organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­chloro­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 29 October 2010; accepted 29 October 2010; online 6 November 2010)

The title compound, C13H11Cl2NO2S, contains two molecules in the asymmetric unit in which the dihedral angles between the benzene rings are 76.0 (1) and 79.9 (1)°. The conformations of the N—H bonds with respect to their adjacent ortho-chlorine atoms are syn. In the crystal, N—H⋯O hydrogen bonds link the molecules into dimers.

Related literature

For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2334.], 2010a[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o188.],b[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Acta Cryst. E66, o278.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11Cl2NO2S

  • Mr = 316.19

  • Monoclinic, P 21 /n

  • a = 14.035 (3) Å

  • b = 12.386 (2) Å

  • c = 15.993 (3) Å

  • β = 98.30 (1)°

  • V = 2751.1 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 5.64 mm−1

  • T = 299 K

  • 0.50 × 0.45 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 9784 measured reflections

  • 4903 independent reflections

  • 4359 reflections with I > 2σ(I)

  • Rint = 0.131

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.176

  • S = 1.11

  • 4903 reflections

  • 352 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.84 (2) 2.29 (2) 3.086 (3) 160 (3)
N2—H2N⋯O2 0.85 (2) 2.32 (2) 3.104 (3) 154 (3)

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009; 2010a, b), in the present work, the structure of 4-methyl-N-(2,3-dichlorophenyl)- benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains two independent molecules. In one of the molecules, conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the SO bonds (Fig. 1). The molecules are bent at the S atoms with the C—SO2—NH—C torsion angles of 65.4 (2) and -61.7 (2). The conformations of the N—H bonds and the ortho-chloro groups in the anilino benzene rings are syn to each other. The benzene rings in the title compound are tilted relative to each other by 76.0 (1)° (molecule 1) and 79.9 (1)° (molecule 2). The other bond parameters in (I) are similar to those observed in 4-methyl-N-(2-chlorophenyl)- benzenesulfonamide (Gowda et al., 2010a), 4-methyl-N-(3-chlorophenyl)benzenesulfonamide (Gowda et al., 2010b), 4-methyl-N-(3,5-dichlorophenyl)benzenesulfonamide (Gowda et al., 2009) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The N—H···O hydrogen bonds (Table 1) pack the molecules into infinite chains in the direction of a- axis (Fig. 2).

Related literature top

For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009, 2010a,b). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of toluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 2,3-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-methyl-N-(2,3-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009; 2010a, b), in the present work, the structure of 4-methyl-N-(2,3-dichlorophenyl)- benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains two independent molecules. In one of the molecules, conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the SO bonds (Fig. 1). The molecules are bent at the S atoms with the C—SO2—NH—C torsion angles of 65.4 (2) and -61.7 (2). The conformations of the N—H bonds and the ortho-chloro groups in the anilino benzene rings are syn to each other. The benzene rings in the title compound are tilted relative to each other by 76.0 (1)° (molecule 1) and 79.9 (1)° (molecule 2). The other bond parameters in (I) are similar to those observed in 4-methyl-N-(2-chlorophenyl)- benzenesulfonamide (Gowda et al., 2010a), 4-methyl-N-(3-chlorophenyl)benzenesulfonamide (Gowda et al., 2010b), 4-methyl-N-(3,5-dichlorophenyl)benzenesulfonamide (Gowda et al., 2009) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The N—H···O hydrogen bonds (Table 1) pack the molecules into infinite chains in the direction of a- axis (Fig. 2).

For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009, 2010a,b). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2,3-Dichlorophenyl)-4-methylbenzenesulfonamide top
Crystal data top
C13H11Cl2NO2SF(000) = 1296
Mr = 316.19Dx = 1.527 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 14.035 (3) Åθ = 5.6–19.2°
b = 12.386 (2) ŵ = 5.64 mm1
c = 15.993 (3) ÅT = 299 K
β = 98.30 (1)°Prism, colourless
V = 2751.1 (9) Å30.50 × 0.45 × 0.40 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.131
Radiation source: fine-focus sealed tubeθmax = 67.0°, θmin = 3.9°
Graphite monochromatorh = 1616
ω/2θ scansk = 140
9784 measured reflectionsl = 1919
4903 independent reflections3 standard reflections every 120 min
4359 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0914P)2 + 0.5192P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4903 reflectionsΔρmax = 0.81 e Å3
352 parametersΔρmin = 0.56 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (4)
Crystal data top
C13H11Cl2NO2SV = 2751.1 (9) Å3
Mr = 316.19Z = 8
Monoclinic, P21/nCu Kα radiation
a = 14.035 (3) ŵ = 5.64 mm1
b = 12.386 (2) ÅT = 299 K
c = 15.993 (3) Å0.50 × 0.45 × 0.40 mm
β = 98.30 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.131
9784 measured reflections3 standard reflections every 120 min
4903 independent reflections intensity decay: 1.0%
4359 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0652 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.81 e Å3
4903 reflectionsΔρmin = 0.56 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88559 (18)0.0982 (2)0.42938 (14)0.0312 (6)
C20.9254 (2)0.0053 (2)0.40037 (17)0.0404 (6)
H20.89550.06120.40380.048*
C31.0094 (2)0.0132 (3)0.36653 (18)0.0473 (7)
H31.03610.04890.34680.057*
C41.05552 (19)0.1107 (3)0.36089 (16)0.0412 (7)
C51.0132 (2)0.2032 (3)0.38929 (19)0.0453 (7)
H51.04230.27000.38490.054*
C60.9292 (2)0.1972 (2)0.42354 (18)0.0413 (6)
H60.90200.25920.44270.050*
C70.66060 (17)0.0946 (2)0.32818 (17)0.0353 (6)
C80.64433 (18)0.1597 (2)0.25643 (17)0.0375 (6)
C90.6067 (2)0.1151 (3)0.17875 (18)0.0428 (7)
C100.5881 (2)0.0062 (3)0.1720 (2)0.0578 (9)
H100.56410.02370.11990.069*
C110.6048 (3)0.0574 (3)0.2417 (3)0.0637 (10)
H110.59250.13110.23650.076*
C120.6398 (2)0.0151 (3)0.3207 (2)0.0530 (8)
H120.64930.05970.36800.064*
C131.1486 (2)0.1179 (4)0.3250 (2)0.0625 (10)
H13A1.13540.13670.26620.075*
H13B1.18090.04950.33110.075*
H13C1.18880.17230.35480.075*
N10.69333 (16)0.1410 (2)0.40784 (15)0.0379 (5)
H1N0.700 (3)0.2081 (15)0.410 (2)0.045*
O10.75897 (16)0.02137 (18)0.48773 (13)0.0491 (5)
O20.78830 (16)0.16207 (18)0.54657 (12)0.0470 (5)
Cl10.67147 (7)0.29473 (6)0.26491 (5)0.0542 (3)
Cl20.58337 (8)0.19562 (9)0.09061 (5)0.0690 (3)
S10.77998 (4)0.08962 (6)0.47581 (4)0.0344 (2)
C140.62488 (18)0.4300 (2)0.57233 (14)0.0302 (5)
C150.5861 (2)0.3271 (2)0.57427 (16)0.0372 (6)
H150.61730.26800.55480.045*
C160.5007 (2)0.3142 (2)0.60547 (18)0.0420 (6)
H160.47400.24550.60660.050*
C170.45287 (19)0.4019 (3)0.63566 (16)0.0397 (6)
C180.4933 (2)0.5035 (3)0.63213 (18)0.0437 (7)
H180.46190.56290.65100.052*
C190.5792 (2)0.5186 (2)0.60121 (17)0.0383 (6)
H190.60590.58720.59980.046*
C200.83949 (17)0.4415 (2)0.68958 (16)0.0322 (5)
C210.87507 (17)0.3732 (2)0.75535 (16)0.0318 (5)
C220.89966 (18)0.4133 (2)0.83721 (17)0.0375 (6)
C230.8875 (2)0.5210 (3)0.8543 (2)0.0484 (7)
H230.90370.54750.90890.058*
C240.8515 (2)0.5880 (3)0.7900 (2)0.0509 (7)
H240.84210.66050.80140.061*
C250.8284 (2)0.5505 (2)0.70714 (19)0.0440 (7)
H250.80560.59820.66390.053*
C260.3602 (2)0.3853 (3)0.6705 (2)0.0560 (9)
H26A0.37390.36970.72980.067*
H26B0.32570.32590.64180.067*
H26C0.32180.44950.66200.067*
N20.81882 (17)0.39956 (19)0.60644 (14)0.0370 (5)
H2N0.826 (2)0.3316 (16)0.603 (2)0.044*
O30.73700 (16)0.37678 (18)0.46284 (11)0.0475 (5)
O40.75082 (16)0.55963 (18)0.52425 (13)0.0480 (5)
Cl30.88652 (6)0.23746 (6)0.73614 (5)0.0526 (3)
Cl40.94255 (7)0.32756 (8)0.91866 (5)0.0600 (3)
S20.73465 (5)0.44706 (5)0.53342 (4)0.0342 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0288 (12)0.0371 (14)0.0268 (11)0.0076 (10)0.0013 (10)0.0017 (10)
C20.0439 (15)0.0369 (14)0.0404 (13)0.0106 (12)0.0061 (12)0.0029 (11)
C30.0477 (16)0.0519 (17)0.0430 (14)0.0209 (15)0.0094 (13)0.0032 (13)
C40.0297 (13)0.0630 (19)0.0302 (12)0.0149 (13)0.0021 (10)0.0059 (12)
C50.0375 (15)0.0479 (16)0.0507 (16)0.0007 (13)0.0070 (13)0.0035 (13)
C60.0379 (14)0.0394 (15)0.0475 (14)0.0070 (12)0.0089 (12)0.0044 (12)
C70.0203 (11)0.0388 (14)0.0458 (14)0.0026 (10)0.0010 (10)0.0021 (11)
C80.0250 (11)0.0403 (14)0.0472 (14)0.0050 (11)0.0055 (11)0.0079 (12)
C90.0314 (13)0.0523 (17)0.0436 (14)0.0073 (13)0.0021 (11)0.0059 (13)
C100.0478 (17)0.056 (2)0.0638 (19)0.0036 (16)0.0109 (16)0.0218 (17)
C110.060 (2)0.0422 (17)0.080 (2)0.0048 (16)0.0183 (19)0.0116 (17)
C120.0467 (17)0.0407 (16)0.067 (2)0.0051 (14)0.0069 (16)0.0032 (15)
C130.0407 (17)0.099 (3)0.0501 (17)0.0165 (18)0.0151 (14)0.0137 (19)
N10.0304 (11)0.0368 (12)0.0465 (12)0.0050 (10)0.0062 (10)0.0011 (10)
O10.0523 (12)0.0440 (12)0.0517 (11)0.0005 (10)0.0096 (10)0.0120 (9)
O20.0531 (12)0.0547 (12)0.0342 (9)0.0095 (10)0.0102 (9)0.0046 (9)
Cl10.0739 (6)0.0381 (4)0.0496 (4)0.0011 (3)0.0049 (4)0.0001 (3)
Cl20.0888 (7)0.0725 (6)0.0424 (4)0.0130 (5)0.0019 (4)0.0002 (4)
S10.0341 (4)0.0386 (4)0.0314 (3)0.0055 (3)0.0076 (3)0.0024 (2)
C140.0315 (12)0.0331 (12)0.0247 (10)0.0062 (10)0.0002 (10)0.0018 (9)
C150.0435 (14)0.0300 (12)0.0386 (12)0.0062 (12)0.0076 (12)0.0001 (11)
C160.0411 (15)0.0397 (15)0.0445 (14)0.0033 (13)0.0034 (12)0.0034 (12)
C170.0295 (13)0.0564 (17)0.0308 (12)0.0052 (12)0.0035 (10)0.0041 (12)
C180.0374 (14)0.0464 (16)0.0472 (15)0.0149 (13)0.0062 (12)0.0023 (13)
C190.0418 (14)0.0304 (13)0.0410 (13)0.0066 (12)0.0005 (12)0.0027 (11)
C200.0214 (11)0.0346 (13)0.0403 (13)0.0015 (10)0.0036 (10)0.0017 (11)
C210.0220 (11)0.0311 (12)0.0424 (13)0.0003 (10)0.0047 (10)0.0023 (11)
C220.0259 (11)0.0449 (15)0.0406 (13)0.0018 (11)0.0007 (10)0.0028 (12)
C230.0416 (15)0.0538 (18)0.0476 (15)0.0032 (14)0.0011 (13)0.0150 (14)
C240.0511 (17)0.0367 (15)0.0613 (18)0.0000 (14)0.0044 (15)0.0127 (14)
C250.0441 (15)0.0334 (14)0.0509 (15)0.0025 (12)0.0055 (13)0.0003 (12)
C260.0375 (15)0.083 (3)0.0479 (16)0.0029 (16)0.0082 (13)0.0082 (17)
N20.0370 (12)0.0364 (12)0.0379 (11)0.0087 (10)0.0061 (10)0.0006 (9)
O30.0581 (13)0.0548 (12)0.0315 (9)0.0080 (11)0.0128 (9)0.0008 (9)
O40.0569 (12)0.0404 (11)0.0480 (11)0.0015 (10)0.0121 (10)0.0119 (9)
Cl30.0709 (5)0.0328 (4)0.0515 (4)0.0090 (3)0.0001 (4)0.0004 (3)
Cl40.0666 (5)0.0630 (5)0.0455 (4)0.0009 (4)0.0081 (4)0.0085 (4)
S20.0375 (4)0.0354 (4)0.0306 (3)0.0034 (3)0.0077 (3)0.0043 (2)
Geometric parameters (Å, º) top
C1—C61.380 (4)C14—C191.384 (4)
C1—C21.387 (4)C14—C151.388 (4)
C1—S11.754 (2)C14—S21.756 (2)
C2—C31.370 (4)C15—C161.373 (4)
C2—H20.9300C15—H150.9300
C3—C41.380 (5)C16—C171.399 (4)
C3—H30.9300C16—H160.9300
C4—C51.396 (4)C17—C181.385 (4)
C4—C131.503 (4)C17—C261.500 (4)
C5—C61.371 (4)C18—C191.379 (4)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C121.392 (4)C20—C211.386 (4)
C7—C81.394 (4)C20—C251.392 (4)
C7—N11.413 (4)C20—N21.418 (3)
C8—C91.392 (4)C21—C221.396 (4)
C8—Cl11.716 (3)C21—Cl31.721 (3)
C9—C101.375 (5)C22—C231.378 (4)
C9—Cl21.719 (3)C22—Cl41.720 (3)
C10—C111.358 (6)C23—C241.361 (5)
C10—H100.9300C23—H230.9300
C11—C121.390 (5)C24—C251.397 (4)
C11—H110.9300C24—H240.9300
C12—H120.9300C25—H250.9300
C13—H13A0.9600C26—H26A0.9600
C13—H13B0.9600C26—H26B0.9600
C13—H13C0.9600C26—H26C0.9600
N1—S11.638 (2)N2—S21.645 (2)
N1—H1N0.837 (18)N2—H2N0.851 (18)
O1—S11.425 (2)O3—S21.430 (2)
O2—S11.436 (2)O4—S21.424 (2)
C6—C1—C2120.7 (2)C19—C14—C15121.2 (2)
C6—C1—S1119.5 (2)C19—C14—S2119.7 (2)
C2—C1—S1119.8 (2)C15—C14—S2119.1 (2)
C3—C2—C1118.9 (3)C16—C15—C14118.8 (2)
C3—C2—H2120.5C16—C15—H15120.6
C1—C2—H2120.5C14—C15—H15120.6
C2—C3—C4121.8 (3)C15—C16—C17121.5 (3)
C2—C3—H3119.1C15—C16—H16119.3
C4—C3—H3119.1C17—C16—H16119.3
C3—C4—C5118.1 (3)C18—C17—C16118.1 (3)
C3—C4—C13121.2 (3)C18—C17—C26121.5 (3)
C5—C4—C13120.6 (3)C16—C17—C26120.4 (3)
C6—C5—C4121.1 (3)C19—C18—C17121.5 (3)
C6—C5—H5119.5C19—C18—H18119.3
C4—C5—H5119.5C17—C18—H18119.3
C5—C6—C1119.4 (3)C18—C19—C14118.9 (3)
C5—C6—H6120.3C18—C19—H19120.6
C1—C6—H6120.3C14—C19—H19120.6
C12—C7—C8119.1 (3)C21—C20—C25118.5 (2)
C12—C7—N1120.8 (3)C21—C20—N2119.3 (2)
C8—C7—N1120.0 (3)C25—C20—N2122.1 (2)
C9—C8—C7120.0 (3)C20—C21—C22120.5 (2)
C9—C8—Cl1120.6 (2)C20—C21—Cl3119.61 (19)
C7—C8—Cl1119.4 (2)C22—C21—Cl3119.9 (2)
C10—C9—C8120.2 (3)C23—C22—C21120.6 (3)
C10—C9—Cl2119.5 (2)C23—C22—Cl4119.1 (2)
C8—C9—Cl2120.3 (2)C21—C22—Cl4120.2 (2)
C11—C10—C9119.8 (3)C24—C23—C22118.9 (3)
C11—C10—H10120.1C24—C23—H23120.5
C9—C10—H10120.1C22—C23—H23120.5
C10—C11—C12121.6 (3)C23—C24—C25121.7 (3)
C10—C11—H11119.2C23—C24—H24119.2
C12—C11—H11119.2C25—C24—H24119.2
C11—C12—C7119.2 (3)C20—C25—C24119.7 (3)
C11—C12—H12120.4C20—C25—H25120.1
C7—C12—H12120.4C24—C25—H25120.1
C4—C13—H13A109.5C17—C26—H26A109.5
C4—C13—H13B109.5C17—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C4—C13—H13C109.5C17—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
C7—N1—S1123.66 (19)C20—N2—S2124.27 (18)
C7—N1—H1N117 (2)C20—N2—H2N114 (2)
S1—N1—H1N107 (2)S2—N2—H2N113 (2)
O1—S1—O2119.51 (13)O4—S2—O3119.53 (12)
O1—S1—N1108.38 (13)O4—S2—N2108.34 (13)
O2—S1—N1104.38 (12)O3—S2—N2104.28 (12)
O1—S1—C1108.59 (13)O4—S2—C14108.40 (13)
O2—S1—C1108.57 (12)O3—S2—C14109.14 (13)
N1—S1—C1106.70 (12)N2—S2—C14106.39 (11)
C6—C1—C2—C30.7 (4)C19—C14—C15—C160.1 (4)
S1—C1—C2—C3178.1 (2)S2—C14—C15—C16179.4 (2)
C1—C2—C3—C40.3 (4)C14—C15—C16—C170.5 (4)
C2—C3—C4—C51.3 (4)C15—C16—C17—C181.0 (4)
C2—C3—C4—C13178.9 (3)C15—C16—C17—C26179.2 (3)
C3—C4—C5—C61.4 (4)C16—C17—C18—C191.1 (4)
C13—C4—C5—C6178.8 (3)C26—C17—C18—C19179.1 (3)
C4—C5—C6—C10.5 (4)C17—C18—C19—C140.7 (4)
C2—C1—C6—C50.5 (4)C15—C14—C19—C180.2 (4)
S1—C1—C6—C5178.3 (2)S2—C14—C19—C18179.5 (2)
C12—C7—C8—C90.8 (4)C25—C20—C21—C220.4 (4)
N1—C7—C8—C9176.2 (2)N2—C20—C21—C22177.4 (2)
C12—C7—C8—Cl1179.0 (2)C25—C20—C21—Cl3178.2 (2)
N1—C7—C8—Cl14.0 (3)N2—C20—C21—Cl34.0 (3)
C7—C8—C9—C101.9 (4)C20—C21—C22—C231.1 (4)
Cl1—C8—C9—C10177.9 (2)Cl3—C21—C22—C23177.6 (2)
C7—C8—C9—Cl2178.22 (19)C20—C21—C22—Cl4179.30 (18)
Cl1—C8—C9—Cl22.0 (3)Cl3—C21—C22—Cl40.7 (3)
C8—C9—C10—C111.2 (5)C21—C22—C23—C240.3 (4)
Cl2—C9—C10—C11178.9 (3)Cl4—C22—C23—C24178.5 (2)
C9—C10—C11—C120.5 (6)C22—C23—C24—C251.2 (5)
C10—C11—C12—C71.7 (5)C21—C20—C25—C241.0 (4)
C8—C7—C12—C111.0 (4)N2—C20—C25—C24178.8 (3)
N1—C7—C12—C11177.9 (3)C23—C24—C25—C201.9 (5)
C12—C7—N1—S147.9 (3)C21—C20—N2—S2150.1 (2)
C8—C7—N1—S1135.2 (2)C25—C20—N2—S232.2 (3)
C7—N1—S1—O151.4 (2)C20—N2—S2—O454.7 (2)
C7—N1—S1—O2179.8 (2)C20—N2—S2—O3177.0 (2)
C7—N1—S1—C165.4 (2)C20—N2—S2—C1461.7 (2)
C6—C1—S1—O1169.9 (2)C19—C14—S2—O410.5 (2)
C2—C1—S1—O18.9 (3)C15—C14—S2—O4170.1 (2)
C6—C1—S1—O238.5 (3)C19—C14—S2—O3142.2 (2)
C2—C1—S1—O2140.3 (2)C15—C14—S2—O338.4 (2)
C6—C1—S1—N173.5 (2)C19—C14—S2—N2105.8 (2)
C2—C1—S1—N1107.8 (2)C15—C14—S2—N273.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.84 (2)2.29 (2)3.086 (3)160 (3)
N1—H1N···Cl10.84 (2)2.54 (3)2.957 (2)112 (3)
N2—H2N···O20.85 (2)2.32 (2)3.104 (3)154 (3)
N2—H2N···Cl30.85 (2)2.46 (3)2.944 (2)117 (3)

Experimental details

Crystal data
Chemical formulaC13H11Cl2NO2S
Mr316.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)14.035 (3), 12.386 (2), 15.993 (3)
β (°) 98.30 (1)
V3)2751.1 (9)
Z8
Radiation typeCu Kα
µ (mm1)5.64
Crystal size (mm)0.50 × 0.45 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9784, 4903, 4359
Rint0.131
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.176, 1.11
No. of reflections4903
No. of parameters352
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.56

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.837 (18)2.29 (2)3.086 (3)160 (3)
N1—H1N···Cl10.837 (18)2.54 (3)2.957 (2)112 (3)
N2—H2N···O20.851 (18)2.32 (2)3.104 (3)154 (3)
N2—H2N···Cl30.851 (18)2.46 (3)2.944 (2)117 (3)
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi for the award of a research fellowship under its faculty improvement program.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Acta Cryst. E66, o278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds