organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-amino-5-[(E)-(1-methyl-1H-pyrrol-2-yl)methyl­idene­amino]thiophene-3,4-di­carboxylate

aDepartment of Chemistry, University of Montreal, CP 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: w.skene@umontreal.ca

(Received 21 October 2010; accepted 11 November 2010; online 20 November 2010)

The structure of the title compound, C16H19N3O4S, shows the planes described by the thio­phene and the pyrroles are twisted by 17.06 (4)°. Additionally, the structure shows the azomethine bond adopts the E configuration, while the pyrrole is disordered as a heterocycle flip [occupancy ratio 0.729 (5):0.271 (5)]. The three-dimensional network is well packed and involves N–H⋯O hydrogen bonding and ππ stacking [centroid–centroid distance = 4.294 (8) Å].

Related literature

For our on-going research on conjugated azomethines, see: Dufresne & Skene (2008[Dufresne, S. & Skene, W. G. (2008). J. Org. Chem. 73, 3859-3866.]). For bond lengths in comparable azomethines, see: Skene et al. (2006[Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382-o2384.]); Dufresne & Skene (2010[Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3027.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N3O4S

  • Mr = 349.40

  • Monoclinic, P 21 /c

  • a = 8.8212 (18) Å

  • b = 9.0799 (18) Å

  • c = 21.793 (4) Å

  • β = 97.50 (3)°

  • V = 1730.6 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.89 mm−1

  • T = 123 K

  • 0.17 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.710, Tmax = 0.762

  • 20876 measured reflections

  • 3367 independent reflections

  • 3046 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.07

  • 3367 reflections

  • 267 parameters

  • 32 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3i 0.88 2.09 2.925 (3) 157
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: UdMX (Marris, 2004[Marris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.]).

Supporting information


Comment top

During our on-going research relating to conjugated azomethines (Dufresne & Skene, 2008), we prepared the title compound. The structure is given in figure 1. The pyrrole is disordered. The occupation factor was found to be 73% for the antiperiplanar heterocycle. The salient feature of the resolved structure is assigning the absolute isomer of the azomethine, which is not readily possible by other means. The E isomer was found and the crystal symmetry was P21/c. Neither solvent nor counter-ions were found in the structure.

A major point of interest is the azomethine bond. The bond lengths for N2—C4, N2—C5 and C5—C6 are 1.372 (2), 1.292 (2) and 1.424 (2) Å, respectively. These are similar to comparable azomethines (Skene et al., 2006 and Dufresne & Skene, 2010) whose homologue lengths are 1.381 (3), 1.283 (3) and 1.426 (3) Å.

We found that the heterocycles of the title compound are not coplanar, according to angle between the mean planes described by them. The angle between these planes was found to be 17.06 (4)°. This is in contrast to an analogous thiophene-azomethine compound (Skene et al., 2006) whose mean plane angle is 7.25 (11)°.

Figure 2 shows the H-bonding occurring within the lattice. Only one H-bonding was found between N1—H1B···O3ii with an angle of 157.1° and a distance of 2.925 (3) Å between the nitrogen and the oxygen. Hydrogen bonding and π-stacking are the driving forces for the overall assembly. π-stacking was found to take place between the pyrroles as seen in Figure 3.

Related literature top

For our on-going research on conjugated azomethines, see: Dufresne & Skene (2008). For bond lengths in comparable azomethines, see: Skene et al. (2006); Dufresne & Skene (2010).

Experimental top

1-Methyl-2-pyrrole-carboxaldehyde and 2,5-diamino-thiophene-3,4-dicarboxylic acid diethyl ester were mixed in anhydrous 2-propanol with a catalytic amount of TFA and refluxed for 12 h. The reaction was then purified by flash chromatography to afford the title compound as a yellow solid. Single crystals were obtained by slow evaporation of an acetone solution.

Refinement top

C-bonded H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2-1.5 Ueq(C). The protons on the amino group were placed in calculated positions (N—H = 0.88 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2 Ueq(N). During the refinement, evidence came that the structure was disordered as an inversion of terminal heterocycles. We first tried to fix each part to half of the weight and then let it vary to the optimized proportion of 73:27. We were forced to add constraints to the minor counterpart so it looks like the major one. We used fixed similar temperature factors, as well as distances and angles restraints with every disordered atom.

Structure description top

During our on-going research relating to conjugated azomethines (Dufresne & Skene, 2008), we prepared the title compound. The structure is given in figure 1. The pyrrole is disordered. The occupation factor was found to be 73% for the antiperiplanar heterocycle. The salient feature of the resolved structure is assigning the absolute isomer of the azomethine, which is not readily possible by other means. The E isomer was found and the crystal symmetry was P21/c. Neither solvent nor counter-ions were found in the structure.

A major point of interest is the azomethine bond. The bond lengths for N2—C4, N2—C5 and C5—C6 are 1.372 (2), 1.292 (2) and 1.424 (2) Å, respectively. These are similar to comparable azomethines (Skene et al., 2006 and Dufresne & Skene, 2010) whose homologue lengths are 1.381 (3), 1.283 (3) and 1.426 (3) Å.

We found that the heterocycles of the title compound are not coplanar, according to angle between the mean planes described by them. The angle between these planes was found to be 17.06 (4)°. This is in contrast to an analogous thiophene-azomethine compound (Skene et al., 2006) whose mean plane angle is 7.25 (11)°.

Figure 2 shows the H-bonding occurring within the lattice. Only one H-bonding was found between N1—H1B···O3ii with an angle of 157.1° and a distance of 2.925 (3) Å between the nitrogen and the oxygen. Hydrogen bonding and π-stacking are the driving forces for the overall assembly. π-stacking was found to take place between the pyrroles as seen in Figure 3.

For our on-going research on conjugated azomethines, see: Dufresne & Skene (2008). For bond lengths in comparable azomethines, see: Skene et al. (2006); Dufresne & Skene (2010).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the title molecule with the numbering scheme adopted (Farrugia, 1997). The disorder on the pyrrole unit is represented by prime symbols. Ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Supramolecular structure showing the intermolecular H-bonding giving the structural arrangement. Disorder has been omitted for clarity. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) 1 - x, -1/2 + y, 1/2 - z; (ii) 1 - x, 1/2 + y, 1/2 - z; (iii) x, 1 + y, z.]
[Figure 3] Fig. 3. The three-dimensional network demonstrating the π-stacking in the lattice. Disorder has been omitted for clarity.
Diethyl 2-amino-5-[(E)-(1-methyl-1H-pyrrol- 2-yl)methylideneamino]thiophene-3,4-dicarboxylate top
Crystal data top
C16H19N3O4SF(000) = 736
Mr = 349.40Dx = 1.341 Mg m3
Monoclinic, P21/cMelting point: 404(2) K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 8.8212 (18) ÅCell parameters from 10603 reflections
b = 9.0799 (18) Åθ = 4.1–71.3°
c = 21.793 (4) ŵ = 1.89 mm1
β = 97.50 (3)°T = 123 K
V = 1730.6 (6) Å3Block, yellow
Z = 40.17 × 0.16 × 0.15 mm
Data collection top
Bruker SMART 6000
diffractometer
3367 independent reflections
Radiation source: Rotating Anode3046 reflections with I > 2σ(I)
Montel 200 optics monochromatorRint = 0.034
Detector resolution: 5.5 pixels mm-1θmax = 72.0°, θmin = 4.1°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
k = 1111
Tmin = 0.710, Tmax = 0.762l = 2625
20876 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.153P]
where P = (Fo2 + 2Fc2)/3
3367 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.32 e Å3
32 restraintsΔρmin = 0.54 e Å3
0 constraints
Crystal data top
C16H19N3O4SV = 1730.6 (6) Å3
Mr = 349.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.8212 (18) ŵ = 1.89 mm1
b = 9.0799 (18) ÅT = 123 K
c = 21.793 (4) Å0.17 × 0.16 × 0.15 mm
β = 97.50 (3)°
Data collection top
Bruker SMART 6000
diffractometer
3367 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
3046 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.762Rint = 0.034
20876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04232 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
3367 reflectionsΔρmin = 0.54 e Å3
267 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.45470 (4)0.43388 (4)0.275627 (17)0.02979 (14)
O10.80431 (13)0.22781 (12)0.16548 (5)0.0338 (3)
O20.89746 (11)0.11974 (11)0.25566 (5)0.0280 (2)
O30.73230 (12)0.04262 (11)0.38224 (5)0.0347 (3)
O40.89935 (11)0.22984 (11)0.38638 (5)0.0288 (2)
N10.56568 (15)0.42094 (15)0.16734 (6)0.0352 (3)
H1A0.63080.39130.14260.042*
H1B0.49060.48090.15340.042*
N20.50239 (13)0.31869 (14)0.39473 (6)0.0304 (3)
C10.58092 (15)0.37474 (15)0.22635 (6)0.0255 (3)
C20.69216 (14)0.28057 (14)0.25579 (6)0.0217 (3)
C30.67137 (15)0.25520 (14)0.31923 (6)0.0227 (3)
C40.54893 (15)0.32748 (16)0.33720 (7)0.0268 (3)
C50.39981 (16)0.40771 (17)0.41036 (8)0.0328 (3)
H50.36300.48300.38200.039*
C60.33869 (17)0.39978 (19)0.46758 (8)0.0377 (4)
C110.80092 (15)0.20966 (14)0.22090 (6)0.0231 (3)
C121.01267 (19)0.04672 (18)0.22452 (8)0.0370 (4)
H12A0.96600.01400.18300.044*
H12B1.05020.04170.24840.044*
C131.14477 (19)0.1469 (2)0.21800 (9)0.0468 (5)
H13A1.10910.23090.19180.070*
H13B1.22280.09280.19900.070*
H13C1.18870.18240.25890.070*
C140.76941 (15)0.16206 (14)0.36484 (6)0.0229 (3)
C151.00158 (18)0.15225 (19)0.43389 (7)0.0357 (4)
H15A0.94010.09620.46080.043*
H15B1.06420.22480.46000.043*
C161.1047 (2)0.0488 (2)0.40530 (9)0.0498 (5)
H16A1.04290.02590.38110.075*
H16B1.17410.00050.43800.075*
H16C1.16440.10400.37820.075*
N30.3667 (7)0.3033 (4)0.5110 (3)0.0300 (10)0.729 (5)
C70.2273 (5)0.5042 (6)0.4841 (2)0.0307 (9)0.729 (5)
H70.18520.58640.46090.037*0.729 (5)
C80.1955 (9)0.4567 (9)0.5423 (3)0.0351 (13)0.729 (5)
H80.12740.50190.56700.042*0.729 (5)
C90.2812 (8)0.3328 (7)0.5569 (3)0.0339 (12)0.729 (5)
H90.28070.27610.59350.041*0.729 (5)
C100.4701 (3)0.1768 (3)0.51050 (11)0.0425 (7)0.729 (5)
H10A0.45470.13010.46960.064*0.729 (5)
H10B0.44840.10550.54200.064*0.729 (5)
H10C0.57630.21040.51960.064*0.729 (5)
N830.2589 (11)0.4768 (12)0.5004 (4)0.0224 (17)0.271 (5)
C870.369 (2)0.2593 (12)0.5158 (9)0.027 (2)0.271 (5)
H870.42640.17310.51010.033*0.271 (5)
C880.290 (2)0.2937 (17)0.5684 (7)0.026 (2)0.271 (5)
H880.28750.23650.60480.031*0.271 (5)
C890.221 (2)0.426 (2)0.5544 (8)0.028 (3)0.271 (5)
H890.15590.47460.57920.033*0.271 (5)
C900.2156 (6)0.6219 (7)0.4747 (2)0.0302 (15)0.271 (5)
H90A0.30630.68500.47730.045*0.271 (5)
H90B0.14000.66660.49820.045*0.271 (5)
H90C0.17130.61130.43120.045*0.271 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0183 (2)0.0303 (2)0.0411 (2)0.00671 (12)0.00480 (14)0.00178 (13)
O10.0328 (6)0.0391 (6)0.0299 (5)0.0073 (4)0.0059 (4)0.0022 (4)
O20.0241 (5)0.0257 (5)0.0357 (5)0.0080 (4)0.0101 (4)0.0037 (4)
O30.0277 (5)0.0292 (5)0.0458 (6)0.0060 (4)0.0010 (5)0.0100 (5)
O40.0195 (5)0.0273 (5)0.0379 (6)0.0020 (4)0.0026 (4)0.0003 (4)
N10.0293 (7)0.0422 (8)0.0333 (7)0.0123 (5)0.0008 (5)0.0051 (5)
N20.0206 (6)0.0346 (7)0.0376 (7)0.0001 (5)0.0096 (5)0.0028 (5)
C10.0188 (6)0.0236 (7)0.0334 (7)0.0004 (5)0.0009 (5)0.0015 (5)
C20.0170 (6)0.0183 (6)0.0296 (7)0.0003 (5)0.0028 (5)0.0015 (5)
C30.0172 (6)0.0200 (6)0.0310 (7)0.0017 (5)0.0037 (5)0.0005 (5)
C40.0181 (6)0.0264 (7)0.0363 (7)0.0000 (5)0.0053 (5)0.0001 (5)
C50.0225 (7)0.0314 (7)0.0461 (9)0.0030 (5)0.0107 (6)0.0042 (6)
C60.0253 (8)0.0436 (9)0.0470 (10)0.0086 (7)0.0152 (7)0.0144 (8)
C110.0198 (6)0.0196 (6)0.0298 (7)0.0015 (5)0.0033 (5)0.0019 (5)
C120.0344 (8)0.0303 (8)0.0499 (9)0.0153 (6)0.0185 (7)0.0049 (6)
C130.0295 (8)0.0536 (11)0.0611 (11)0.0137 (7)0.0200 (8)0.0188 (9)
C140.0176 (6)0.0231 (6)0.0283 (6)0.0012 (5)0.0045 (5)0.0016 (5)
C150.0284 (7)0.0422 (8)0.0336 (8)0.0025 (6)0.0072 (6)0.0008 (6)
C160.0381 (10)0.0591 (11)0.0499 (10)0.0204 (8)0.0031 (8)0.0037 (8)
N30.0230 (11)0.032 (2)0.0357 (16)0.001 (2)0.0083 (9)0.005 (2)
C70.0216 (19)0.030 (3)0.041 (3)0.0043 (13)0.0066 (15)0.0019 (16)
C80.028 (2)0.040 (3)0.041 (3)0.0014 (19)0.015 (2)0.012 (2)
C90.0328 (18)0.044 (4)0.026 (2)0.000 (3)0.0054 (17)0.003 (2)
C100.0417 (14)0.0451 (14)0.0425 (13)0.0156 (11)0.0120 (10)0.0147 (10)
N830.018 (4)0.019 (4)0.029 (4)0.007 (3)0.003 (3)0.007 (3)
C870.035 (4)0.012 (5)0.036 (4)0.003 (4)0.007 (3)0.000 (4)
C880.032 (4)0.026 (6)0.021 (5)0.008 (4)0.010 (4)0.010 (3)
C890.031 (7)0.031 (8)0.023 (4)0.000 (5)0.009 (4)0.008 (4)
C900.030 (3)0.033 (4)0.029 (3)0.008 (2)0.006 (2)0.008 (2)
Geometric parameters (Å, º) top
S1—C11.7301 (15)C13—H13b0.98
S1—C41.7703 (15)C13—H13c0.98
O1—C111.2232 (17)C15—C161.499 (2)
O2—C111.3407 (16)C15—H15a0.99
O2—C121.4537 (17)C15—H15b0.99
O3—C141.2080 (17)C16—H16a0.98
O4—C141.3313 (16)C16—H16b0.98
O4—C151.4622 (17)C16—H16c0.98
N1—C11.3428 (19)N3—C91.354 (7)
N1—H1a0.88N3—C101.468 (4)
N1—H1b0.88C7—C81.402 (7)
N2—C51.2918 (19)C7—H70.95
N2—C41.3715 (19)C8—C91.369 (5)
C1—C21.3933 (18)C8—H80.95
C2—C31.4368 (18)C9—H90.95
C2—C111.4503 (18)C10—H10a0.98
C3—C41.3643 (19)C10—H10b0.98
C3—C141.4923 (18)C10—H10c0.98
C5—C61.424 (2)N83—C891.346 (15)
C5—H50.95N83—C901.463 (8)
C6—N831.276 (12)C87—C881.450 (18)
C6—N31.290 (5)C87—H870.95
C6—C71.445 (5)C88—C891.361 (11)
C6—C871.652 (14)C88—H880.95
C12—C131.499 (2)C89—H890.95
C12—H12a0.99C90—H90a0.98
C12—H12b0.99C90—H90b0.98
C13—H13a0.98C90—H90c0.98
C1—S1—C491.41 (7)O3—C14—O4124.09 (13)
C11—O2—C12116.43 (11)O3—C14—C3124.09 (12)
C14—O4—C15116.74 (11)O4—C14—C3111.73 (11)
C1—N1—H1A120O4—C15—C16111.07 (13)
C1—N1—H1B120O4—C15—H15A109.4
H1A—N1—H1B120C16—C15—H15A109.4
C5—N2—C4120.54 (14)O4—C15—H15B109.4
N1—C1—C2127.53 (13)C16—C15—H15B109.4
N1—C1—S1120.36 (11)H15A—C15—H15B108
C2—C1—S1112.11 (11)C15—C16—H16A109.5
C1—C2—C3111.76 (12)C15—C16—H16B109.5
C1—C2—C11120.36 (12)H16A—C16—H16B109.5
C3—C2—C11127.55 (12)C15—C16—H16C109.5
C4—C3—C2113.85 (12)H16A—C16—H16C109.5
C4—C3—C14119.55 (13)H16B—C16—H16C109.5
C2—C3—C14126.60 (12)C6—N3—C9109.6 (4)
C3—C4—N2125.24 (13)C6—N3—C10125.8 (4)
C3—C4—S1110.85 (11)C9—N3—C10124.5 (4)
N2—C4—S1123.90 (11)C8—C7—C6104.3 (4)
N2—C5—C6123.90 (16)C8—C7—H7127.9
N2—C5—H5118.1C6—C7—H7127.9
C6—C5—H5118.1C9—C8—C7107.0 (5)
N83—C6—N391.6 (4)C9—C8—H8126.5
N83—C6—C5139.8 (4)C7—C8—H8126.5
N3—C6—C5128.3 (2)N3—C9—C8109.6 (5)
N3—C6—C7109.5 (3)N3—C9—H9125.2
C5—C6—C7122.2 (2)C8—C9—H9125.2
N83—C6—C8797.0 (7)C6—N83—C89121.2 (1)
C5—C6—C87123.2 (6)C6—N83—C90114.4 (7)
C7—C6—C87114.0 (6)C89—N83—C90124.4 (1)
O1—C11—O2122.99 (12)C88—C87—C6106.4 (9)
O1—C11—C2124.12 (13)C88—C87—H87126.8
O2—C11—C2112.89 (11)C6—C87—H87126.8
O2—C12—C13111.53 (14)C89—C88—C87104.90 (11)
O2—C12—H12A109.3C89—C88—H88127.5
C13—C12—H12A109.3C87—C88—H88127.5
O2—C12—H12B109.3N83—C89—C88110.30 (13)
C13—C12—H12B109.3N83—C89—H89124.9
H12A—C12—H12B108C88—C89—H89124.9
C12—C13—H13A109.5N83—C90—H90A109.5
C12—C13—H13B109.5N83—C90—H90B109.5
H13A—C13—H13B109.5H90A—C90—H90B109.5
C12—C13—H13C109.5N83—C90—H90C109.5
H13A—C13—H13C109.5H90A—C90—H90C109.5
H13B—C13—H13C109.5H90B—C90—H90C109.5
C4—S1—C1—N1179.29 (13)C2—C3—C14—O477.00 (16)
C4—S1—C1—C21.27 (11)C14—O4—C15—C1686.08 (17)
N1—C1—C2—C3179.63 (13)N83—C6—N3—C98.3 (7)
S1—C1—C2—C30.98 (14)C5—C6—N3—C9178.0 (4)
N1—C1—C2—C115.7 (2)C7—C6—N3—C90.4 (6)
S1—C1—C2—C11174.91 (9)C87—C6—N3—C9126 (7)
C1—C2—C3—C40.01 (16)N83—C6—N3—C10174.1 (7)
C11—C2—C3—C4173.40 (12)C5—C6—N3—C100.4 (7)
C1—C2—C3—C14179.28 (12)C7—C6—N3—C10178.1 (5)
C11—C2—C3—C147.3 (2)C87—C6—N3—C1052 (6)
C2—C3—C4—N2178.30 (12)N83—C6—C7—C823.70 (19)
C14—C3—C4—N22.4 (2)N3—C6—C7—C80.3 (5)
C2—C3—C4—S10.93 (15)C5—C6—C7—C8178.9 (4)
C14—C3—C4—S1178.40 (9)C87—C6—C7—C87.2 (1)
C5—N2—C4—C3169.49 (14)C6—C7—C8—C91.0 (7)
C5—N2—C4—S111.4 (2)C6—N3—C9—C81.1 (8)
C1—S1—C4—C31.25 (11)C10—N3—C9—C8178.7 (6)
C1—S1—C4—N2177.99 (13)C7—C8—C9—N31.3 (9)
C4—N2—C5—C6175.94 (14)N3—C6—N83—C899.00 (14)
N2—C5—C6—N83166.7 (8)C5—C6—N83—C89178.70 (11)
N2—C5—C6—N33.6 (4)C7—C6—N83—C89148 (3)
N2—C5—C6—C7178.1 (3)C87—C6—N83—C893.40 (15)
N2—C5—C6—C8710.9 (9)N3—C6—N83—C90170.4 (7)
C12—O2—C11—O12.11 (19)C5—C6—N83—C902.00 (13)
C12—O2—C11—C2178.63 (12)C7—C6—N83—C9032.20 (15)
C1—C2—C11—O10.9 (2)C87—C6—N83—C90176.0 (1)
C3—C2—C11—O1173.81 (13)N83—C6—C87—C880.70 (15)
C1—C2—C11—O2178.33 (11)N3—C6—C87—C8847 (6)
C3—C2—C11—O25.44 (19)C5—C6—C87—C88179.20 (11)
C11—O2—C12—C1380.18 (17)C7—C6—C87—C889.20 (17)
C15—O4—C14—O30.2 (2)C6—C87—C88—C892 (2)
C15—O4—C14—C3176.97 (11)C6—N83—C89—C885 (2)
C4—C3—C14—O374.56 (18)C90—N83—C89—C88174.20 (14)
C2—C3—C14—O3106.21 (17)C87—C88—C89—N834 (2)
C4—C3—C14—O4102.23 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.882.092.925 (3)157
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H19N3O4S
Mr349.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)8.8212 (18), 9.0799 (18), 21.793 (4)
β (°) 97.50 (3)
V3)1730.6 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.89
Crystal size (mm)0.17 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART 6000
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.710, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
20876, 3367, 3046
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.07
No. of reflections3367
No. of parameters267
No. of restraints32
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.54

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), UdMX (Marris, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.882.0942.925 (3)157
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

NSERC Canada is thanked for DG and RTI grants allowing this work to be performed in addition to CFI for additional equipment funding. SD also thanks NSERC for a graduate scholarship. WGS acknowledges both the Alexander von Humboldt Foundation and the RSC for a JWT Jones Travelling fellowships, allowing the completion of this manuscript.

References

First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDufresne, S. & Skene, W. G. (2008). J. Org. Chem. 73, 3859–3866.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMarris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382–o2384.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds