organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,4aS,10aR)-1,4a-Di­methyl-N-[(morpholin-4-yl)carbo­thio­yl]-7-(propan-2-yl)-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthrene-1-carboxamide

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China, and bZigong Renji Medical Center of Sichuan Province, Zigong, 643000, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

(Received 8 October 2010; accepted 1 November 2010; online 6 November 2010)

In the title compound, C25H36N2O2S, the cyclo­hexane and morpholine rings adopt chair conformations. The cyclo­hexene and cyclo­hexane rings form a trans ring junction with the two methyl groups in axial positions. The N—H and C=O bonds in the urea group are anti to each other. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds.

Related literature

Dehydro­abietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin, see: Halbrook & Lawrence (1966[Halbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem. 31, 4246-4247.]). For the biological activity of dehydro­abietic aid derivatives, see: Rao et al. (2008[Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56, 1575-1578.]); Sepulveda et al. (2005[Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429-437.]); Wada et al. (1985[Wada, H., Kodato, S., Kawamori, M., Morikawa, T., Nakai, H., Takeda, M., Saito, S., Onoda, Y. & Tamaki, H. (1985). Chem. Pharm. Bull. (Tokyo), 33, 1472-1487.]); For the crystal structures of dehydro­abietic acid derivatives, see: Rao et al. (2006[Rao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301-o5302.], 2009[Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.], 2010[Rao, X. P., Wu, Y., Song, Z. Q. & Shang, S. B. (2010). J. Chem. Crystallogr. 40, 328-331.]).

[Scheme 1]

Experimental

Crystal data
  • C25H36N2O2S

  • Mr = 428.62

  • Orthorhombic, P 21 21 21

  • a = 9.887 (2) Å

  • b = 15.114 (3) Å

  • c = 16.128 (3) Å

  • V = 2410.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Entaf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.954, Tmax = 0.969

  • 4802 measured reflections

  • 4370 independent reflections

  • 3137 reflections with I > 2σ(I)

  • Rint = 0.115

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.189

  • S = 1.00

  • 4370 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1882 Friedel pairs

  • Flack parameter: −0.08 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.45 3.171 (4) 142
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin (Halbrook et al., 1966). Dehydroabietic acid is widely used as starting material for design and synthesis of biological compounds (Sepulveda et al., 2005; Rao et al., 2008; Wada et al., 1985). Crystal structure of dehydroabietic acid derivatives such as acid (Rao et al., 2009), amide (Rao et al., 2006), urea (Rao et al., 2010) were widely investigated. In this work, we describe the crystal structure of the acylthiourea derivative of dehydroabietic acid. Its structure is shown in Figure 1. There are four six-membered rings in the molecule, in which the benzene ring form planar (mean deviation = 0.0055 Å), the cyclohexene ring form half-chair and the cyclohexane and morpholine rings form chair configurations, respectively. The cyclohexene and cyclohexane rings form a trans ring junction with two methyl groups in the same side of tricyclo phenanthrene structure. The puckering parameters for the benzene, hexene, hexane and morpholine are [τ = 0.9 °], [(Q) = 0.5384 Å, θ = 48.52 °, φ = 286.4651 °], [(Q) = 0.5530 Å, θ = 176.27 °, φ = 154.5122 °], and [(Q) = 0.5602 Å, θ = 4.25 °, φ = 28.6358 °], respectively. There are three chiral centers in the molecule, they exhibited R–, S– and R– configurations, respectively. The N—H and C=O bonds in the urea group are anti to each other. The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds. The hydrogen bond geometry are listed in Table 1. The packing diagrams of title crystal is shown in Figure 2.

Related literature top

Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin, see: Halbrook & Lawrence (1966). For the biological activity of dehydroabietic aid derivatives, see: Rao et al. (2008); Sepulveda et al. (2005); Wada et al. (1985); For the crystal structures of dehydroabietic acid derivatives, see: Rao et al. (2006, 2009, 2010).

Experimental top

50 mmol dehydroabietyl acylthiourea and 50 mmol morpholine were added to 30 ml dichloromethane, the mixture were refluxed for 6 h, white crystals were obtained after the solvent were distilled off. Single crystals were grown from ethanol.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Structure description top

Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin (Halbrook et al., 1966). Dehydroabietic acid is widely used as starting material for design and synthesis of biological compounds (Sepulveda et al., 2005; Rao et al., 2008; Wada et al., 1985). Crystal structure of dehydroabietic acid derivatives such as acid (Rao et al., 2009), amide (Rao et al., 2006), urea (Rao et al., 2010) were widely investigated. In this work, we describe the crystal structure of the acylthiourea derivative of dehydroabietic acid. Its structure is shown in Figure 1. There are four six-membered rings in the molecule, in which the benzene ring form planar (mean deviation = 0.0055 Å), the cyclohexene ring form half-chair and the cyclohexane and morpholine rings form chair configurations, respectively. The cyclohexene and cyclohexane rings form a trans ring junction with two methyl groups in the same side of tricyclo phenanthrene structure. The puckering parameters for the benzene, hexene, hexane and morpholine are [τ = 0.9 °], [(Q) = 0.5384 Å, θ = 48.52 °, φ = 286.4651 °], [(Q) = 0.5530 Å, θ = 176.27 °, φ = 154.5122 °], and [(Q) = 0.5602 Å, θ = 4.25 °, φ = 28.6358 °], respectively. There are three chiral centers in the molecule, they exhibited R–, S– and R– configurations, respectively. The N—H and C=O bonds in the urea group are anti to each other. The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds. The hydrogen bond geometry are listed in Table 1. The packing diagrams of title crystal is shown in Figure 2.

Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin, see: Halbrook & Lawrence (1966). For the biological activity of dehydroabietic aid derivatives, see: Rao et al. (2008); Sepulveda et al. (2005); Wada et al. (1985); For the crystal structures of dehydroabietic acid derivatives, see: Rao et al. (2006, 2009, 2010).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Packing diagrams of title crystal (H atoms omitted for clarity).
(1R,4aS,10aR)-1,4a-dimethyl-N-[(morpholin-4-yl)carbothioyl]-7-(propan-2-yl)-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxamide top
Crystal data top
C25H36N2O2SDx = 1.181 Mg m3
Mr = 428.62Melting point: 416 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.887 (2) Åθ = 9–12°
b = 15.114 (3) ŵ = 0.16 mm1
c = 16.128 (3) ÅT = 293 K
V = 2410.0 (8) Å3Block, white
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 928
Data collection top
Entaf–Nonius CAD-4
diffractometer
3137 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.115
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 180
Tmin = 0.954, Tmax = 0.969l = 1919
4802 measured reflections3 standard reflections every 200 reflections
4370 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.1P)2 + 1.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4370 reflectionsΔρmax = 0.37 e Å3
271 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 1882 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (16)
Crystal data top
C25H36N2O2SV = 2410.0 (8) Å3
Mr = 428.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.887 (2) ŵ = 0.16 mm1
b = 15.114 (3) ÅT = 293 K
c = 16.128 (3) Å0.30 × 0.20 × 0.20 mm
Data collection top
Entaf–Nonius CAD-4
diffractometer
3137 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.115
Tmin = 0.954, Tmax = 0.9693 standard reflections every 200 reflections
4802 measured reflections intensity decay: 1%
4370 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.189Δρmax = 0.37 e Å3
S = 1.00Δρmin = 0.29 e Å3
4370 reflectionsAbsolute structure: Flack (1983), 1882 Friedel pairs
271 parametersAbsolute structure parameter: 0.08 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.37704 (13)0.27732 (8)0.64677 (9)0.0548 (4)
N10.6164 (4)0.2465 (2)0.7135 (2)0.0375 (8)
H1A0.62600.29020.74710.045*
O10.7260 (4)0.1345 (2)0.6499 (3)0.0674 (11)
C10.9067 (5)0.2895 (3)0.7578 (3)0.0512 (12)
H1B0.83190.31240.79020.061*
H1C0.93780.23540.78410.061*
O20.4399 (4)0.0552 (2)0.7323 (2)0.0628 (10)
N20.4599 (4)0.1318 (2)0.7235 (2)0.0441 (9)
C21.0214 (5)0.3570 (3)0.7579 (3)0.0544 (13)
H2A1.09970.33170.73050.065*
H2B1.04650.37030.81470.065*
C30.9808 (5)0.4423 (3)0.7140 (3)0.0483 (12)
H3A1.05870.48120.71200.058*
H3B0.91150.47150.74660.058*
C40.9273 (4)0.4294 (3)0.6252 (3)0.0385 (10)
C50.8566 (4)0.5146 (3)0.5947 (3)0.0374 (10)
C60.9104 (5)0.5970 (3)0.6155 (3)0.0453 (11)
H6A0.98890.59940.64720.054*
C70.8507 (5)0.6744 (3)0.5907 (3)0.0464 (12)
H7A0.88840.72800.60700.056*
C80.7352 (4)0.6744 (3)0.5417 (3)0.0403 (10)
C90.6837 (5)0.5923 (3)0.5200 (3)0.0425 (11)
H9A0.60710.59050.48660.051*
C100.7401 (4)0.5129 (3)0.5454 (3)0.0374 (10)
C110.6697 (5)0.4284 (3)0.5221 (3)0.0488 (12)
H11A0.65090.42930.46310.059*
H11B0.58380.42560.55100.059*
C120.7511 (5)0.3457 (3)0.5424 (3)0.0445 (11)
H12A0.82030.33650.50060.053*
H12B0.69220.29440.54280.053*
C130.8168 (4)0.3571 (3)0.6274 (3)0.0356 (9)
H13A0.74530.38170.66260.043*
C140.8569 (4)0.2682 (3)0.6697 (3)0.0435 (11)
C150.6686 (5)0.7591 (3)0.5142 (3)0.0500 (12)
H15A0.59320.74250.47790.060*
C160.7624 (6)0.8168 (4)0.4634 (5)0.082 (2)
H16A0.79760.78330.41770.123*
H16B0.83590.83670.49760.123*
H16C0.71340.86700.44270.123*
C170.6084 (7)0.8099 (4)0.5869 (4)0.0810 (19)
H17A0.56610.86300.56700.122*
H17B0.67890.82500.62530.122*
H17C0.54230.77370.61430.122*
C180.9621 (5)0.2146 (3)0.6222 (4)0.0611 (14)
H18A0.98130.16100.65190.092*
H18B1.04360.24870.61680.092*
H18C0.92780.20040.56820.092*
C191.0476 (5)0.4121 (3)0.5659 (4)0.0594 (14)
H19A1.01420.40340.51060.089*
H19B1.09540.36010.58350.089*
H19C1.10770.46200.56680.089*
C200.7293 (5)0.2095 (3)0.6764 (3)0.0438 (11)
C210.4855 (4)0.2135 (3)0.6969 (3)0.0387 (10)
C220.3343 (5)0.0860 (3)0.7021 (4)0.0557 (13)
H22A0.28670.11870.65940.067*
H22B0.27630.08240.75050.067*
C230.3668 (6)0.0061 (3)0.6713 (3)0.0589 (14)
H23A0.28340.03690.65810.071*
H23B0.42020.00210.62100.071*
C240.5650 (6)0.0118 (3)0.7501 (4)0.0636 (15)
H24A0.61940.00930.70010.076*
H24B0.61450.04580.79110.076*
C250.5432 (5)0.0809 (3)0.7822 (3)0.0542 (13)
H25A0.49840.07850.83570.065*
H25B0.62990.11000.78960.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0510 (7)0.0422 (6)0.0712 (9)0.0040 (6)0.0122 (7)0.0034 (6)
N10.0390 (18)0.0300 (16)0.0437 (19)0.0022 (15)0.0017 (17)0.0072 (14)
O10.069 (2)0.0348 (17)0.098 (3)0.0044 (17)0.029 (2)0.013 (2)
C10.049 (3)0.042 (2)0.062 (3)0.003 (2)0.009 (2)0.013 (2)
O20.077 (2)0.0393 (17)0.072 (3)0.0127 (17)0.001 (2)0.0057 (17)
N20.048 (2)0.0376 (19)0.047 (2)0.0062 (17)0.0031 (19)0.0024 (17)
C20.046 (3)0.053 (3)0.064 (3)0.000 (2)0.014 (3)0.010 (2)
C30.040 (3)0.046 (3)0.059 (3)0.002 (2)0.012 (2)0.007 (2)
C40.033 (2)0.035 (2)0.047 (3)0.0017 (18)0.0019 (19)0.0043 (19)
C50.035 (2)0.037 (2)0.040 (2)0.0001 (18)0.0056 (19)0.0028 (18)
C60.041 (3)0.043 (2)0.052 (3)0.009 (2)0.007 (2)0.007 (2)
C70.049 (3)0.037 (2)0.053 (3)0.009 (2)0.005 (2)0.003 (2)
C80.041 (2)0.043 (2)0.037 (3)0.002 (2)0.006 (2)0.008 (2)
C90.042 (2)0.048 (3)0.038 (2)0.002 (2)0.005 (2)0.002 (2)
C100.039 (2)0.036 (2)0.037 (2)0.0033 (19)0.001 (2)0.0014 (18)
C110.057 (3)0.046 (2)0.044 (3)0.003 (2)0.010 (2)0.004 (2)
C120.054 (3)0.037 (2)0.042 (3)0.006 (2)0.000 (2)0.004 (2)
C130.033 (2)0.032 (2)0.042 (2)0.0029 (18)0.0044 (19)0.0002 (18)
C140.039 (2)0.035 (2)0.056 (3)0.005 (2)0.000 (2)0.003 (2)
C150.055 (3)0.042 (3)0.053 (3)0.006 (2)0.006 (2)0.008 (2)
C160.074 (4)0.071 (4)0.102 (5)0.008 (3)0.004 (4)0.041 (4)
C170.092 (4)0.076 (4)0.075 (4)0.038 (4)0.004 (4)0.013 (3)
C180.048 (3)0.043 (3)0.093 (4)0.006 (2)0.014 (3)0.001 (3)
C190.042 (3)0.056 (3)0.081 (4)0.000 (2)0.018 (3)0.008 (3)
C200.047 (3)0.033 (2)0.052 (3)0.004 (2)0.002 (2)0.004 (2)
C210.043 (2)0.035 (2)0.038 (2)0.002 (2)0.004 (2)0.0102 (19)
C220.046 (3)0.049 (3)0.072 (4)0.012 (2)0.007 (3)0.001 (3)
C230.072 (3)0.045 (3)0.060 (3)0.017 (3)0.007 (3)0.002 (2)
C240.070 (3)0.040 (3)0.080 (4)0.004 (2)0.004 (3)0.015 (3)
C250.068 (3)0.051 (3)0.043 (3)0.009 (3)0.000 (3)0.013 (2)
Geometric parameters (Å, º) top
S—C211.654 (5)C11—H11A0.9700
N1—C201.384 (6)C11—H11B0.9700
N1—C211.412 (6)C12—C131.526 (6)
N1—H1A0.8600C12—H12A0.9700
O1—C201.213 (5)C12—H12B0.9700
C1—C21.524 (6)C13—C141.559 (6)
C1—C141.539 (7)C13—H13A0.9800
C1—H1B0.9700C14—C181.524 (6)
C1—H1C0.9700C14—C201.546 (6)
O2—C241.429 (6)C15—C161.514 (8)
O2—C231.429 (6)C15—C171.523 (8)
N2—C211.330 (5)C15—H15A0.9800
N2—C221.464 (6)C16—H16A0.9600
N2—C251.472 (6)C16—H16B0.9600
C2—C31.525 (6)C16—H16C0.9600
C2—H2A0.9700C17—H17A0.9600
C2—H2B0.9700C17—H17B0.9600
C3—C41.538 (7)C17—H17C0.9600
C3—H3A0.9700C18—H18A0.9600
C3—H3B0.9700C18—H18B0.9600
C4—C131.545 (6)C18—H18C0.9600
C4—C51.546 (6)C19—H19A0.9600
C4—C191.549 (6)C19—H19B0.9600
C5—C61.395 (6)C19—H19C0.9600
C5—C101.399 (6)C22—C231.513 (7)
C6—C71.370 (6)C22—H22A0.9700
C6—H6A0.9300C22—H22B0.9700
C7—C81.389 (6)C23—H23A0.9700
C7—H7A0.9300C23—H23B0.9700
C8—C91.386 (6)C24—C251.509 (7)
C8—C151.506 (6)C24—H24A0.9700
C9—C101.386 (6)C24—H24B0.9700
C9—H9A0.9300C25—H25A0.9700
C10—C111.502 (6)C25—H25B0.9700
C11—C121.523 (6)
C20—N1—C21121.0 (3)C18—C14—C1110.9 (4)
C20—N1—H1A119.5C18—C14—C20106.7 (4)
C21—N1—H1A119.5C1—C14—C20108.4 (4)
C2—C1—C14112.2 (4)C18—C14—C13114.3 (4)
C2—C1—H1B109.2C1—C14—C13107.8 (3)
C14—C1—H1B109.2C20—C14—C13108.5 (3)
C2—C1—H1C109.2C8—C15—C16112.4 (4)
C14—C1—H1C109.2C8—C15—C17111.8 (4)
H1B—C1—H1C107.9C16—C15—C17111.5 (5)
C24—O2—C23109.7 (4)C8—C15—H15A106.9
C21—N2—C22121.6 (4)C16—C15—H15A106.9
C21—N2—C25125.9 (4)C17—C15—H15A106.9
C22—N2—C25112.3 (4)C15—C16—H16A109.5
C1—C2—C3111.7 (4)C15—C16—H16B109.5
C1—C2—H2A109.3H16A—C16—H16B109.5
C3—C2—H2A109.3C15—C16—H16C109.5
C1—C2—H2B109.3H16A—C16—H16C109.5
C3—C2—H2B109.3H16B—C16—H16C109.5
H2A—C2—H2B107.9C15—C17—H17A109.5
C2—C3—C4114.6 (4)C15—C17—H17B109.5
C2—C3—H3A108.6H17A—C17—H17B109.5
C4—C3—H3A108.6C15—C17—H17C109.5
C2—C3—H3B108.6H17A—C17—H17C109.5
C4—C3—H3B108.6H17B—C17—H17C109.5
H3A—C3—H3B107.6C14—C18—H18A109.5
C3—C4—C13108.2 (4)C14—C18—H18B109.5
C3—C4—C5110.2 (3)H18A—C18—H18B109.5
C13—C4—C5106.0 (3)C14—C18—H18C109.5
C3—C4—C19109.4 (4)H18A—C18—H18C109.5
C13—C4—C19115.9 (4)H18B—C18—H18C109.5
C5—C4—C19106.9 (4)C4—C19—H19A109.5
C6—C5—C10117.8 (4)C4—C19—H19B109.5
C6—C5—C4119.6 (4)H19A—C19—H19B109.5
C10—C5—C4122.5 (4)C4—C19—H19C109.5
C7—C6—C5121.9 (4)H19A—C19—H19C109.5
C7—C6—H6A119.1H19B—C19—H19C109.5
C5—C6—H6A119.1O1—C20—N1120.6 (4)
C6—C7—C8121.4 (4)O1—C20—C14122.2 (4)
C6—C7—H7A119.3N1—C20—C14117.2 (4)
C8—C7—H7A119.3N2—C21—N1116.1 (4)
C9—C8—C7116.4 (4)N2—C21—S125.2 (3)
C9—C8—C15121.7 (4)N1—C21—S118.7 (3)
C7—C8—C15121.9 (4)N2—C22—C23109.4 (4)
C10—C9—C8123.5 (4)N2—C22—H22A109.8
C10—C9—H9A118.2C23—C22—H22A109.8
C8—C9—H9A118.2N2—C22—H22B109.8
C9—C10—C5118.9 (4)C23—C22—H22B109.8
C9—C10—C11118.4 (4)H22A—C22—H22B108.2
C5—C10—C11122.6 (4)O2—C23—C22111.1 (4)
C10—C11—C12113.5 (4)O2—C23—H23A109.4
C10—C11—H11A108.9C22—C23—H23A109.4
C12—C11—H11A108.9O2—C23—H23B109.4
C10—C11—H11B108.9C22—C23—H23B109.4
C12—C11—H11B108.9H23A—C23—H23B108.0
H11A—C11—H11B107.7O2—C24—C25111.8 (4)
C11—C12—C13109.0 (3)O2—C24—H24A109.2
C11—C12—H12A109.9C25—C24—H24A109.2
C13—C12—H12A109.9O2—C24—H24B109.2
C11—C12—H12B109.9C25—C24—H24B109.2
C13—C12—H12B109.9H24A—C24—H24B107.9
H12A—C12—H12B108.3N2—C25—C24110.2 (4)
C12—C13—C4111.2 (4)N2—C25—H25A109.6
C12—C13—C14113.8 (3)C24—C25—H25A109.6
C4—C13—C14116.1 (3)N2—C25—H25B109.6
C12—C13—H13A104.8C24—C25—H25B109.6
C4—C13—H13A104.8H25A—C25—H25B108.1
C14—C13—H13A104.8
C14—C1—C2—C356.3 (6)C2—C1—C14—C1870.6 (5)
C1—C2—C3—C454.2 (6)C2—C1—C14—C20172.5 (4)
C2—C3—C4—C1350.3 (5)C2—C1—C14—C1355.2 (5)
C2—C3—C4—C5165.9 (4)C12—C13—C14—C1862.4 (5)
C2—C3—C4—C1976.8 (5)C4—C13—C14—C1868.6 (5)
C3—C4—C5—C638.4 (5)C12—C13—C14—C1173.9 (4)
C13—C4—C5—C6155.3 (4)C4—C13—C14—C155.2 (5)
C19—C4—C5—C680.5 (5)C12—C13—C14—C2056.6 (5)
C3—C4—C5—C10142.6 (4)C4—C13—C14—C20172.5 (4)
C13—C4—C5—C1025.7 (5)C9—C8—C15—C16120.9 (5)
C19—C4—C5—C1098.6 (5)C7—C8—C15—C1659.7 (7)
C10—C5—C6—C71.5 (7)C9—C8—C15—C17112.8 (6)
C4—C5—C6—C7179.4 (4)C7—C8—C15—C1766.6 (6)
C5—C6—C7—C81.6 (7)C21—N1—C20—O122.3 (7)
C6—C7—C8—C90.4 (7)C21—N1—C20—C14157.0 (4)
C6—C7—C8—C15179.8 (5)C18—C14—C20—O12.7 (7)
C7—C8—C9—C100.9 (7)C1—C14—C20—O1116.8 (5)
C15—C8—C9—C10178.6 (4)C13—C14—C20—O1126.4 (5)
C8—C9—C10—C50.9 (7)C18—C14—C20—N1176.5 (4)
C8—C9—C10—C11176.2 (4)C1—C14—C20—N164.0 (5)
C6—C5—C10—C90.3 (6)C13—C14—C20—N152.8 (5)
C4—C5—C10—C9179.4 (4)C22—N2—C21—N1172.8 (4)
C6—C5—C10—C11177.3 (4)C25—N2—C21—N113.3 (6)
C4—C5—C10—C113.6 (6)C22—N2—C21—S7.1 (6)
C9—C10—C11—C12171.6 (4)C25—N2—C21—S166.8 (4)
C5—C10—C11—C1211.3 (6)C20—N1—C21—N266.4 (5)
C10—C11—C12—C1341.6 (5)C20—N1—C21—S113.5 (4)
C11—C12—C13—C468.1 (5)C21—N2—C22—C23131.5 (4)
C11—C12—C13—C14158.6 (4)C25—N2—C22—C2353.8 (5)
C3—C4—C13—C12175.6 (4)C24—O2—C23—C2261.0 (5)
C5—C4—C13—C1257.4 (4)N2—C22—C23—O258.0 (6)
C19—C4—C13—C1261.1 (5)C23—O2—C24—C2559.5 (6)
C3—C4—C13—C1452.2 (5)C21—N2—C25—C24133.2 (5)
C5—C4—C13—C14170.5 (4)C22—N2—C25—C2452.4 (5)
C19—C4—C13—C1471.1 (5)O2—C24—C25—N254.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.453.171 (4)142
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC25H36N2O2S
Mr428.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.887 (2), 15.114 (3), 16.128 (3)
V3)2410.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEntaf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.954, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
4802, 4370, 3137
Rint0.115
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.189, 1.00
No. of reflections4370
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.29
Absolute structureFlack (1983), 1882 Friedel pairs
Absolute structure parameter0.08 (16)

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.453.171 (4)142
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (grant No. BK2008088), the Fundamental Research Foundation of the Central Commonwealth Institute of the Chinese Academy of Forestry (grant No. CAFYBB2008021) and the National Natural Science Foundation of China (grant No. 30800871).

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHalbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem. 31, 4246–4247.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56, 1575–1578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301–o5302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, X. P., Wu, Y., Song, Z. Q. & Shang, S. B. (2010). J. Chem. Crystallogr. 40, 328–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationSepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429–437.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWada, H., Kodato, S., Kawamori, M., Morikawa, T., Nakai, H., Takeda, M., Saito, S., Onoda, Y. & Tamaki, H. (1985). Chem. Pharm. Bull. (Tokyo), 33, 1472–1487.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds