organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-[(4-bromo­anilino)methyl­­idene]malonate

aCollege of Materials Engineering, Jinling Institute of Technology, No. 99 Hongjing Street, Nanjing 211169, People's Republic of China
*Correspondence e-mail: fzq@jit.edu.cn

(Received 1 November 2010; accepted 4 November 2010; online 10 November 2010)

In the title compound, C14H16BrNO4, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming a stable structure. An intra­molecular N—H⋯O hydrogen bond results in the formation of a six-membered ring and helps to establish the mol­ecular conformation which is almost planar, with an r.m.s deviation of 0.0842 Å.

Related literature

For the preparation, see: Lager et al. (2006[Lager, E., Andersson, P., Nilsson, J., Pettersson, I., Østergaard Nielsen, E., Nielsen, M., Sterner, O. & Liljefors, T. (2006). J. Med. Chem. 49, 2526-2533.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16BrNO4

  • Mr = 342.19

  • Monoclinic, P 21

  • a = 9.2440 (18) Å

  • b = 6.5000 (13) Å

  • c = 13.448 (3) Å

  • β = 110.10 (3)°

  • V = 758.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.72 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.496, Tmax = 0.773

  • 2851 measured reflections

  • 2790 independent reflections

  • 1606 reflections with I > 2σ(I)

  • Rint = 0.071

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.154

  • S = 1.00

  • 2790 reflections

  • 181 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1253 Friedel pairs

  • Flack parameter: −0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O3 0.86 1.95 2.615 (8) 134
C1—H1A⋯O3i 0.93 2.49 3.190 (10) 132
C5—H5A⋯O1ii 0.93 2.42 3.298 (9) 157
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

We report herein the crystal structure of the title compound, diethyl 2-((4-bromophenylamino)methylene)malonate which is an important intermediate of synthesizing pyrazoloquinolinones. In the molecule of the title compound (Fig. 1), all bond lengths and angles (Allen et al., 1987) are within normal ranges. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered ring (N/C7/C8/C12/O3/H0A). In the crystal structure, intermolecular weak C-H···O hydrogen bonds link the molecules to form a stable structure (Fig. 2).

Related literature top

For the preparation, see: Lager et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, diethyl 2-((4-bromophenylamino)methylene)malonate was prepared by the literature method (Lager et al., 2006). 4-bromoaniline (1.2 mmol) and diethyl ethoxymethylenemalonate (1.2 mmol) were mixed and heated at 403 K for 2 h. Low boiling components were evaporated at low pressure with a cold trap yielding diethyl 2-((4-bromophenylamino) methylene)malonate. The crude product was purified by recrystallization from diethyl ether yielding the title compound (73 % yield), as a white solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

We report herein the crystal structure of the title compound, diethyl 2-((4-bromophenylamino)methylene)malonate which is an important intermediate of synthesizing pyrazoloquinolinones. In the molecule of the title compound (Fig. 1), all bond lengths and angles (Allen et al., 1987) are within normal ranges. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered ring (N/C7/C8/C12/O3/H0A). In the crystal structure, intermolecular weak C-H···O hydrogen bonds link the molecules to form a stable structure (Fig. 2).

For the preparation, see: Lager et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines show H-bonding.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed line.
Diethyl 2-[(4-bromoanilino)methylidene]malonate top
Crystal data top
C14H16BrNO4F(000) = 348
Mr = 342.19Dx = 1.498 Mg m3
Monoclinic, P21Melting point: 367 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.2440 (18) ÅCell parameters from 25 reflections
b = 6.5000 (13) Åθ = 9–14°
c = 13.448 (3) ŵ = 2.72 mm1
β = 110.10 (3)°T = 293 K
V = 758.8 (3) Å3Needle, colourless
Z = 20.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1606 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 77
Tmin = 0.496, Tmax = 0.773l = 516
2851 measured reflections3 standard reflections every 200 reflections
2790 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.078P)2 + ]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2790 reflectionsΔρmax = 0.49 e Å3
181 parametersΔρmin = 0.39 e Å3
1 restraintAbsolute structure: Flack (1983), 1253 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C14H16BrNO4V = 758.8 (3) Å3
Mr = 342.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2440 (18) ŵ = 2.72 mm1
b = 6.5000 (13) ÅT = 293 K
c = 13.448 (3) Å0.30 × 0.10 × 0.10 mm
β = 110.10 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1606 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.071
Tmin = 0.496, Tmax = 0.7733 standard reflections every 200 reflections
2851 measured reflections intensity decay: 1%
2790 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.154Δρmax = 0.49 e Å3
S = 1.00Δρmin = 0.39 e Å3
2790 reflectionsAbsolute structure: Flack (1983), 1253 Friedel pairs
181 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.96900 (11)0.78434 (19)0.08931 (9)0.1008 (4)
N0.7057 (7)0.0195 (9)0.2183 (5)0.0626 (16)
H0A0.62420.02490.16970.075*
C10.7111 (8)0.2666 (15)0.0881 (6)0.0691 (19)
H1A0.63180.19440.03870.083*
O10.8800 (8)0.2964 (10)0.4901 (5)0.116 (3)
O20.7014 (6)0.5254 (9)0.4487 (4)0.0768 (15)
C20.7701 (9)0.4458 (13)0.0594 (6)0.068 (2)
H2A0.72800.49730.00910.082*
C30.8892 (9)0.5442 (11)0.1320 (8)0.069 (2)
O30.4955 (6)0.2676 (8)0.1562 (5)0.0859 (18)
C40.9487 (9)0.4794 (12)0.2343 (7)0.068 (2)
H4A1.02760.55320.28320.082*
O40.4944 (6)0.5243 (8)0.2634 (4)0.0673 (13)
C50.8899 (8)0.2992 (19)0.2660 (5)0.066 (2)
H5A0.93010.25200.33540.079*
C60.7740 (8)0.1980 (10)0.1930 (6)0.0558 (19)
C70.7510 (8)0.0856 (11)0.3061 (6)0.0521 (17)
H7A0.83480.03340.36080.062*
C80.6869 (8)0.2699 (11)0.3269 (6)0.062 (2)
C90.7662 (9)0.3565 (13)0.4292 (6)0.0594 (19)
C100.7736 (9)0.6258 (12)0.5497 (6)0.072 (2)
H10A0.79520.52730.60710.086*
H10B0.86940.69070.55240.086*
C110.6597 (12)0.7843 (17)0.5578 (9)0.124 (5)
H11A0.70050.85440.62440.186*
H11B0.64110.88170.50110.186*
H11C0.56480.71780.55300.186*
C120.5544 (9)0.3509 (12)0.2415 (6)0.0586 (18)
C130.3642 (9)0.6084 (13)0.1829 (6)0.079 (2)
H13A0.39220.65430.12330.094*
H13B0.28320.50630.15810.094*
C140.3121 (12)0.7836 (14)0.2315 (8)0.105 (4)
H14A0.22240.84420.18050.157*
H14B0.28720.73630.29130.157*
H14C0.39270.88440.25430.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0966 (6)0.0669 (5)0.1532 (9)0.0125 (6)0.0612 (6)0.0184 (7)
N0.051 (4)0.065 (4)0.065 (4)0.003 (3)0.011 (3)0.000 (3)
C10.072 (5)0.056 (5)0.079 (5)0.008 (5)0.024 (4)0.012 (5)
O10.098 (5)0.119 (6)0.091 (4)0.047 (4)0.019 (4)0.038 (4)
O20.056 (3)0.080 (4)0.085 (4)0.008 (3)0.013 (3)0.031 (3)
C20.060 (5)0.073 (5)0.074 (5)0.008 (4)0.026 (4)0.026 (4)
C30.057 (5)0.045 (4)0.108 (7)0.014 (4)0.034 (5)0.009 (5)
O30.078 (4)0.071 (5)0.088 (4)0.021 (3)0.002 (3)0.013 (3)
C40.058 (5)0.060 (5)0.087 (6)0.003 (4)0.026 (5)0.006 (5)
O40.067 (3)0.059 (3)0.077 (3)0.010 (3)0.026 (3)0.000 (3)
C50.064 (4)0.072 (5)0.058 (4)0.022 (6)0.014 (4)0.023 (5)
C60.059 (4)0.042 (3)0.076 (5)0.016 (3)0.036 (4)0.015 (4)
C70.047 (4)0.055 (4)0.055 (5)0.007 (3)0.019 (4)0.002 (3)
C80.052 (4)0.058 (6)0.088 (6)0.002 (3)0.040 (4)0.008 (4)
C90.052 (5)0.074 (5)0.040 (4)0.009 (4)0.001 (4)0.000 (4)
C100.061 (5)0.075 (5)0.072 (5)0.003 (4)0.013 (4)0.028 (4)
C110.087 (6)0.132 (11)0.157 (9)0.002 (6)0.048 (7)0.075 (9)
C120.061 (5)0.063 (5)0.058 (5)0.011 (4)0.029 (4)0.014 (4)
C130.065 (5)0.086 (6)0.073 (5)0.022 (5)0.009 (4)0.022 (5)
C140.118 (8)0.083 (7)0.140 (9)0.035 (6)0.080 (7)0.024 (6)
Geometric parameters (Å, º) top
Br—C31.898 (7)C5—C61.349 (11)
N—C71.302 (8)C5—H5A0.9300
N—C61.417 (9)C7—C81.407 (9)
N—H0A0.8600C7—H7A0.9300
C1—C21.396 (11)C8—C91.432 (10)
C1—C61.401 (10)C8—C121.459 (11)
C1—H1A0.9300C10—C111.503 (11)
O1—C91.157 (8)C10—H10A0.9700
O2—C91.320 (9)C10—H10B0.9700
O2—C101.446 (8)C11—H11A0.9600
C2—C31.356 (11)C11—H11B0.9600
C2—H2A0.9300C11—H11C0.9600
C3—C41.361 (11)C13—C141.474 (11)
O3—C121.215 (8)C13—H13A0.9700
C4—C51.417 (14)C13—H13B0.9700
C4—H4A0.9300C14—H14A0.9600
O4—C121.333 (8)C14—H14B0.9600
O4—C131.423 (8)C14—H14C0.9600
C7—N—C6128.0 (6)O1—C9—C8126.0 (8)
C7—N—H0A116.0O2—C9—C8113.6 (7)
C6—N—H0A116.0O2—C10—C11105.6 (7)
C2—C1—C6118.6 (8)O2—C10—H10A110.6
C2—C1—H1A120.7C11—C10—H10A110.6
C6—C1—H1A120.7O2—C10—H10B110.6
C9—O2—C10117.9 (6)C11—C10—H10B110.6
C3—C2—C1119.5 (8)H10A—C10—H10B108.8
C3—C2—H2A120.3C10—C11—H11A109.5
C1—C2—H2A120.3C10—C11—H11B109.5
C2—C3—C4121.9 (7)H11A—C11—H11B109.5
C2—C3—Br118.3 (7)C10—C11—H11C109.5
C4—C3—Br119.8 (6)H11A—C11—H11C109.5
C3—C4—C5119.8 (7)H11B—C11—H11C109.5
C3—C4—H4A120.1O3—C12—O4120.0 (7)
C5—C4—H4A120.1O3—C12—C8124.4 (7)
C12—O4—C13117.7 (6)O4—C12—C8115.6 (6)
C6—C5—C4118.3 (7)O4—C13—C14106.2 (7)
C6—C5—H5A120.8O4—C13—H13A110.5
C4—C5—H5A120.8C14—C13—H13A110.5
C5—C6—C1121.9 (7)O4—C13—H13B110.5
C5—C6—N122.1 (7)C14—C13—H13B110.5
C1—C6—N116.0 (7)H13A—C13—H13B108.7
N—C7—C8126.9 (7)C13—C14—H14A109.5
N—C7—H7A116.5C13—C14—H14B109.5
C8—C7—H7A116.5H14A—C14—H14B109.5
C7—C8—C9114.5 (7)C13—C14—H14C109.5
C7—C8—C12116.6 (7)H14A—C14—H14C109.5
C9—C8—C12128.9 (6)H14B—C14—H14C109.5
O1—C9—O2120.3 (7)
C6—C1—C2—C32.2 (11)C10—O2—C9—O12.6 (12)
C1—C2—C3—C43.4 (11)C10—O2—C9—C8179.5 (6)
C1—C2—C3—Br178.8 (6)C7—C8—C9—O15.5 (11)
C2—C3—C4—C52.7 (12)C12—C8—C9—O1171.8 (9)
Br—C3—C4—C5179.5 (6)C7—C8—C9—O2177.9 (6)
C3—C4—C5—C60.8 (12)C12—C8—C9—O24.9 (11)
C4—C5—C6—C10.3 (11)C9—O2—C10—C11169.0 (7)
C4—C5—C6—N178.4 (7)C13—O4—C12—O31.8 (9)
C2—C1—C6—C50.4 (11)C13—O4—C12—C8179.5 (6)
C2—C1—C6—N177.8 (6)C7—C8—C12—O31.7 (10)
C7—N—C6—C58.8 (11)C9—C8—C12—O3178.9 (7)
C7—N—C6—C1173.0 (7)C7—C8—C12—O4179.3 (5)
C6—N—C7—C8175.6 (6)C9—C8—C12—O43.5 (10)
N—C7—C8—C9176.9 (7)C12—O4—C13—C14173.9 (6)
N—C7—C8—C120.7 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O30.861.952.615 (8)134
C1—H1A···O3i0.932.493.190 (10)132
C5—H5A···O1ii0.932.423.298 (9)157
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H16BrNO4
Mr342.19
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.2440 (18), 6.5000 (13), 13.448 (3)
β (°) 110.10 (3)
V3)758.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.72
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.496, 0.773
No. of measured, independent and
observed [I > 2σ(I)] reflections
2851, 2790, 1606
Rint0.071
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.154, 1.00
No. of reflections2790
No. of parameters181
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.39
Absolute structureFlack (1983), 1253 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O30.861.952.615 (8)134
C1—H1A···O3i0.932.493.190 (10)132
C5—H5A···O1ii0.932.423.298 (9)157
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLager, E., Andersson, P., Nilsson, J., Pettersson, I., Østergaard Nielsen, E., Nielsen, M., Sterner, O. & Liljefors, T. (2006). J. Med. Chem. 49, 2526–2533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds