metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N-Bis(2,6-diiso­propyl­phen­yl)pent-2-ene-2,4-diiminato(1−)]bis­­(1,2,4-di­aza­phosphol-1-yl)aluminium(III)

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China, bCollege of Qianjiang, Hangzhou Normal University, Wenyi Road 222, Hangzhou Zhejiang Province 310012, People's Republic of China, and cInstitute of Organic Chemistry, Shanxi Normal University, 1 Gongyuan Street, Linfen, Shanxi Province 041004, People's Republic of China
*Correspondence e-mail: yding@jiangnan.edu.cn

(Received 27 October 2010; accepted 23 November 2010; online 27 November 2010)

In the title compound, [Al(C29H41N2)(C2H2N2P)2], the AlIII atom is coordinated by four N atoms from β-diketiminate and 1,2,4-diaza­phospho­lide ligands in a slightly distorted tetra­hedral fashion.

Related literature

For similar related 1,2,4-diaza­phospho­lide complexes, see: Schmidpeter & Willhalm (1984[Schmidpeter, A. & Willhalm, A. (1984). Angew. Chem. Int. Ed. 23, 903-904.]); Cui et al. (2000[Cui, C. M., Roesky, H. W., Hao, H. J., Schmidt, H. G. & Noletmeyer, M. (2000). Angew. Chem. Int. Ed. 39, 1815-1817.]); Ding et al. (2001[Ding, Y. Q., Roesky, H. W., Noletmeyer, M. & Schmidt, H. G. (2001). Organometallics, 20, 1190-1194.]); Kumar et al. (2004[Kumar, S. S., Singh, S., Hongjun, F., Roesky, H. W., Vidovic, D. & Magull, J. (2004). Organometallics, 23, 6327-6329.], 2005[Kumar, S. S., Singh, S., Hongjun, F., Roesky, H. W. & Magull, J. (2005). Inorg. Chem. 44, 1199-1201.]); Zheng et al. (2006[Zheng, W. J., Zhang, G. Z. & Fan, K. N. (2006). Organometallics, 25, 1548-1550.]); Wan et al. (2008[Wan, L., Pi, C. F., Zhang, L., Zheng, W. J., Weng, L. H., Chen, Z. X. & Zhang, Y. (2008). Chem. Commun. pp. 2266-2268.]); Pi et al. (2008[Pi, C. F., Wan, L., Gu, Y. Y., Zheng, W. J., Wu, H. Y., Weng, L. H., Chen, Z. X. & Wu, L. M. (2008). Inorg. Chem. 47, 9739-9741.], 2009[Pi, C. F., Wan, L., Liu, W. P., Pan, Z. F., Wu, H. Y., Wang, Y. H., Zheng, W. J., Weng, L. H., Chen, Z. X. & Wu, L. M. (2009). Inorg. Chem. 48, 2967-2975.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(C29H41N2)(C2H2N2P)2]

  • Mr = 614.67

  • Triclinic, [P \overline 1]

  • a = 10.578 (4) Å

  • b = 12.578 (5) Å

  • c = 13.498 (5) Å

  • α = 92.059 (5)°

  • β = 98.766 (5)°

  • γ = 96.516 (5)°

  • V = 1760.8 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.965

  • 7337 measured reflections

  • 6082 independent reflections

  • 4238 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.224

  • S = 1.02

  • 6082 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the investigation of 1,2,4-diazaphospholide complexes has attracted considerable interest (Zheng et al., 2006-2009). On the other hand, aluminum hydride complexes with bulky beta-diketiminato ligand [HC(CMeNAr)2] AlH2 have been evidenced to be a reactive species (Roesky et al., 2000-2005). Herein, we report a centrosymmetric complex which was synthesized by the reaction of [HC(CMeNAr)2] AlH2 with 1H-1,2,4-diazaphosphole in hexane at room temperature. As illustrated in Fig. 1, the AlIII ion was coordinated by four nitrogen atoms of 2,6-iPr2C6H3NC(Me)C(H)C(Me)N and 1,2,4-diazaphospholide ligands. The two nitrogen atoms from the 2,6-iPr2C6H3NC(Me)C(H)C(Me)NH ligand form a six-member ring with the aluminum center, and the other two nitrogen atoms from the 1,2,4-diazaphospholide ligands coordinate to aluminum atom in a eta(1) mode. The four nitrogen atoms are arranged in a slightly distorted tetrahedral fashion. The plane of the six-membered ring C3—N2—Al is nearly perpendicular to the 1,2,4-diazaphospholide heterocycle rings.

Related literature top

For the similar related 1,2,4-diazaphospholide complexes, see: Schmidpeter & Willhalm (1984); Cui et al. (2000); Ding et al. (2001); Kumar et al. (2004, 2005); Zheng et al. (2006); Wan et al. (2008); Pi et al. (2008, 2009).

Experimental top

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Hexane was dried over sodium and freshly distilled prior to use. 0.481 g [2,6-iPr2C6H3NC(Me)C(H)C(Me)N]AlH2 (1 eq.) and 0.172 g (2 eq.) 1,2,4-Dia-zaphosphole were dissolved in 20 ml toulent. The mixture was stirred for 24 h at room temperature and the solvent was then removed and dried in vacuo. The residua was extracted with 15 ml hexane and the solution was concentrated to about 5 ml to afford colorless crystals at -30°C for several days (yield: 0.32 g. 50%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.96 Å, and Uiso(H) = 1.2–1.5 times of those of their parent atoms.

Structure description top

Recently, the investigation of 1,2,4-diazaphospholide complexes has attracted considerable interest (Zheng et al., 2006-2009). On the other hand, aluminum hydride complexes with bulky beta-diketiminato ligand [HC(CMeNAr)2] AlH2 have been evidenced to be a reactive species (Roesky et al., 2000-2005). Herein, we report a centrosymmetric complex which was synthesized by the reaction of [HC(CMeNAr)2] AlH2 with 1H-1,2,4-diazaphosphole in hexane at room temperature. As illustrated in Fig. 1, the AlIII ion was coordinated by four nitrogen atoms of 2,6-iPr2C6H3NC(Me)C(H)C(Me)N and 1,2,4-diazaphospholide ligands. The two nitrogen atoms from the 2,6-iPr2C6H3NC(Me)C(H)C(Me)NH ligand form a six-member ring with the aluminum center, and the other two nitrogen atoms from the 1,2,4-diazaphospholide ligands coordinate to aluminum atom in a eta(1) mode. The four nitrogen atoms are arranged in a slightly distorted tetrahedral fashion. The plane of the six-membered ring C3—N2—Al is nearly perpendicular to the 1,2,4-diazaphospholide heterocycle rings.

For the similar related 1,2,4-diazaphospholide complexes, see: Schmidpeter & Willhalm (1984); Cui et al. (2000); Ding et al. (2001); Kumar et al. (2004, 2005); Zheng et al. (2006); Wan et al. (2008); Pi et al. (2008, 2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex with the atom numbering scheme. The thermal displacements are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
[N,N-Bis(2,6-diisopropylphenyl)pent-2-ene- 2,4-diiminato(1-)]bis(1,2,4-diazaphosphol-1-yl)aluminium(III) top
Crystal data top
[Al(C29H41N2)(C2H2N2P)2]Z = 2
Mr = 614.67F(000) = 656
Triclinic, P1Dx = 1.159 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.578 (4) ÅCell parameters from 872 reflections
b = 12.578 (5) Åθ = 3.4–25.6°
c = 13.498 (5) ŵ = 0.18 mm1
α = 92.059 (5)°T = 293 K
β = 98.766 (5)°Sheet, yellow
γ = 96.516 (5)°0.35 × 0.20 × 0.20 mm
V = 1760.8 (11) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6082 independent reflections
Radiation source: fine-focus sealed tube4238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1210
Tmin = 0.940, Tmax = 0.965k = 1114
7337 measured reflectionsl = 1612
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.1531P)2 + ]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.224(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.47 e Å3
6082 reflectionsΔρmin = 0.56 e Å3
389 parameters
Crystal data top
[Al(C29H41N2)(C2H2N2P)2]γ = 96.516 (5)°
Mr = 614.67V = 1760.8 (11) Å3
Triclinic, P1Z = 2
a = 10.578 (4) ÅMo Kα radiation
b = 12.578 (5) ŵ = 0.18 mm1
c = 13.498 (5) ÅT = 293 K
α = 92.059 (5)°0.35 × 0.20 × 0.20 mm
β = 98.766 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4238 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.965Rint = 0.037
7337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
6082 reflectionsΔρmin = 0.56 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.22665 (7)0.79946 (6)0.78731 (6)0.0419 (3)
P10.16571 (10)0.71060 (10)0.62146 (10)0.0880 (4)
P20.18913 (13)1.08771 (11)0.97295 (11)0.1047 (5)
N10.0608 (2)0.7524 (2)0.7248 (2)0.0574 (6)
N20.0133 (3)0.7202 (4)0.7910 (3)0.1033 (13)
N30.2190 (2)0.9204 (2)0.86843 (18)0.0537 (6)
N40.3412 (2)0.9627 (2)0.9076 (2)0.0652 (7)
N50.3149 (2)0.70050 (18)0.86114 (16)0.0479 (6)
N60.3367 (2)0.83042 (17)0.69477 (16)0.0435 (5)
C10.1375 (5)0.6917 (5)0.7425 (4)0.125 (2)
H10.20250.66320.77660.149*
C20.0057 (4)0.7533 (3)0.6309 (3)0.0762 (10)
H20.03270.77530.57630.091*
C30.1292 (3)0.9771 (3)0.8954 (3)0.0717 (9)
H30.04150.95810.87380.086*
C40.3387 (4)1.0485 (3)0.9637 (3)0.0806 (11)
H40.41411.08710.99750.097*
C50.5225 (3)0.6473 (3)0.9408 (3)0.0738 (10)
H5A0.50840.66551.00760.111*
H5B0.61230.66380.93640.111*
H5C0.49670.57220.92530.111*
C60.4445 (3)0.7107 (2)0.8674 (2)0.0504 (7)
C70.5112 (3)0.7783 (2)0.8092 (2)0.0525 (7)
H70.60000.79000.82910.063*
C80.4642 (3)0.8307 (2)0.7260 (2)0.0493 (7)
C90.5580 (3)0.8893 (3)0.6683 (3)0.0737 (10)
H9A0.53490.86820.59830.111*
H9B0.64320.87210.69200.111*
H9C0.55620.96510.67780.111*
C100.2540 (3)0.6173 (3)0.9171 (2)0.0582 (8)
C110.2390 (3)0.6407 (3)1.0157 (3)0.0725 (10)
C120.1862 (4)0.5554 (5)1.0671 (4)0.0997 (16)
H120.17700.56761.13390.120*
C130.1485 (5)0.4568 (5)1.0230 (5)0.1080 (17)
H130.11320.40271.05930.130*
C140.1618 (4)0.4355 (4)0.9258 (4)0.0977 (14)
H140.13700.36670.89660.117*
C150.2122 (3)0.5161 (3)0.8695 (3)0.0715 (10)
C160.2732 (4)0.7513 (4)1.0672 (3)0.0849 (12)
H160.30840.79881.01940.102*
C170.3773 (6)0.7541 (6)1.1615 (3)0.138 (2)
H17A0.34160.71631.21330.207*
H17B0.40570.82721.18490.207*
H17C0.44910.72071.14500.207*
C180.1544 (5)0.7959 (5)1.0947 (4)0.1133 (16)
H18A0.08860.79051.03660.170*
H18B0.17660.86971.11780.170*
H18C0.12310.75551.14680.170*
C190.2203 (4)0.4905 (3)0.7606 (3)0.0836 (11)
H190.23470.55870.72890.100*
C200.0958 (6)0.4301 (5)0.7050 (5)0.142 (2)
H20A0.07600.36480.73710.213*
H20B0.10560.41370.63680.213*
H20C0.02710.47370.70590.213*
C210.3319 (6)0.4291 (5)0.7488 (5)0.149 (2)
H21A0.41120.47220.77610.224*
H21B0.33130.41180.67890.224*
H21C0.32420.36420.78390.224*
C220.2938 (3)0.8573 (2)0.5916 (2)0.0476 (6)
C230.2616 (3)0.9594 (2)0.5707 (2)0.0548 (7)
C240.2151 (4)0.9782 (3)0.4717 (3)0.0702 (9)
H240.19281.04580.45610.084*
C250.2012 (4)0.8998 (4)0.3964 (3)0.0782 (10)
H250.16990.91400.33060.094*
C260.2336 (4)0.8011 (3)0.4187 (3)0.0776 (10)
H260.22430.74840.36720.093*
C270.2802 (3)0.7761 (3)0.5160 (2)0.0613 (8)
C280.2762 (4)1.0491 (3)0.6497 (3)0.0691 (9)
H280.31241.02250.71400.083*
C290.3710 (4)1.1436 (3)0.6248 (3)0.0898 (12)
H29A0.45101.11830.61610.135*
H29B0.38601.19750.67890.135*
H29C0.33481.17370.56410.135*
C300.1480 (5)1.0861 (4)0.6605 (3)0.0971 (14)
H30A0.11751.12320.60230.146*
H30B0.15791.13360.71930.146*
H30C0.08691.02520.66690.146*
C310.3132 (4)0.6642 (3)0.5355 (3)0.0788 (10)
H310.32990.65820.60840.095*
C320.2037 (7)0.5800 (4)0.4934 (5)0.143 (2)
H32A0.12740.59430.51930.214*
H32B0.22530.51070.51250.214*
H32C0.18850.58130.42150.214*
C330.4358 (7)0.6444 (5)0.4945 (6)0.163 (3)
H33A0.41680.63310.42280.244*
H33B0.46810.58220.52320.244*
H33C0.49960.70560.51170.244*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0409 (4)0.0430 (5)0.0436 (4)0.0117 (3)0.0059 (3)0.0077 (3)
P10.0608 (6)0.0820 (7)0.1125 (9)0.0055 (5)0.0134 (5)0.0134 (6)
P20.0950 (8)0.0948 (9)0.1276 (10)0.0281 (7)0.0282 (7)0.0450 (8)
N10.0461 (13)0.0545 (15)0.0702 (16)0.0116 (11)0.0003 (11)0.0041 (12)
N20.069 (2)0.160 (4)0.084 (2)0.013 (2)0.0102 (17)0.052 (2)
N30.0525 (13)0.0565 (15)0.0545 (13)0.0158 (12)0.0100 (11)0.0011 (11)
N40.0556 (15)0.0683 (18)0.0710 (17)0.0125 (13)0.0084 (12)0.0148 (14)
N50.0490 (13)0.0486 (13)0.0482 (12)0.0112 (11)0.0077 (10)0.0143 (10)
N60.0479 (12)0.0416 (12)0.0439 (12)0.0139 (10)0.0088 (9)0.0069 (9)
C10.087 (3)0.152 (5)0.157 (5)0.031 (3)0.061 (3)0.084 (4)
C20.071 (2)0.086 (3)0.069 (2)0.005 (2)0.0050 (17)0.0152 (19)
C30.0625 (19)0.077 (2)0.082 (2)0.0228 (18)0.0210 (16)0.0035 (18)
C40.073 (2)0.079 (3)0.085 (2)0.0090 (19)0.0056 (18)0.029 (2)
C50.062 (2)0.081 (2)0.083 (2)0.0280 (18)0.0020 (17)0.0361 (19)
C60.0485 (15)0.0505 (16)0.0531 (15)0.0147 (13)0.0034 (12)0.0080 (13)
C70.0419 (14)0.0551 (17)0.0626 (17)0.0149 (13)0.0074 (12)0.0071 (14)
C80.0491 (15)0.0446 (15)0.0570 (16)0.0123 (13)0.0119 (12)0.0037 (12)
C90.0579 (19)0.086 (3)0.084 (2)0.0121 (18)0.0261 (17)0.026 (2)
C100.0487 (16)0.066 (2)0.0618 (18)0.0156 (15)0.0032 (13)0.0298 (15)
C110.0610 (19)0.100 (3)0.0609 (19)0.0191 (19)0.0094 (15)0.0404 (19)
C120.080 (3)0.142 (5)0.087 (3)0.028 (3)0.023 (2)0.069 (3)
C130.086 (3)0.109 (4)0.132 (4)0.008 (3)0.016 (3)0.073 (4)
C140.081 (3)0.078 (3)0.136 (4)0.012 (2)0.009 (3)0.057 (3)
C150.0608 (19)0.060 (2)0.094 (3)0.0116 (17)0.0055 (18)0.0335 (19)
C160.083 (2)0.124 (4)0.0481 (18)0.015 (2)0.0081 (17)0.019 (2)
C170.114 (4)0.229 (7)0.066 (3)0.032 (4)0.004 (3)0.000 (4)
C180.112 (4)0.148 (5)0.089 (3)0.034 (3)0.029 (3)0.012 (3)
C190.098 (3)0.0468 (19)0.105 (3)0.0131 (19)0.010 (2)0.0077 (19)
C200.137 (5)0.130 (5)0.139 (5)0.030 (4)0.008 (4)0.003 (4)
C210.143 (5)0.138 (5)0.175 (6)0.058 (4)0.028 (4)0.031 (4)
C220.0482 (14)0.0521 (16)0.0449 (14)0.0108 (13)0.0095 (11)0.0087 (12)
C230.0603 (17)0.0542 (17)0.0519 (16)0.0130 (14)0.0088 (13)0.0122 (13)
C240.078 (2)0.072 (2)0.064 (2)0.0208 (19)0.0079 (16)0.0246 (17)
C250.086 (2)0.099 (3)0.0493 (18)0.018 (2)0.0036 (16)0.0194 (19)
C260.092 (3)0.091 (3)0.0501 (18)0.016 (2)0.0098 (17)0.0016 (18)
C270.072 (2)0.0618 (19)0.0533 (17)0.0107 (16)0.0168 (14)0.0032 (14)
C280.094 (2)0.0515 (18)0.0631 (19)0.0244 (18)0.0038 (17)0.0110 (15)
C290.108 (3)0.060 (2)0.095 (3)0.006 (2)0.002 (2)0.013 (2)
C300.122 (4)0.087 (3)0.097 (3)0.052 (3)0.033 (3)0.012 (2)
C310.111 (3)0.059 (2)0.069 (2)0.017 (2)0.017 (2)0.0058 (16)
C320.202 (6)0.065 (3)0.139 (5)0.008 (4)0.023 (4)0.014 (3)
C330.169 (6)0.097 (4)0.255 (8)0.072 (4)0.089 (6)0.026 (5)
Geometric parameters (Å, º) top
Al1—N11.848 (3)C16—H160.9800
Al1—N61.855 (2)C17—H17A0.9600
Al1—N31.858 (3)C17—H17B0.9600
Al1—N51.867 (2)C17—H17C0.9600
P1—C11.646 (6)C18—H18A0.9600
P1—C21.700 (4)C18—H18B0.9600
P2—C31.711 (4)C18—H18C0.9600
P2—C41.731 (4)C19—C211.506 (7)
N1—N21.320 (4)C19—C201.518 (7)
N1—C21.354 (4)C19—H190.9800
N2—C11.378 (6)C20—H20A0.9600
N3—C31.336 (4)C20—H20B0.9600
N3—N41.360 (4)C20—H20C0.9600
N4—C41.301 (4)C21—H21A0.9600
N5—C61.352 (4)C21—H21B0.9600
N5—C101.460 (4)C21—H21C0.9600
N6—C81.350 (4)C22—C231.393 (4)
N6—C221.461 (3)C22—C271.397 (4)
C1—H10.9300C23—C241.390 (4)
C2—H20.9300C23—C281.503 (4)
C3—H30.9300C24—C251.370 (5)
C4—H40.9300C24—H240.9300
C5—C61.502 (4)C25—C261.356 (5)
C5—H5A0.9600C25—H250.9300
C5—H5B0.9600C26—C271.391 (5)
C5—H5C0.9600C26—H260.9300
C6—C71.384 (4)C27—C311.511 (5)
C7—C81.379 (4)C28—C301.509 (6)
C7—H70.9300C28—C291.546 (6)
C8—C91.498 (4)C28—H280.9800
C9—H9A0.9600C29—H29A0.9600
C9—H9B0.9600C29—H29B0.9600
C9—H9C0.9600C29—H29C0.9600
C10—C111.389 (5)C30—H30A0.9600
C10—C151.398 (5)C30—H30B0.9600
C11—C121.407 (6)C30—H30C0.9600
C11—C161.513 (6)C31—C321.504 (7)
C12—C131.347 (7)C31—C331.527 (7)
C12—H120.9300C31—H310.9800
C13—C141.361 (7)C32—H32A0.9600
C13—H130.9300C32—H32B0.9600
C14—C151.395 (5)C32—H32C0.9600
C14—H140.9300C33—H33A0.9600
C15—C191.511 (6)C33—H33B0.9600
C16—C181.523 (6)C33—H33C0.9600
C16—C171.548 (6)
N1—Al1—N6111.60 (12)C16—C17—H17C109.5
N1—Al1—N3107.50 (11)H17A—C17—H17C109.5
N6—Al1—N3110.79 (11)H17B—C17—H17C109.5
N1—Al1—N5116.84 (12)C16—C18—H18A109.5
N6—Al1—N599.77 (10)C16—C18—H18B109.5
N3—Al1—N5110.22 (11)H18A—C18—H18B109.5
C1—P1—C286.8 (2)C16—C18—H18C109.5
C3—P2—C485.27 (17)H18A—C18—H18C109.5
N2—N1—C2112.7 (3)H18B—C18—H18C109.5
N2—N1—Al1110.9 (2)C21—C19—C15112.2 (4)
C2—N1—Al1135.9 (3)C21—C19—C20110.1 (4)
N1—N2—C1109.3 (3)C15—C19—C20112.1 (4)
C3—N3—N4113.3 (3)C21—C19—H19107.4
C3—N3—Al1138.0 (2)C15—C19—H19107.4
N4—N3—Al1108.65 (18)C20—C19—H19107.4
C4—N4—N3109.9 (3)C19—C20—H20A109.5
C6—N5—C10118.2 (2)C19—C20—H20B109.5
C6—N5—Al1117.43 (19)H20A—C20—H20B109.5
C10—N5—Al1124.27 (18)C19—C20—H20C109.5
C8—N6—C22118.4 (2)H20A—C20—H20C109.5
C8—N6—Al1117.63 (18)H20B—C20—H20C109.5
C22—N6—Al1123.90 (17)C19—C21—H21A109.5
N2—C1—P1116.9 (3)C19—C21—H21B109.5
N2—C1—H1121.6H21A—C21—H21B109.5
P1—C1—H1121.6C19—C21—H21C109.5
N1—C2—P1114.1 (3)H21A—C21—H21C109.5
N1—C2—H2122.9H21B—C21—H21C109.5
P1—C2—H2122.9C23—C22—C27121.4 (3)
N3—C3—P2114.3 (3)C23—C22—N6120.7 (2)
N3—C3—H3122.8C27—C22—N6117.8 (3)
P2—C3—H3122.8C24—C23—C22117.8 (3)
N4—C4—P2117.2 (3)C24—C23—C28119.2 (3)
N4—C4—H4121.4C22—C23—C28123.0 (3)
P2—C4—H4121.4C25—C24—C23121.7 (3)
C6—C5—H5A109.5C25—C24—H24119.2
C6—C5—H5B109.5C23—C24—H24119.2
H5A—C5—H5B109.5C26—C25—C24119.4 (3)
C6—C5—H5C109.5C26—C25—H25120.3
H5A—C5—H5C109.5C24—C25—H25120.3
H5B—C5—H5C109.5C25—C26—C27122.3 (3)
N5—C6—C7123.2 (3)C25—C26—H26118.9
N5—C6—C5119.6 (3)C27—C26—H26118.9
C7—C6—C5117.2 (3)C26—C27—C22117.5 (3)
C8—C7—C6129.0 (3)C26—C27—C31119.4 (3)
C8—C7—H7115.5C22—C27—C31123.2 (3)
C6—C7—H7115.5C23—C28—C30111.5 (3)
N6—C8—C7122.1 (3)C23—C28—C29110.2 (3)
N6—C8—C9119.2 (3)C30—C28—C29110.5 (3)
C7—C8—C9118.8 (3)C23—C28—H28108.2
C8—C9—H9A109.5C30—C28—H28108.2
C8—C9—H9B109.5C29—C28—H28108.2
H9A—C9—H9B109.5C28—C29—H29A109.5
C8—C9—H9C109.5C28—C29—H29B109.5
H9A—C9—H9C109.5H29A—C29—H29B109.5
H9B—C9—H9C109.5C28—C29—H29C109.5
C11—C10—C15121.9 (3)H29A—C29—H29C109.5
C11—C10—N5119.3 (3)H29B—C29—H29C109.5
C15—C10—N5118.8 (3)C28—C30—H30A109.5
C10—C11—C12116.5 (4)C28—C30—H30B109.5
C10—C11—C16123.5 (3)H30A—C30—H30B109.5
C12—C11—C16120.1 (4)C28—C30—H30C109.5
C13—C12—C11122.2 (5)H30A—C30—H30C109.5
C13—C12—H12118.9H30B—C30—H30C109.5
C11—C12—H12118.9C32—C31—C27112.0 (4)
C12—C13—C14120.7 (4)C32—C31—C33110.7 (5)
C12—C13—H13119.7C27—C31—C33111.0 (4)
C14—C13—H13119.7C32—C31—H31107.6
C13—C14—C15120.5 (5)C27—C31—H31107.6
C13—C14—H14119.8C33—C31—H31107.6
C15—C14—H14119.8C31—C32—H32A109.5
C14—C15—C10118.2 (4)C31—C32—H32B109.5
C14—C15—C19118.9 (4)H32A—C32—H32B109.5
C10—C15—C19122.9 (3)C31—C32—H32C109.5
C11—C16—C18111.3 (4)H32A—C32—H32C109.5
C11—C16—C17112.8 (4)H32B—C32—H32C109.5
C18—C16—C17109.8 (4)C31—C33—H33A109.5
C11—C16—H16107.6C31—C33—H33B109.5
C18—C16—H16107.6H33A—C33—H33B109.5
C17—C16—H16107.6C31—C33—H33C109.5
C16—C17—H17A109.5H33A—C33—H33C109.5
C16—C17—H17B109.5H33B—C33—H33C109.5
H17A—C17—H17B109.5

Experimental details

Crystal data
Chemical formula[Al(C29H41N2)(C2H2N2P)2]
Mr614.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.578 (4), 12.578 (5), 13.498 (5)
α, β, γ (°)92.059 (5), 98.766 (5), 96.516 (5)
V3)1760.8 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.940, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
7337, 6082, 4238
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.224, 1.02
No. of reflections6082
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20971058 and 20977042).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, C. M., Roesky, H. W., Hao, H. J., Schmidt, H. G. & Noletmeyer, M. (2000). Angew. Chem. Int. Ed. 39, 1815–1817.  CrossRef CAS Google Scholar
First citationDing, Y. Q., Roesky, H. W., Noletmeyer, M. & Schmidt, H. G. (2001). Organometallics, 20, 1190–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, S. S., Singh, S., Hongjun, F., Roesky, H. W. & Magull, J. (2005). Inorg. Chem. 44, 1199–1201.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKumar, S. S., Singh, S., Hongjun, F., Roesky, H. W., Vidovic, D. & Magull, J. (2004). Organometallics, 23, 6327–6329.  Web of Science CSD CrossRef CAS Google Scholar
First citationPi, C. F., Wan, L., Gu, Y. Y., Zheng, W. J., Wu, H. Y., Weng, L. H., Chen, Z. X. & Wu, L. M. (2008). Inorg. Chem. 47, 9739–9741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPi, C. F., Wan, L., Liu, W. P., Pan, Z. F., Wu, H. Y., Wang, Y. H., Zheng, W. J., Weng, L. H., Chen, Z. X. & Wu, L. M. (2009). Inorg. Chem. 48, 2967–2975.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchmidpeter, A. & Willhalm, A. (1984). Angew. Chem. Int. Ed. 23, 903–904.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, L., Pi, C. F., Zhang, L., Zheng, W. J., Weng, L. H., Chen, Z. X. & Zhang, Y. (2008). Chem. Commun. pp. 2266–2268.  Web of Science CSD CrossRef Google Scholar
First citationZheng, W. J., Zhang, G. Z. & Fan, K. N. (2006). Organometallics, 25, 1548–1550.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds