organic compounds
(1R,4aS,10aR)-1,4a-Dimethyl-N-[(morpholin-4-yl)carbothioyl]-7-(propan-2-yl)-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxamide
aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China, and bZigong Renji Medical Center of Sichuan Province, Zigong, 643000, People's Republic of China
*Correspondence e-mail: rxping2001@163.com
In the title compound, C25H36N2O2S, the cyclohexane and morpholine rings adopt chair conformations. The cyclohexene and cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The N—H and C=O bonds in the urea group are anti to each other. The is stabilized by intermolecular N—H⋯O hydrogen bonds.
Related literature
Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin, see: Halbrook & Lawrence (1966). For the biological activity of dehydroabietic aid derivatives, see: Rao et al. (2008); Sepulveda et al. (2005); Wada et al. (1985); For the crystal structures of dehydroabietic acid derivatives, see: Rao et al. (2006, 2009, 2010).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810044569/bq2238sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810044569/bq2238Isup2.hkl
50 mmol dehydroabietyl acylthiourea and 50 mmol morpholine were added to 30 ml dichloromethane, the mixture were refluxed for 6 h, white crystals were obtained after the solvent were distilled off. Single crystals were grown from ethanol.
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.
Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin (Halbrook et al., 1966). Dehydroabietic acid is widely used as starting material for design and synthesis of biological compounds (Sepulveda et al., 2005; Rao et al., 2008; Wada et al., 1985). τ = 0.9 °], [(Q) = 0.5384 Å, θ = 48.52 °, φ = 286.4651 °], [(Q) = 0.5530 Å, θ = 176.27 °, φ = 154.5122 °], and [(Q) = 0.5602 Å, θ = 4.25 °, φ = 28.6358 °], respectively. There are three chiral centers in the molecule, they exhibited R–, S– and R– configurations, respectively. The N—H and C=O bonds in the urea group are anti to each other. The is stabilized by intermolecular N—H···O hydrogen bonds. The hydrogen bond geometry are listed in Table 1. The packing diagrams of title crystal is shown in Figure 2.
of dehydroabietic acid derivatives such as acid (Rao et al., 2009), amide (Rao et al., 2006), urea (Rao et al., 2010) were widely investigated. In this work, we describe the of the acylthiourea derivative of dehydroabietic acid. Its structure is shown in Figure 1. There are four six-membered rings in the molecule, in which the benzene ring form planar (mean deviation = 0.0055 Å), the cyclohexene ring form half-chair and the cyclohexane and morpholine rings form chair configurations, respectively. The cyclohexene and cyclohexane rings form a trans ring junction with two methyl groups in the same side of tricyclo phenanthrene structure. The puckering parameters for the benzene, hexene, hexane and morpholine are [Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin, see: Halbrook & Lawrence (1966). For the biological activity of dehydroabietic aid derivatives, see: Rao et al. (2008); Sepulveda et al. (2005); Wada et al. (1985); For the crystal structures of dehydroabietic acid derivatives, see: Rao et al. (2006, 2009, 2010).
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell
CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The title compound with displacement ellipsoids at the 30% probability level. | |
Fig. 2. Packing diagrams of title crystal (H atoms omitted for clarity). |
C25H36N2O2S | Dx = 1.181 Mg m−3 |
Mr = 428.62 | Melting point: 416 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
a = 9.887 (2) Å | θ = 9–12° |
b = 15.114 (3) Å | µ = 0.16 mm−1 |
c = 16.128 (3) Å | T = 293 K |
V = 2410.0 (8) Å3 | Block, white |
Z = 4 | 0.30 × 0.20 × 0.20 mm |
F(000) = 928 |
Entaf–Nonius CAD-4 diffractometer | 3137 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.115 |
Graphite monochromator | θmax = 25.3°, θmin = 1.9° |
ω/2θ scans | h = −11→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −18→0 |
Tmin = 0.954, Tmax = 0.969 | l = −19→19 |
4802 measured reflections | 3 standard reflections every 200 reflections |
4370 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.069 | H-atom parameters constrained |
wR(F2) = 0.189 | w = 1/[σ2(Fo2) + (0.1P)2 + 1.4P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
4370 reflections | Δρmax = 0.37 e Å−3 |
271 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1882 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.08 (16) |
C25H36N2O2S | V = 2410.0 (8) Å3 |
Mr = 428.62 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.887 (2) Å | µ = 0.16 mm−1 |
b = 15.114 (3) Å | T = 293 K |
c = 16.128 (3) Å | 0.30 × 0.20 × 0.20 mm |
Entaf–Nonius CAD-4 diffractometer | 3137 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.115 |
Tmin = 0.954, Tmax = 0.969 | 3 standard reflections every 200 reflections |
4802 measured reflections | intensity decay: 1% |
4370 independent reflections |
R[F2 > 2σ(F2)] = 0.069 | H-atom parameters constrained |
wR(F2) = 0.189 | Δρmax = 0.37 e Å−3 |
S = 1.00 | Δρmin = −0.29 e Å−3 |
4370 reflections | Absolute structure: Flack (1983), 1882 Friedel pairs |
271 parameters | Absolute structure parameter: −0.08 (16) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.37704 (13) | 0.27732 (8) | 0.64677 (9) | 0.0548 (4) | |
N1 | 0.6164 (4) | 0.2465 (2) | 0.7135 (2) | 0.0375 (8) | |
H1A | 0.6260 | 0.2902 | 0.7471 | 0.045* | |
O1 | 0.7260 (4) | 0.1345 (2) | 0.6499 (3) | 0.0674 (11) | |
C1 | 0.9067 (5) | 0.2895 (3) | 0.7578 (3) | 0.0512 (12) | |
H1B | 0.8319 | 0.3124 | 0.7902 | 0.061* | |
H1C | 0.9378 | 0.2354 | 0.7841 | 0.061* | |
O2 | 0.4399 (4) | −0.0552 (2) | 0.7323 (2) | 0.0628 (10) | |
N2 | 0.4599 (4) | 0.1318 (2) | 0.7235 (2) | 0.0441 (9) | |
C2 | 1.0214 (5) | 0.3570 (3) | 0.7579 (3) | 0.0544 (13) | |
H2A | 1.0997 | 0.3317 | 0.7305 | 0.065* | |
H2B | 1.0465 | 0.3703 | 0.8147 | 0.065* | |
C3 | 0.9808 (5) | 0.4423 (3) | 0.7140 (3) | 0.0483 (12) | |
H3A | 1.0587 | 0.4812 | 0.7120 | 0.058* | |
H3B | 0.9115 | 0.4715 | 0.7466 | 0.058* | |
C4 | 0.9273 (4) | 0.4294 (3) | 0.6252 (3) | 0.0385 (10) | |
C5 | 0.8566 (4) | 0.5146 (3) | 0.5947 (3) | 0.0374 (10) | |
C6 | 0.9104 (5) | 0.5970 (3) | 0.6155 (3) | 0.0453 (11) | |
H6A | 0.9889 | 0.5994 | 0.6472 | 0.054* | |
C7 | 0.8507 (5) | 0.6744 (3) | 0.5907 (3) | 0.0464 (12) | |
H7A | 0.8884 | 0.7280 | 0.6070 | 0.056* | |
C8 | 0.7352 (4) | 0.6744 (3) | 0.5417 (3) | 0.0403 (10) | |
C9 | 0.6837 (5) | 0.5923 (3) | 0.5200 (3) | 0.0425 (11) | |
H9A | 0.6071 | 0.5905 | 0.4866 | 0.051* | |
C10 | 0.7401 (4) | 0.5129 (3) | 0.5454 (3) | 0.0374 (10) | |
C11 | 0.6697 (5) | 0.4284 (3) | 0.5221 (3) | 0.0488 (12) | |
H11A | 0.6509 | 0.4293 | 0.4631 | 0.059* | |
H11B | 0.5838 | 0.4256 | 0.5510 | 0.059* | |
C12 | 0.7511 (5) | 0.3457 (3) | 0.5424 (3) | 0.0445 (11) | |
H12A | 0.8203 | 0.3365 | 0.5006 | 0.053* | |
H12B | 0.6922 | 0.2944 | 0.5428 | 0.053* | |
C13 | 0.8168 (4) | 0.3571 (3) | 0.6274 (3) | 0.0356 (9) | |
H13A | 0.7453 | 0.3817 | 0.6626 | 0.043* | |
C14 | 0.8569 (4) | 0.2682 (3) | 0.6697 (3) | 0.0435 (11) | |
C15 | 0.6686 (5) | 0.7591 (3) | 0.5142 (3) | 0.0500 (12) | |
H15A | 0.5932 | 0.7425 | 0.4779 | 0.060* | |
C16 | 0.7624 (6) | 0.8168 (4) | 0.4634 (5) | 0.082 (2) | |
H16A | 0.7976 | 0.7833 | 0.4177 | 0.123* | |
H16B | 0.8359 | 0.8367 | 0.4976 | 0.123* | |
H16C | 0.7134 | 0.8670 | 0.4427 | 0.123* | |
C17 | 0.6084 (7) | 0.8099 (4) | 0.5869 (4) | 0.0810 (19) | |
H17A | 0.5661 | 0.8630 | 0.5670 | 0.122* | |
H17B | 0.6789 | 0.8250 | 0.6253 | 0.122* | |
H17C | 0.5423 | 0.7737 | 0.6143 | 0.122* | |
C18 | 0.9621 (5) | 0.2146 (3) | 0.6222 (4) | 0.0611 (14) | |
H18A | 0.9813 | 0.1610 | 0.6519 | 0.092* | |
H18B | 1.0436 | 0.2487 | 0.6168 | 0.092* | |
H18C | 0.9278 | 0.2004 | 0.5682 | 0.092* | |
C19 | 1.0476 (5) | 0.4121 (3) | 0.5659 (4) | 0.0594 (14) | |
H19A | 1.0142 | 0.4034 | 0.5106 | 0.089* | |
H19B | 1.0954 | 0.3601 | 0.5835 | 0.089* | |
H19C | 1.1077 | 0.4620 | 0.5668 | 0.089* | |
C20 | 0.7293 (5) | 0.2095 (3) | 0.6764 (3) | 0.0438 (11) | |
C21 | 0.4855 (4) | 0.2135 (3) | 0.6969 (3) | 0.0387 (10) | |
C22 | 0.3343 (5) | 0.0860 (3) | 0.7021 (4) | 0.0557 (13) | |
H22A | 0.2867 | 0.1187 | 0.6594 | 0.067* | |
H22B | 0.2763 | 0.0824 | 0.7505 | 0.067* | |
C23 | 0.3668 (6) | −0.0061 (3) | 0.6713 (3) | 0.0589 (14) | |
H23A | 0.2834 | −0.0369 | 0.6581 | 0.071* | |
H23B | 0.4202 | −0.0021 | 0.6210 | 0.071* | |
C24 | 0.5650 (6) | −0.0118 (3) | 0.7501 (4) | 0.0636 (15) | |
H24A | 0.6194 | −0.0093 | 0.7001 | 0.076* | |
H24B | 0.6145 | −0.0458 | 0.7911 | 0.076* | |
C25 | 0.5432 (5) | 0.0809 (3) | 0.7822 (3) | 0.0542 (13) | |
H25A | 0.4984 | 0.0785 | 0.8357 | 0.065* | |
H25B | 0.6299 | 0.1100 | 0.7896 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0510 (7) | 0.0422 (6) | 0.0712 (9) | 0.0040 (6) | −0.0122 (7) | −0.0034 (6) |
N1 | 0.0390 (18) | 0.0300 (16) | 0.0437 (19) | −0.0022 (15) | 0.0017 (17) | −0.0072 (14) |
O1 | 0.069 (2) | 0.0348 (17) | 0.098 (3) | −0.0044 (17) | 0.029 (2) | −0.013 (2) |
C1 | 0.049 (3) | 0.042 (2) | 0.062 (3) | 0.003 (2) | −0.009 (2) | 0.013 (2) |
O2 | 0.077 (2) | 0.0393 (17) | 0.072 (3) | −0.0127 (17) | 0.001 (2) | 0.0057 (17) |
N2 | 0.048 (2) | 0.0376 (19) | 0.047 (2) | −0.0062 (17) | 0.0031 (19) | −0.0024 (17) |
C2 | 0.046 (3) | 0.053 (3) | 0.064 (3) | 0.000 (2) | −0.014 (3) | 0.010 (2) |
C3 | 0.040 (3) | 0.046 (3) | 0.059 (3) | −0.002 (2) | −0.012 (2) | 0.007 (2) |
C4 | 0.033 (2) | 0.035 (2) | 0.047 (3) | 0.0017 (18) | 0.0019 (19) | 0.0043 (19) |
C5 | 0.035 (2) | 0.037 (2) | 0.040 (2) | −0.0001 (18) | 0.0056 (19) | 0.0028 (18) |
C6 | 0.041 (3) | 0.043 (2) | 0.052 (3) | −0.009 (2) | −0.007 (2) | 0.007 (2) |
C7 | 0.049 (3) | 0.037 (2) | 0.053 (3) | −0.009 (2) | −0.005 (2) | 0.003 (2) |
C8 | 0.041 (2) | 0.043 (2) | 0.037 (3) | −0.002 (2) | 0.006 (2) | 0.008 (2) |
C9 | 0.042 (2) | 0.048 (3) | 0.038 (2) | 0.002 (2) | −0.005 (2) | 0.002 (2) |
C10 | 0.039 (2) | 0.036 (2) | 0.037 (2) | −0.0033 (19) | −0.001 (2) | 0.0014 (18) |
C11 | 0.057 (3) | 0.046 (2) | 0.044 (3) | −0.003 (2) | −0.010 (2) | −0.004 (2) |
C12 | 0.054 (3) | 0.037 (2) | 0.042 (3) | −0.006 (2) | 0.000 (2) | −0.004 (2) |
C13 | 0.033 (2) | 0.032 (2) | 0.042 (2) | 0.0029 (18) | 0.0044 (19) | −0.0002 (18) |
C14 | 0.039 (2) | 0.035 (2) | 0.056 (3) | 0.005 (2) | 0.000 (2) | 0.003 (2) |
C15 | 0.055 (3) | 0.042 (3) | 0.053 (3) | 0.006 (2) | −0.006 (2) | 0.008 (2) |
C16 | 0.074 (4) | 0.071 (4) | 0.102 (5) | 0.008 (3) | 0.004 (4) | 0.041 (4) |
C17 | 0.092 (4) | 0.076 (4) | 0.075 (4) | 0.038 (4) | 0.004 (4) | −0.013 (3) |
C18 | 0.048 (3) | 0.043 (3) | 0.093 (4) | 0.006 (2) | 0.014 (3) | −0.001 (3) |
C19 | 0.042 (3) | 0.056 (3) | 0.081 (4) | 0.000 (2) | 0.018 (3) | 0.008 (3) |
C20 | 0.047 (3) | 0.033 (2) | 0.052 (3) | 0.004 (2) | 0.002 (2) | 0.004 (2) |
C21 | 0.043 (2) | 0.035 (2) | 0.038 (2) | 0.002 (2) | 0.004 (2) | −0.0102 (19) |
C22 | 0.046 (3) | 0.049 (3) | 0.072 (4) | −0.012 (2) | 0.007 (3) | 0.001 (3) |
C23 | 0.072 (3) | 0.045 (3) | 0.060 (3) | −0.017 (3) | 0.007 (3) | −0.002 (2) |
C24 | 0.070 (3) | 0.040 (3) | 0.080 (4) | −0.004 (2) | −0.004 (3) | 0.015 (3) |
C25 | 0.068 (3) | 0.051 (3) | 0.043 (3) | −0.009 (3) | 0.000 (3) | 0.013 (2) |
S—C21 | 1.654 (5) | C11—H11A | 0.9700 |
N1—C20 | 1.384 (6) | C11—H11B | 0.9700 |
N1—C21 | 1.412 (6) | C12—C13 | 1.526 (6) |
N1—H1A | 0.8600 | C12—H12A | 0.9700 |
O1—C20 | 1.213 (5) | C12—H12B | 0.9700 |
C1—C2 | 1.524 (6) | C13—C14 | 1.559 (6) |
C1—C14 | 1.539 (7) | C13—H13A | 0.9800 |
C1—H1B | 0.9700 | C14—C18 | 1.524 (6) |
C1—H1C | 0.9700 | C14—C20 | 1.546 (6) |
O2—C24 | 1.429 (6) | C15—C16 | 1.514 (8) |
O2—C23 | 1.429 (6) | C15—C17 | 1.523 (8) |
N2—C21 | 1.330 (5) | C15—H15A | 0.9800 |
N2—C22 | 1.464 (6) | C16—H16A | 0.9600 |
N2—C25 | 1.472 (6) | C16—H16B | 0.9600 |
C2—C3 | 1.525 (6) | C16—H16C | 0.9600 |
C2—H2A | 0.9700 | C17—H17A | 0.9600 |
C2—H2B | 0.9700 | C17—H17B | 0.9600 |
C3—C4 | 1.538 (7) | C17—H17C | 0.9600 |
C3—H3A | 0.9700 | C18—H18A | 0.9600 |
C3—H3B | 0.9700 | C18—H18B | 0.9600 |
C4—C13 | 1.545 (6) | C18—H18C | 0.9600 |
C4—C5 | 1.546 (6) | C19—H19A | 0.9600 |
C4—C19 | 1.549 (6) | C19—H19B | 0.9600 |
C5—C6 | 1.395 (6) | C19—H19C | 0.9600 |
C5—C10 | 1.399 (6) | C22—C23 | 1.513 (7) |
C6—C7 | 1.370 (6) | C22—H22A | 0.9700 |
C6—H6A | 0.9300 | C22—H22B | 0.9700 |
C7—C8 | 1.389 (6) | C23—H23A | 0.9700 |
C7—H7A | 0.9300 | C23—H23B | 0.9700 |
C8—C9 | 1.386 (6) | C24—C25 | 1.509 (7) |
C8—C15 | 1.506 (6) | C24—H24A | 0.9700 |
C9—C10 | 1.386 (6) | C24—H24B | 0.9700 |
C9—H9A | 0.9300 | C25—H25A | 0.9700 |
C10—C11 | 1.502 (6) | C25—H25B | 0.9700 |
C11—C12 | 1.523 (6) | ||
C20—N1—C21 | 121.0 (3) | C18—C14—C1 | 110.9 (4) |
C20—N1—H1A | 119.5 | C18—C14—C20 | 106.7 (4) |
C21—N1—H1A | 119.5 | C1—C14—C20 | 108.4 (4) |
C2—C1—C14 | 112.2 (4) | C18—C14—C13 | 114.3 (4) |
C2—C1—H1B | 109.2 | C1—C14—C13 | 107.8 (3) |
C14—C1—H1B | 109.2 | C20—C14—C13 | 108.5 (3) |
C2—C1—H1C | 109.2 | C8—C15—C16 | 112.4 (4) |
C14—C1—H1C | 109.2 | C8—C15—C17 | 111.8 (4) |
H1B—C1—H1C | 107.9 | C16—C15—C17 | 111.5 (5) |
C24—O2—C23 | 109.7 (4) | C8—C15—H15A | 106.9 |
C21—N2—C22 | 121.6 (4) | C16—C15—H15A | 106.9 |
C21—N2—C25 | 125.9 (4) | C17—C15—H15A | 106.9 |
C22—N2—C25 | 112.3 (4) | C15—C16—H16A | 109.5 |
C1—C2—C3 | 111.7 (4) | C15—C16—H16B | 109.5 |
C1—C2—H2A | 109.3 | H16A—C16—H16B | 109.5 |
C3—C2—H2A | 109.3 | C15—C16—H16C | 109.5 |
C1—C2—H2B | 109.3 | H16A—C16—H16C | 109.5 |
C3—C2—H2B | 109.3 | H16B—C16—H16C | 109.5 |
H2A—C2—H2B | 107.9 | C15—C17—H17A | 109.5 |
C2—C3—C4 | 114.6 (4) | C15—C17—H17B | 109.5 |
C2—C3—H3A | 108.6 | H17A—C17—H17B | 109.5 |
C4—C3—H3A | 108.6 | C15—C17—H17C | 109.5 |
C2—C3—H3B | 108.6 | H17A—C17—H17C | 109.5 |
C4—C3—H3B | 108.6 | H17B—C17—H17C | 109.5 |
H3A—C3—H3B | 107.6 | C14—C18—H18A | 109.5 |
C3—C4—C13 | 108.2 (4) | C14—C18—H18B | 109.5 |
C3—C4—C5 | 110.2 (3) | H18A—C18—H18B | 109.5 |
C13—C4—C5 | 106.0 (3) | C14—C18—H18C | 109.5 |
C3—C4—C19 | 109.4 (4) | H18A—C18—H18C | 109.5 |
C13—C4—C19 | 115.9 (4) | H18B—C18—H18C | 109.5 |
C5—C4—C19 | 106.9 (4) | C4—C19—H19A | 109.5 |
C6—C5—C10 | 117.8 (4) | C4—C19—H19B | 109.5 |
C6—C5—C4 | 119.6 (4) | H19A—C19—H19B | 109.5 |
C10—C5—C4 | 122.5 (4) | C4—C19—H19C | 109.5 |
C7—C6—C5 | 121.9 (4) | H19A—C19—H19C | 109.5 |
C7—C6—H6A | 119.1 | H19B—C19—H19C | 109.5 |
C5—C6—H6A | 119.1 | O1—C20—N1 | 120.6 (4) |
C6—C7—C8 | 121.4 (4) | O1—C20—C14 | 122.2 (4) |
C6—C7—H7A | 119.3 | N1—C20—C14 | 117.2 (4) |
C8—C7—H7A | 119.3 | N2—C21—N1 | 116.1 (4) |
C9—C8—C7 | 116.4 (4) | N2—C21—S | 125.2 (3) |
C9—C8—C15 | 121.7 (4) | N1—C21—S | 118.7 (3) |
C7—C8—C15 | 121.9 (4) | N2—C22—C23 | 109.4 (4) |
C10—C9—C8 | 123.5 (4) | N2—C22—H22A | 109.8 |
C10—C9—H9A | 118.2 | C23—C22—H22A | 109.8 |
C8—C9—H9A | 118.2 | N2—C22—H22B | 109.8 |
C9—C10—C5 | 118.9 (4) | C23—C22—H22B | 109.8 |
C9—C10—C11 | 118.4 (4) | H22A—C22—H22B | 108.2 |
C5—C10—C11 | 122.6 (4) | O2—C23—C22 | 111.1 (4) |
C10—C11—C12 | 113.5 (4) | O2—C23—H23A | 109.4 |
C10—C11—H11A | 108.9 | C22—C23—H23A | 109.4 |
C12—C11—H11A | 108.9 | O2—C23—H23B | 109.4 |
C10—C11—H11B | 108.9 | C22—C23—H23B | 109.4 |
C12—C11—H11B | 108.9 | H23A—C23—H23B | 108.0 |
H11A—C11—H11B | 107.7 | O2—C24—C25 | 111.8 (4) |
C11—C12—C13 | 109.0 (3) | O2—C24—H24A | 109.2 |
C11—C12—H12A | 109.9 | C25—C24—H24A | 109.2 |
C13—C12—H12A | 109.9 | O2—C24—H24B | 109.2 |
C11—C12—H12B | 109.9 | C25—C24—H24B | 109.2 |
C13—C12—H12B | 109.9 | H24A—C24—H24B | 107.9 |
H12A—C12—H12B | 108.3 | N2—C25—C24 | 110.2 (4) |
C12—C13—C4 | 111.2 (4) | N2—C25—H25A | 109.6 |
C12—C13—C14 | 113.8 (3) | C24—C25—H25A | 109.6 |
C4—C13—C14 | 116.1 (3) | N2—C25—H25B | 109.6 |
C12—C13—H13A | 104.8 | C24—C25—H25B | 109.6 |
C4—C13—H13A | 104.8 | H25A—C25—H25B | 108.1 |
C14—C13—H13A | 104.8 | ||
C14—C1—C2—C3 | 56.3 (6) | C2—C1—C14—C18 | 70.6 (5) |
C1—C2—C3—C4 | −54.2 (6) | C2—C1—C14—C20 | −172.5 (4) |
C2—C3—C4—C13 | 50.3 (5) | C2—C1—C14—C13 | −55.2 (5) |
C2—C3—C4—C5 | 165.9 (4) | C12—C13—C14—C18 | 62.4 (5) |
C2—C3—C4—C19 | −76.8 (5) | C4—C13—C14—C18 | −68.6 (5) |
C3—C4—C5—C6 | 38.4 (5) | C12—C13—C14—C1 | −173.9 (4) |
C13—C4—C5—C6 | 155.3 (4) | C4—C13—C14—C1 | 55.2 (5) |
C19—C4—C5—C6 | −80.5 (5) | C12—C13—C14—C20 | −56.6 (5) |
C3—C4—C5—C10 | −142.6 (4) | C4—C13—C14—C20 | 172.5 (4) |
C13—C4—C5—C10 | −25.7 (5) | C9—C8—C15—C16 | −120.9 (5) |
C19—C4—C5—C10 | 98.6 (5) | C7—C8—C15—C16 | 59.7 (7) |
C10—C5—C6—C7 | 1.5 (7) | C9—C8—C15—C17 | 112.8 (6) |
C4—C5—C6—C7 | −179.4 (4) | C7—C8—C15—C17 | −66.6 (6) |
C5—C6—C7—C8 | −1.6 (7) | C21—N1—C20—O1 | −22.3 (7) |
C6—C7—C8—C9 | 0.4 (7) | C21—N1—C20—C14 | 157.0 (4) |
C6—C7—C8—C15 | 179.8 (5) | C18—C14—C20—O1 | 2.7 (7) |
C7—C8—C9—C10 | 0.9 (7) | C1—C14—C20—O1 | −116.8 (5) |
C15—C8—C9—C10 | −178.6 (4) | C13—C14—C20—O1 | 126.4 (5) |
C8—C9—C10—C5 | −0.9 (7) | C18—C14—C20—N1 | −176.5 (4) |
C8—C9—C10—C11 | 176.2 (4) | C1—C14—C20—N1 | 64.0 (5) |
C6—C5—C10—C9 | −0.3 (6) | C13—C14—C20—N1 | −52.8 (5) |
C4—C5—C10—C9 | −179.4 (4) | C22—N2—C21—N1 | −172.8 (4) |
C6—C5—C10—C11 | −177.3 (4) | C25—N2—C21—N1 | 13.3 (6) |
C4—C5—C10—C11 | 3.6 (6) | C22—N2—C21—S | 7.1 (6) |
C9—C10—C11—C12 | 171.6 (4) | C25—N2—C21—S | −166.8 (4) |
C5—C10—C11—C12 | −11.3 (6) | C20—N1—C21—N2 | 66.4 (5) |
C10—C11—C12—C13 | 41.6 (5) | C20—N1—C21—S | −113.5 (4) |
C11—C12—C13—C4 | −68.1 (5) | C21—N2—C22—C23 | 131.5 (4) |
C11—C12—C13—C14 | 158.6 (4) | C25—N2—C22—C23 | −53.8 (5) |
C3—C4—C13—C12 | 175.6 (4) | C24—O2—C23—C22 | −61.0 (5) |
C5—C4—C13—C12 | 57.4 (4) | N2—C22—C23—O2 | 58.0 (6) |
C19—C4—C13—C12 | −61.1 (5) | C23—O2—C24—C25 | 59.5 (6) |
C3—C4—C13—C14 | −52.2 (5) | C21—N2—C25—C24 | −133.2 (5) |
C5—C4—C13—C14 | −170.5 (4) | C22—N2—C25—C24 | 52.4 (5) |
C19—C4—C13—C14 | 71.1 (5) | O2—C24—C25—N2 | −54.9 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.86 | 2.45 | 3.171 (4) | 142 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C25H36N2O2S |
Mr | 428.62 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 9.887 (2), 15.114 (3), 16.128 (3) |
V (Å3) | 2410.0 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.16 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Entaf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.954, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4802, 4370, 3137 |
Rint | 0.115 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.189, 1.00 |
No. of reflections | 4370 |
No. of parameters | 271 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.29 |
Absolute structure | Flack (1983), 1882 Friedel pairs |
Absolute structure parameter | −0.08 (16) |
Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.86 | 2.45 | 3.171 (4) | 142 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Acknowledgements
This work was supported by the Natural Science Foundation of Jiangsu Province (grant No. BK2008088), the Fundamental Research Foundation of the Central Commonwealth Institute of the Chinese Academy of Forestry (grant No. CAFYBB2008021) and the National Natural Science Foundation of China (grant No. 30800871).
References
Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Halbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem. 31, 4246–4247. CrossRef CAS Web of Science Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56, 1575–1578. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301–o5302. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rao, X. P., Wu, Y., Song, Z. Q. & Shang, S. B. (2010). J. Chem. Crystallogr. 40, 328–331. Web of Science CSD CrossRef CAS Google Scholar
Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429–437. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wada, H., Kodato, S., Kawamori, M., Morikawa, T., Nakai, H., Takeda, M., Saito, S., Onoda, Y. & Tamaki, H. (1985). Chem. Pharm. Bull. (Tokyo), 33, 1472–1487. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin (Halbrook et al., 1966). Dehydroabietic acid is widely used as starting material for design and synthesis of biological compounds (Sepulveda et al., 2005; Rao et al., 2008; Wada et al., 1985). Crystal structure of dehydroabietic acid derivatives such as acid (Rao et al., 2009), amide (Rao et al., 2006), urea (Rao et al., 2010) were widely investigated. In this work, we describe the crystal structure of the acylthiourea derivative of dehydroabietic acid. Its structure is shown in Figure 1. There are four six-membered rings in the molecule, in which the benzene ring form planar (mean deviation = 0.0055 Å), the cyclohexene ring form half-chair and the cyclohexane and morpholine rings form chair configurations, respectively. The cyclohexene and cyclohexane rings form a trans ring junction with two methyl groups in the same side of tricyclo phenanthrene structure. The puckering parameters for the benzene, hexene, hexane and morpholine are [τ = 0.9 °], [(Q) = 0.5384 Å, θ = 48.52 °, φ = 286.4651 °], [(Q) = 0.5530 Å, θ = 176.27 °, φ = 154.5122 °], and [(Q) = 0.5602 Å, θ = 4.25 °, φ = 28.6358 °], respectively. There are three chiral centers in the molecule, they exhibited R–, S– and R– configurations, respectively. The N—H and C=O bonds in the urea group are anti to each other. The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds. The hydrogen bond geometry are listed in Table 1. The packing diagrams of title crystal is shown in Figure 2.