
O6—C241.210 (4)C16—H16A0.9700
N1—C61.494 (3)C16—H16B0.9700
N1—C71.498 (3)C17—C241.519 (4)
N1—H1A0.88 (3)C17—C211.543 (4)
N1—H1B0.93 (3)C17—C181.552 (4)
S1—C11.706 (5)C18—C191.550 (4)
S1—C41.712 (3)C18—H18A0.9700
C1—C21.333 (6)C18—H18B0.9700
C1—H10.9300C19—C201.537 (4)
C2—C31.472 (7)C19—H19A0.9700
C2—H20.9300C19—H19B0.9700
C3—C41.335 (7)C20—C251.501 (5)
C3—H30.9300C20—C211.546 (4)
C4—C51.504 (4)C20—H200.9800
S1'—C1'1.709 (10)C21—C221.533 (4)
C1'—C2'1.338 (9)C21—C231.537 (5)
C1'—H1'0.9300C22—H22A0.9600
C2'—C3'1.499 (9)C22—H22B0.9600
C2'—H2'0.9300C22—H22C0.9600
C3'—H3'0.9300C23—H23A0.9600
C5—C61.517 (4)C23—H23B0.9600
C5—H5A0.9700C23—H23C0.9600
C5—H5B0.9700C24—C251.515 (5)
C6—H6A0.9700C25—H25A0.9700
C6—H6B0.9700C25—H25B0.9700
C7—C81.514 (3)O7—C271.205 (4)
C7—C101.521 (3)C26—C271.474 (5)
C7—H70.9800C26—H26A0.9600
C9—H9A0.9600C26—H26B0.9600
C9—H9B0.9600C26—H26C0.9600
C9—H9C0.9600C27—C281.474 (5)
C10—C111.385 (3)C28—H28A0.9600
C10—C151.395 (3)C28—H28B0.9600
C11—C121.385 (4)C28—H28C0.9600
O5—S2—O3113.33 (12)C14—C15—C10121.1 (3)
O5—S2—O4111.76 (11)C14—C15—Cl1118.4 (2)
O3—S2—O4112.61 (11)C10—C15—Cl1120.5 (2)
O5—S2—C16107.82 (14)C17—C16—S2118.91 (18)
O3—S2—C16106.12 (13)C17—C16—H16A107.6
O4—S2—C16104.52 (12)S2—C16—H16A107.6
C8—O2—C9117.2 (2)C17—C16—H16B107.6
C6—N1—C7114.31 (19)S2—C16—H16B107.6
C6—N1—H1A107.9 (16)H16A—C16—H16B107.0
C7—N1—H1A108.2 (16)C24—C17—C16112.7 (2)
C6—N1—H1B111.0 (18)C24—C17—C21100.4 (2)
C7—N1—H1B107.8 (17)C16—C17—C21116.5 (2)
H1A—N1—H1B107 (2)C24—C17—C18102.2 (2)
C1—S1—C492.6 (2)C16—C17—C18120.1 (2)
C2—C1—S1111.6 (4)C21—C17—C18102.2 (2)
C2—C1—H1124.2C19—C18—C17104.2 (2)
S1—C1—H1124.2C19—C18—H18A110.9
C1—C2—C3112.2 (4)C17—C18—H18A110.9
C1—C2—H2123.9C19—C18—H18B110.9
C3—C2—H2123.9C17—C18—H18B110.9
C4—C3—C2111.9 (5)H18A—C18—H18B108.9
C4—C3—H3124.1C20—C19—C18102.5 (2)
C2—C3—H3124.1C20—C19—H19A111.3
C3—C4—C5126.0 (4)C18—C19—H19A111.3
C3—C4—S1111.5 (4)C20—C19—H19B111.3
C5—C4—S1122.5 (2)C18—C19—H19B111.3
C2'—C1'—S1'111.5 (9)H19A—C19—H19B109.2
C2'—C1'—H1'124.2C25—C20—C19106.6 (3)
S1'—C1'—H1'124.2C25—C20—C21102.8 (3)
C1'—C2'—C3'110.9 (8)C19—C20—C21102.6 (3)
C1'—C2'—H2'124.5C25—C20—H20114.5
C3'—C2'—H2'124.5C19—C20—H20114.5
C2'—C3'—H3'125.2C21—C20—H20114.5
C4—C5—C6111.7 (2)C22—C21—C23108.6 (3)
C4—C5—H5A109.3C22—C21—C17113.0 (3)
C6—C5—H5A109.3C23—C21—C17112.7 (3)
C4—C5—H5B109.3C22—C21—C20113.9 (3)
C6—C5—H5B109.3C23—C21—C20113.9 (3)
H5A—C5—H5B107.9C17—C21—C2094.3 (2)
N1—C6—C5111.0 (2)C21—C22—H22A109.5
N1—C6—H6A109.4C21—C22—H22B109.5
C5—C6—H6A109.4H22A—C22—H22B109.5
N1—C6—H6B109.4C21—C22—H22C109.5
C5—C6—H6B109.4H22A—C22—H22C109.5
H6A—C6—H6B108.0H22B—C22—H22C109.5
N1—C7—C8107.46 (19)C21—C23—H23A109.5
N1—C7—C10112.3 (2)C21—C23—H23B109.5
C8—C7—C10113.4 (2)H23A—C23—H23B109.5
N1—C7—H7107.8C21—C23—H23C109.5
C8—C7—H7107.8H23A—C23—H23C109.5
C10—C7—H7107.8H23B—C23—H23C109.5
O1—C8—O2124.4 (3)O6—C24—C25127.1 (4)
O1—C8—C7123.9 (2)O6—C24—C17126.5 (3)
O2—C8—C7111.6 (2)C25—C24—C17106.4 (3)
O2—C9—H9A109.5C20—C25—C24102.3 (3)
O2—C9—H9B109.5C20—C25—H25A111.3
H9A—C9—H9B109.5C24—C25—H25A111.3
O2—C9—H9C109.5C20—C25—H25B111.3
H9A—C9—H9C109.5C24—C25—H25B111.3
H9B—C9—H9C109.5H25A—C25—H25B109.2
C11—C10—C15117.9 (2)C27—C26—H26A109.5
C11—C10—C7119.8 (2)C27—C26—H26B109.5
C15—C10—C7122.3 (2)H26A—C26—H26B109.5
C10—C11—C12120.9 (3)C27—C26—H26C109.5
C10—C11—H11119.5H26A—C26—H26C109.5
C12—C11—H11119.5H26B—C26—H26C109.5
C13—C12—C11119.8 (3)O7—C27—C26122.7 (4)
C13—C12—H12120.1O7—C27—C28121.0 (4)
C11—C12—H12120.1C26—C27—C28116.2 (3)
C14—C13—C12120.8 (3)C27—C28—H28A109.5
C14—C13—H13119.6C27—C28—H28B109.5
C12—C13—H13119.6H28A—C28—H28B109.5
C13—C14—C15119.4 (3)C27—C28—H28C109.5
C13—C14—H14120.3H28A—C28—H28C109.5
C15—C14—H14120.3H28B—C28—H28C109.5
C4—S1—C1—C23.8 (6)O3—S2—C16—C1757.0 (2)
S1—C1—C2—C32.3 (10)O4—S2—C16—C17176.2 (2)
C1—C2—C3—C41.0 (13)S2—C16—C17—C24116.6 (3)
C2—C3—C4—C5177.8 (6)S2—C16—C17—C21128.1 (2)
C2—C3—C4—S13.8 (12)S2—C16—C17—C183.8 (4)
C1—S1—C4—C34.4 (8)C24—C17—C18—C1971.6 (3)
C1—S1—C4—C5177.1 (3)C16—C17—C18—C19162.9 (3)
S1'—C1'—C2'—C3'11 (3)C21—C17—C18—C1932.0 (3)
C3—C4—C5—C6101.8 (8)C17—C18—C19—C203.0 (3)
S1—C4—C5—C680.0 (3)C18—C19—C20—C2570.6 (3)
C7—N1—C6—C5172.8 (2)C18—C19—C20—C2137.0 (3)
C4—C5—C6—N1176.6 (2)C24—C17—C21—C2266.0 (3)
C6—N1—C7—C8178.2 (2)C16—C17—C21—C2255.9 (4)
C6—N1—C7—C1052.8 (3)C18—C17—C21—C22171.1 (3)
C9—O2—C8—O13.1 (4)C24—C17—C21—C23170.4 (2)
C9—O2—C8—C7179.7 (2)C16—C17—C21—C2367.7 (3)
N1—C7—C8—O16.6 (4)C18—C17—C21—C2365.3 (3)
C10—C7—C8—O1131.3 (3)C24—C17—C21—C2052.2 (3)
N1—C7—C8—O2176.3 (2)C16—C17—C21—C20174.2 (2)
C10—C7—C8—O251.6 (3)C18—C17—C21—C2052.8 (3)
N1—C7—C10—C1167.7 (3)C25—C20—C21—C2262.5 (4)
C8—C7—C10—C1154.3 (3)C19—C20—C21—C22173.0 (3)
N1—C7—C10—C15113.0 (3)C25—C20—C21—C23172.1 (3)
C8—C7—C10—C15124.9 (3)C19—C20—C21—C2361.6 (4)
C15—C10—C11—C120.2 (4)C25—C20—C21—C1755.0 (3)
C7—C10—C11—C12179.5 (3)C19—C20—C21—C1755.5 (3)
C10—C11—C12—C130.4 (5)C16—C17—C24—O620.7 (4)
C11—C12—C13—C140.0 (5)C21—C17—C24—O6145.4 (3)
C12—C13—C14—C150.5 (5)C18—C17—C24—O6109.5 (3)
C13—C14—C15—C100.7 (4)C16—C17—C24—C25157.9 (3)
C13—C14—C15—Cl1178.6 (2)C21—C17—C24—C2533.2 (3)
C11—C10—C15—C140.4 (4)C18—C17—C24—C2571.8 (3)
C7—C10—C15—C14178.9 (2)C19—C20—C25—C2471.9 (3)
C11—C10—C15—Cl1179.0 (2)C21—C20—C25—C2435.6 (3)
C7—C10—C15—Cl11.8 (3)O6—C24—C25—C20179.9 (3)
O5—S2—C16—C1764.8 (2)C17—C24—C25—C201.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.93 (3)1.82 (3)2.729 (3)164 (3)
N1—H1A···O5i0.88 (3)2.63 (2)3.180 (3)121.1 (19)
N1—H1A···O4i0.88 (3)1.99 (3)2.856 (3)169 (2)
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H17ClNO2S+·C10H15O4S·C3H6O
Mr600.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)12.101 (3), 14.209 (4), 18.325 (5)
V3)3150.7 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART-CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.912, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
18154, 6435, 4010
Rint0.039
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 0.99
No. of reflections6435
No. of parameters402
No. of restraints70
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18
Absolute structureFlack (1983), 2828 Friedel pairs
Absolute structure parameter0.04 (6)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.93 (3)1.82 (3)2.729 (3)164 (3)
N1—H1A···O5i0.88 (3)2.63 (2)3.180 (3)121.1 (19)
N1—H1A···O4i0.88 (3)1.99 (3)2.856 (3)169 (2)
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank Mr Hai-Bin Song (Nankai University) for the X-ray crystallographic determination and helpful discussions.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDescamps, M. & Radisson, J. (1992). Eur. Patent EP 0 466569.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKang, W., Theman, T. E., Reed, J. F., Stoltzfus, J. & Weger, N. (2007). J. Surg. Educ. 64, 88–92.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds