metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyano­methyl-1,4-diazo­niabi­cyclo­[2.2.2]octane tetra­bromidocadmate(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 12 October 2010; accepted 16 November 2010; online 27 November 2010)

In the title salt, (C8H15N3)[CdBr4], four Br atoms coordinate the CdII atom in a distorted tetra­hedral geometry. In the crystal, weak N—H⋯Br inter­actions connect the anion to three symmetry-related cations. The crystal structure also displays very weak C—H⋯Br inter­actions.

Related literature

For background to 1,4-diaza­bicyclo­[2.2.2]octane derivatives and their properties, see: Basavaiah et al. (2003[Basavaiah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811-892.]); Chen et al. (2010[Chen, L.-Z., Huang, Y., Xiong, R.-G. & Hu, H.-W. (2010). J. Mol. Struct. 963, 16-21.]); Wang et al. (2005[Wang, X.-S., Song, Y.-M. & Xiong, R.-G. (2005). Chin. J. Inorg. Chem. 21, 1030-1033.]); Xiong et al. (2002[Xiong, R. G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H., Zhu, J.-S., Huang, S. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H15N3)[CdBr4]

  • Mr = 585.27

  • Monoclinic, P 21 /c

  • a = 8.610 (3) Å

  • b = 14.071 (4) Å

  • c = 12.702 (4) Å

  • β = 94.136 (4)°

  • V = 1534.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.82 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.470, Tmax = 1.000

  • 16630 measured reflections

  • 3518 independent reflections

  • 2861 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.079

  • S = 0.76

  • 3518 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Br1i 0.90 2.85 3.466 (4) 127
N1—H1C⋯Br2ii 0.90 2.69 3.325 (4) 128
N1—H1C⋯Br4i 0.90 3.11 3.711 (4) 126
C2—H2B⋯Br3iii 0.97 2.83 3.765 (5) 162
C4—H4B⋯Br1 0.97 2.85 3.643 (4) 140
C7—H7A⋯Br3iv 0.97 2.90 3.626 (4) 132
C7—H7B⋯Br2iii 0.97 2.78 3.683 (4) 154
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We are studying the dielectric-ferroelectric materials. 1,4-Diazabicyclo[2.2.2]octane (DABCO) has attracted attention in recent years because of its nucleophilicity (Basavaiah et al., 2003; Xiong et al., 2002) and ferroelectric properties of its derivatives (Chen et al., 2010). For a project on the electric properties of DABCO derivatives (Ye et al., 2006), the title compound was prepared. With no dielectric anomaly observed, the title compound should not be a real ferroelectrics or there may be no distinct phase transition occurring within the measured temperature range (Wang et al., 2005).

The asymmetric unit of the title compound is shown in Fig 1. The Cd atoms are coordinated by four Br atoms with very similar distances in the range 2.5764 (10) to 2.6195 (12) Å. The Br—Cd—Br bond angles are between 98.29 (3) and 116.85 (4)°, which show that the coordination polyhedron can be described as an irregular tetrahedron. Cations (C8H14N3)2+ and anions CdBr42- are connected via weak hydrogen bonds. Weak C—H···Br intramolecular and intermolecular hydrogen bonds also contribute to the stability of the crystal structure, forming one-dimensional chains running along the a axis (Fig. 2).

Related literature top

For background to 1,4-diazabicyclo[2.2.2]octane derivatives and their properties, see: Basavaiah et al. (2003); Chen et al. (2010); Wang et al. (2005); Xiong et al. (2002); Ye et al. (2006).

Experimental top

1,4-Diaza-bicyclo[2.2.2]octane (DABCO) (10 mmol, 1.14 g) and bromoacetonitrile (20 mmol, 2.4 g) were dissolved in CH3CN (10 ml) under stirring for 1 h. at room temperature. 1-(Cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide was obtained by filtering the solid precipitate, then washed with acetonitrile and dried (yield: 90%).

CdBr2 (10 mmol, 0.271 g) and 4 ml 60% HBr were dissolved in MeOH (20 ml) and 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide (20 mmol, 0.464 g) dissolved in 10 ml of methanol was added. The mixture was stirred until the solution was clear. After slow evaporation (5 days) of the solvent, colourless plate crystals of the title compound were obtained in about 56% yield.

Refinement top

H atoms bonded to C and N atoms were placed in idealized positions [C—H = 0.97 Å and N—H = 0.90 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(Carrier atom).

Structure description top

We are studying the dielectric-ferroelectric materials. 1,4-Diazabicyclo[2.2.2]octane (DABCO) has attracted attention in recent years because of its nucleophilicity (Basavaiah et al., 2003; Xiong et al., 2002) and ferroelectric properties of its derivatives (Chen et al., 2010). For a project on the electric properties of DABCO derivatives (Ye et al., 2006), the title compound was prepared. With no dielectric anomaly observed, the title compound should not be a real ferroelectrics or there may be no distinct phase transition occurring within the measured temperature range (Wang et al., 2005).

The asymmetric unit of the title compound is shown in Fig 1. The Cd atoms are coordinated by four Br atoms with very similar distances in the range 2.5764 (10) to 2.6195 (12) Å. The Br—Cd—Br bond angles are between 98.29 (3) and 116.85 (4)°, which show that the coordination polyhedron can be described as an irregular tetrahedron. Cations (C8H14N3)2+ and anions CdBr42- are connected via weak hydrogen bonds. Weak C—H···Br intramolecular and intermolecular hydrogen bonds also contribute to the stability of the crystal structure, forming one-dimensional chains running along the a axis (Fig. 2).

For background to 1,4-diazabicyclo[2.2.2]octane derivatives and their properties, see: Basavaiah et al. (2003); Chen et al. (2010); Wang et al. (2005); Xiong et al. (2002); Ye et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with labeling scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed down the c axis. Intermolecular interactions are shown as dashed lines.
1-Cyanomethyl-1,4-diazoniabicyclo[2.2.2]octane tetrabromidocadmate(II) top
Crystal data top
(C8H15N3)[CdBr4]F(000) = 1088
Mr = 585.27Dx = 2.533 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4263 reflections
a = 8.610 (3) Åθ = 2.4–27.5°
b = 14.071 (4) ŵ = 11.82 mm1
c = 12.702 (4) ÅT = 293 K
β = 94.136 (4)°Prism, colourless
V = 1534.9 (8) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
3518 independent reflections
Radiation source: fine-focus sealed tube2861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.470, Tmax = 1.000l = 1616
16630 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.76 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2386P]
where P = (Fo2 + 2Fc2)/3
3518 reflections(Δ/σ)max = 0.018
145 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.88 e Å3
0 constraints
Crystal data top
(C8H15N3)[CdBr4]V = 1534.9 (8) Å3
Mr = 585.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.610 (3) ŵ = 11.82 mm1
b = 14.071 (4) ÅT = 293 K
c = 12.702 (4) Å0.2 × 0.2 × 0.2 mm
β = 94.136 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
3518 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2861 reflections with I > 2σ(I)
Tmin = 0.470, Tmax = 1.000Rint = 0.068
16630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.76Δρmax = 0.61 e Å3
3518 reflectionsΔρmin = 0.88 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.78773 (4)0.22670 (2)0.50861 (3)0.02924 (11)
Br10.82000 (6)0.40556 (3)0.46315 (4)0.03047 (13)
Br20.79028 (6)0.24284 (3)0.71414 (4)0.03420 (13)
Br30.52068 (6)0.15357 (3)0.45098 (4)0.03464 (13)
Br41.03019 (6)0.13565 (3)0.45657 (4)0.03694 (14)
C80.4254 (6)0.4480 (3)0.6975 (4)0.0314 (11)
N20.6179 (4)0.5753 (2)0.7314 (3)0.0205 (7)
C50.9032 (5)0.5513 (3)0.7405 (4)0.0328 (11)
H5A0.97840.55640.80080.039*
H5B0.94440.50810.68980.039*
N10.8754 (4)0.6469 (2)0.6913 (3)0.0242 (8)
H1C0.96100.67500.66910.029*
C60.7506 (6)0.5138 (3)0.7750 (4)0.0378 (12)
H6A0.73500.44900.75010.045*
H6B0.75320.51320.85150.045*
C40.6267 (5)0.5849 (3)0.6140 (3)0.0294 (10)
H4A0.53650.61950.58420.035*
H4B0.62630.52240.58190.035*
C30.7744 (5)0.6376 (3)0.5904 (3)0.0283 (10)
H3A0.82930.60270.53870.034*
H3B0.74860.70000.56200.034*
C20.6364 (6)0.6733 (3)0.7808 (4)0.0316 (11)
H2A0.55860.71600.74840.038*
H2B0.62150.66960.85570.038*
C70.4643 (5)0.5354 (3)0.7579 (3)0.0279 (10)
H7A0.46770.52150.83280.034*
H7B0.38350.58250.74240.034*
N30.3933 (6)0.3830 (3)0.6497 (4)0.0459 (12)
C10.7981 (5)0.7107 (3)0.7646 (4)0.0300 (10)
H1A0.79090.77440.73540.036*
H1B0.85900.71350.83180.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02631 (19)0.03071 (19)0.0309 (2)0.00124 (14)0.00314 (15)0.00137 (14)
Br10.0324 (3)0.0264 (2)0.0335 (3)0.00131 (19)0.0088 (2)0.00169 (18)
Br20.0285 (3)0.0477 (3)0.0266 (3)0.0031 (2)0.0034 (2)0.0044 (2)
Br30.0287 (3)0.0421 (3)0.0334 (3)0.0064 (2)0.0042 (2)0.0070 (2)
Br40.0334 (3)0.0351 (3)0.0433 (3)0.0054 (2)0.0086 (2)0.0016 (2)
C80.029 (3)0.026 (2)0.039 (3)0.008 (2)0.003 (2)0.010 (2)
N20.0180 (18)0.0228 (18)0.0213 (18)0.0003 (14)0.0053 (15)0.0002 (14)
C50.023 (2)0.032 (3)0.043 (3)0.007 (2)0.003 (2)0.002 (2)
N10.0148 (18)0.031 (2)0.029 (2)0.0028 (15)0.0094 (15)0.0017 (15)
C60.027 (3)0.034 (3)0.052 (3)0.008 (2)0.003 (2)0.015 (2)
C40.027 (3)0.045 (3)0.016 (2)0.004 (2)0.0037 (19)0.0024 (18)
C30.025 (2)0.035 (3)0.026 (2)0.002 (2)0.007 (2)0.0022 (18)
C20.033 (3)0.031 (2)0.033 (3)0.003 (2)0.015 (2)0.013 (2)
C70.020 (2)0.033 (2)0.032 (3)0.0025 (19)0.0067 (19)0.0061 (19)
N30.051 (3)0.032 (2)0.053 (3)0.012 (2)0.004 (2)0.011 (2)
C10.028 (2)0.028 (2)0.035 (3)0.003 (2)0.008 (2)0.0084 (19)
Geometric parameters (Å, º) top
Cd1—Br32.5766 (8)N1—H1C0.8997
Cd1—Br42.5760 (8)C6—H6A0.9700
Cd1—Br12.6015 (9)C6—H6B0.9700
Cd1—Br22.6191 (10)C4—C31.521 (6)
C8—N31.122 (6)C4—H4A0.9700
C8—C71.475 (6)C4—H4B0.9700
N2—C71.497 (5)C3—H3A0.9700
N2—C61.506 (5)C3—H3B0.9700
N2—C41.505 (5)C2—C11.516 (6)
N2—C21.519 (5)C2—H2A0.9700
C5—N11.495 (5)C2—H2B0.9700
C5—C61.510 (7)C7—H7A0.9700
C5—H5A0.9700C7—H7B0.9700
C5—H5B0.9700C1—H1A0.9700
N1—C11.485 (5)C1—H1B0.9700
N1—C31.501 (5)
Br3—Cd1—Br4116.84 (3)N2—C4—C3110.0 (3)
Br3—Cd1—Br1115.51 (2)N2—C4—H4A109.7
Br4—Cd1—Br1108.83 (2)C3—C4—H4A109.7
Br3—Cd1—Br2105.13 (2)N2—C4—H4B109.7
Br4—Cd1—Br2110.50 (2)C3—C4—H4B109.7
Br1—Cd1—Br298.28 (2)H4A—C4—H4B108.2
N3—C8—C7178.1 (5)N1—C3—C4108.4 (3)
C7—N2—C6111.2 (3)N1—C3—H3A110.0
C7—N2—C4111.4 (3)C4—C3—H3A110.0
C6—N2—C4109.0 (3)N1—C3—H3B110.0
C7—N2—C2108.3 (3)C4—C3—H3B110.0
C6—N2—C2108.4 (4)H3A—C3—H3B108.4
C4—N2—C2108.5 (3)C1—C2—N2109.2 (3)
N1—C5—C6108.6 (4)C1—C2—H2A109.8
N1—C5—H5A110.0N2—C2—H2A109.8
C6—C5—H5A110.0C1—C2—H2B109.8
N1—C5—H5B110.0N2—C2—H2B109.8
C6—C5—H5B110.0H2A—C2—H2B108.3
H5A—C5—H5B108.3C8—C7—N2111.5 (4)
C5—N1—C1110.3 (3)C8—C7—H7A109.3
C5—N1—C3110.1 (3)N2—C7—H7A109.3
C1—N1—C3109.2 (3)C8—C7—H7B109.3
C5—N1—H1C114.6N2—C7—H7B109.3
C1—N1—H1C110.2H7A—C7—H7B108.0
C3—N1—H1C102.0N1—C1—C2109.4 (3)
N2—C6—C5110.1 (4)N1—C1—H1A109.8
N2—C6—H6A109.6C2—C1—H1A109.8
C5—C6—H6A109.6N1—C1—H1B109.8
N2—C6—H6B109.6C2—C1—H1B109.8
C5—C6—H6B109.6H1A—C1—H1B108.2
H6A—C6—H6B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Br1i0.902.853.466 (4)127
N1—H1C···Br2ii0.902.693.325 (4)128
N1—H1C···Br4i0.903.113.711 (4)126
C2—H2B···Br3iii0.972.833.765 (5)162
C4—H4B···Br10.972.853.643 (4)140
C7—H7A···Br3iv0.972.903.626 (4)132
C7—H7B···Br2iii0.972.783.683 (4)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C8H15N3)[CdBr4]
Mr585.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.610 (3), 14.071 (4), 12.702 (4)
β (°) 94.136 (4)
V3)1534.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)11.82
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.470, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16630, 3518, 2861
Rint0.068
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 0.76
No. of reflections3518
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.88

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Br1i0.902.853.466 (4)127
N1—H1C···Br2ii0.902.693.325 (4)128
N1—H1C···Br4i0.903.113.711 (4)126
C2—H2B···Br3iii0.972.833.765 (5)162
C4—H4B···Br10.972.853.643 (4)140
C7—H7A···Br3iv0.972.903.626 (4)132
C7—H7B···Br2iii0.972.783.683 (4)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationBasavaiah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–892.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, L.-Z., Huang, Y., Xiong, R.-G. & Hu, H.-W. (2010). J. Mol. Struct. 963, 16–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Song, Y.-M. & Xiong, R.-G. (2005). Chin. J. Inorg. Chem. 21, 1030–1033.  Google Scholar
First citationXiong, R. G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  CrossRef CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H., Zhu, J.-S., Huang, S. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds