organic compounds
4-(9,10-Dioxo-9,10-dihydroanthracen-1-yl)-4-oxobutanoic acid
aCollege of Biotechnology, and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: xiaoningliu@163.com
In the title compound, C18H12O5, the anthracene moiety is almost planar (r.m.s. deviation = 0.0399 Å). In the crystal, molecules are linked to each other by intermolecular O—H⋯O and weak C—H⋯O hydrogen bonds.
Related literature
For bond-length data, see: Allen et al. (1987). For applications of natural and synthetic anthraquinones, see: Brown (1980). For their activity, see: Johnson et al. (1997). For the synthesis, see: Inbasekaran et al. (1980).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053681004732X/bq2254sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681004732X/bq2254Isup2.hkl
The compound 4-(anthracen-1-yl)butanoic acid was synthesized by the method (Inbasekaran et al., 1980). The crystals of the title compound (I) were obtained by dissolving the compound 4-(anthracen-1-yl)butanoic acid in methanol (25 ml) in the presence of oxygen and evaporating the solvent slowly at room temperature for about 10 d.
H atoms were positioned geometrically, with O—H = 0.82Å (for OH) and C—H = 0.93 and 0.97Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/N), where x = 1.2 for aromatic H.
Anthraquinone compounds are widely used in the chemical industry and medicine. Natural and synthetic anthraquinone compounds are used in food, cosmetics, hair color agent and textile dyes (Brown et al., 1980). In medicine, many of anthraquinones have diarrhea, anti-cell and other effects. The activity of anthraquinone derivatives has a great relationship with their planar frame structure (Johnson et al., 1997). We report here the
of the title compound, (I).The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The anthrecene moiety is almost planar with an r.m.s. deviation of 0.0399 Å and a maximum deviation of 0.099 (4) Å for O2. In the crystal, molecules are linked to each other to form chains framework via intermolecular O—H···O and weak C—H···O hydrogen bonds.
For bond-length data, see: Allen et al. (1987). For applications of natural and synthetic anthraquinones, see: Brown (1980). For their activity, see: Johnson et al. (1997). For the synthesis, see: Inbasekaran et al. (1980);
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell
CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H12O5 | F(000) = 640 |
Mr = 308.28 | Dx = 1.433 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 5.168 (1) Å | θ = 8–12° |
b = 19.523 (4) Å | µ = 0.11 mm−1 |
c = 14.367 (3) Å | T = 293 K |
β = 99.58 (3)° | Needle, colourless |
V = 1429.3 (5) Å3 | 0.20 × 0.10 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1048 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.077 |
Graphite monochromator | θmax = 25.3°, θmin = 1.8° |
ω/2θ scans | h = 0→6 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→23 |
Tmin = 0.979, Tmax = 0.990 | l = −17→17 |
2892 measured reflections | 3 standard reflections every 200 reflections |
2593 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.078 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.161 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.040P)2] where P = (Fo2 + 2Fc2)/3 |
2593 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C18H12O5 | V = 1429.3 (5) Å3 |
Mr = 308.28 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.168 (1) Å | µ = 0.11 mm−1 |
b = 19.523 (4) Å | T = 293 K |
c = 14.367 (3) Å | 0.20 × 0.10 × 0.10 mm |
β = 99.58 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1048 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.077 |
Tmin = 0.979, Tmax = 0.990 | 3 standard reflections every 200 reflections |
2892 measured reflections | intensity decay: 1% |
2593 independent reflections |
R[F2 > 2σ(F2)] = 0.078 | 0 restraints |
wR(F2) = 0.161 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.21 e Å−3 |
2593 reflections | Δρmin = −0.23 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6562 (8) | 0.45510 (18) | 0.4314 (3) | 0.0687 (12) | |
O2 | 0.2523 (6) | 0.26823 (17) | 0.6393 (2) | 0.0534 (10) | |
O3 | −0.2936 (7) | 0.21707 (19) | 0.5131 (3) | 0.0722 (13) | |
O4 | −0.2825 (7) | 0.04974 (17) | 0.4635 (3) | 0.0580 (11) | |
O5 | −0.3291 (8) | 0.0347 (2) | 0.6115 (3) | 0.0796 (13) | |
H5A | −0.4460 | 0.0090 | 0.5866 | 0.119* | |
C1 | −0.0859 (11) | 0.2918 (3) | 0.3566 (4) | 0.0590 (16) | |
H1A | −0.2305 | 0.2662 | 0.3293 | 0.071* | |
C2 | 0.0084 (12) | 0.3422 (3) | 0.3052 (4) | 0.0656 (17) | |
H2A | −0.0687 | 0.3499 | 0.2429 | 0.079* | |
C3 | 0.2165 (11) | 0.3814 (3) | 0.3457 (4) | 0.0556 (15) | |
H3A | 0.2776 | 0.4161 | 0.3107 | 0.067* | |
C4 | 0.3375 (10) | 0.3703 (2) | 0.4378 (4) | 0.0412 (13) | |
C5 | 0.5697 (10) | 0.4127 (3) | 0.4790 (4) | 0.0467 (14) | |
C6 | 0.6852 (10) | 0.4001 (2) | 0.5783 (3) | 0.0408 (13) | |
C7 | 0.9026 (11) | 0.4383 (3) | 0.6188 (4) | 0.0555 (15) | |
H7A | 0.9726 | 0.4712 | 0.5832 | 0.067* | |
C8 | 1.0149 (11) | 0.4274 (3) | 0.7122 (4) | 0.0611 (17) | |
H8A | 1.1575 | 0.4537 | 0.7397 | 0.073* | |
C9 | 0.9160 (11) | 0.3780 (3) | 0.7640 (4) | 0.0640 (17) | |
H9A | 0.9928 | 0.3702 | 0.8264 | 0.077* | |
C10 | 0.7023 (10) | 0.3397 (3) | 0.7236 (4) | 0.0548 (15) | |
H10A | 0.6372 | 0.3060 | 0.7593 | 0.066* | |
C11 | 0.5839 (9) | 0.3501 (2) | 0.6323 (4) | 0.0425 (13) | |
C12 | 0.3528 (10) | 0.3090 (2) | 0.5912 (4) | 0.0425 (13) | |
C13 | 0.2415 (9) | 0.3191 (2) | 0.4900 (3) | 0.0365 (12) | |
C14 | 0.0322 (9) | 0.2783 (2) | 0.4497 (3) | 0.0392 (12) | |
C15 | −0.0699 (10) | 0.2173 (3) | 0.4968 (4) | 0.0484 (14) | |
C16 | 0.0972 (9) | 0.1546 (2) | 0.5123 (4) | 0.0502 (14) | |
H16A | 0.2779 | 0.1679 | 0.5340 | 0.060* | |
H16B | 0.0898 | 0.1305 | 0.4529 | 0.060* | |
C17 | 0.0093 (10) | 0.1069 (2) | 0.5841 (4) | 0.0526 (15) | |
H17A | 0.1567 | 0.0784 | 0.6109 | 0.063* | |
H17B | −0.0394 | 0.1343 | 0.6348 | 0.063* | |
C18 | −0.2128 (10) | 0.0622 (2) | 0.5464 (4) | 0.0493 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.081 (3) | 0.059 (3) | 0.071 (3) | −0.018 (2) | 0.029 (2) | 0.018 (2) |
O2 | 0.061 (3) | 0.053 (2) | 0.048 (2) | −0.0200 (19) | 0.012 (2) | 0.0045 (18) |
O3 | 0.035 (2) | 0.068 (3) | 0.119 (4) | −0.007 (2) | 0.027 (2) | −0.005 (2) |
O4 | 0.060 (3) | 0.061 (2) | 0.049 (2) | −0.026 (2) | −0.003 (2) | 0.0015 (19) |
O5 | 0.088 (3) | 0.086 (3) | 0.067 (3) | −0.036 (3) | 0.021 (2) | −0.005 (2) |
C1 | 0.049 (4) | 0.060 (4) | 0.065 (4) | 0.000 (3) | 0.001 (3) | −0.015 (3) |
C2 | 0.077 (5) | 0.069 (4) | 0.044 (4) | 0.003 (4) | −0.006 (3) | −0.002 (3) |
C3 | 0.072 (4) | 0.051 (4) | 0.046 (4) | 0.000 (3) | 0.018 (3) | 0.007 (3) |
C4 | 0.043 (3) | 0.041 (3) | 0.041 (3) | −0.004 (3) | 0.011 (3) | 0.003 (2) |
C5 | 0.054 (4) | 0.038 (3) | 0.052 (4) | 0.000 (3) | 0.019 (3) | 0.002 (3) |
C6 | 0.045 (3) | 0.030 (3) | 0.050 (3) | −0.004 (3) | 0.014 (3) | −0.005 (3) |
C7 | 0.053 (4) | 0.046 (3) | 0.073 (4) | −0.006 (3) | 0.025 (3) | −0.014 (3) |
C8 | 0.051 (4) | 0.062 (4) | 0.069 (4) | −0.005 (3) | 0.006 (3) | −0.019 (3) |
C9 | 0.070 (4) | 0.068 (4) | 0.051 (4) | −0.012 (4) | 0.002 (3) | −0.011 (3) |
C10 | 0.054 (4) | 0.062 (4) | 0.046 (4) | −0.010 (3) | 0.000 (3) | −0.005 (3) |
C11 | 0.038 (3) | 0.039 (3) | 0.050 (3) | 0.002 (3) | 0.006 (3) | −0.009 (3) |
C12 | 0.041 (3) | 0.037 (3) | 0.052 (4) | −0.002 (3) | 0.013 (3) | −0.003 (3) |
C13 | 0.031 (3) | 0.041 (3) | 0.038 (3) | 0.003 (2) | 0.008 (2) | −0.009 (3) |
C14 | 0.031 (3) | 0.039 (3) | 0.047 (3) | 0.005 (3) | 0.001 (3) | −0.006 (3) |
C15 | 0.039 (3) | 0.039 (3) | 0.067 (4) | −0.003 (3) | 0.008 (3) | −0.009 (3) |
C16 | 0.038 (3) | 0.044 (3) | 0.071 (4) | −0.009 (3) | 0.016 (3) | −0.013 (3) |
C17 | 0.051 (3) | 0.038 (3) | 0.068 (4) | −0.007 (3) | 0.008 (3) | −0.006 (3) |
C18 | 0.048 (4) | 0.038 (3) | 0.061 (4) | −0.010 (3) | 0.007 (3) | 0.004 (3) |
O1—C5 | 1.206 (5) | C7—H7A | 0.9300 |
O2—C12 | 1.225 (5) | C8—C9 | 1.368 (7) |
O3—C15 | 1.218 (5) | C8—H8A | 0.9300 |
O4—C18 | 1.210 (6) | C9—C10 | 1.379 (6) |
O5—C18 | 1.308 (6) | C9—H9A | 0.9300 |
O5—H5A | 0.8200 | C10—C11 | 1.367 (6) |
C1—C2 | 1.367 (7) | C10—H10A | 0.9300 |
C1—C14 | 1.400 (6) | C11—C12 | 1.478 (6) |
C1—H1A | 0.9300 | C12—C13 | 1.484 (6) |
C2—C3 | 1.368 (7) | C13—C14 | 1.389 (6) |
C2—H2A | 0.9300 | C14—C15 | 1.508 (6) |
C3—C4 | 1.383 (6) | C15—C16 | 1.494 (6) |
C3—H3A | 0.9300 | C16—C17 | 1.513 (6) |
C4—C13 | 1.391 (6) | C16—H16A | 0.9700 |
C4—C5 | 1.496 (6) | C16—H16B | 0.9700 |
C5—C6 | 1.472 (6) | C17—C18 | 1.472 (6) |
C6—C7 | 1.393 (6) | C17—H17A | 0.9700 |
C6—C11 | 1.402 (6) | C17—H17B | 0.9700 |
C7—C8 | 1.388 (7) | ||
C18—O5—H5A | 109.5 | C10—C11—C6 | 119.1 (5) |
C2—C1—C14 | 120.8 (5) | C10—C11—C12 | 120.4 (5) |
C2—C1—H1A | 119.6 | C6—C11—C12 | 120.5 (5) |
C14—C1—H1A | 119.6 | O2—C12—C11 | 121.1 (5) |
C1—C2—C3 | 119.9 (5) | O2—C12—C13 | 120.5 (5) |
C1—C2—H2A | 120.0 | C11—C12—C13 | 118.4 (4) |
C3—C2—H2A | 120.0 | C14—C13—C4 | 120.7 (5) |
C2—C3—C4 | 121.2 (5) | C14—C13—C12 | 118.7 (5) |
C2—C3—H3A | 119.4 | C4—C13—C12 | 120.6 (5) |
C4—C3—H3A | 119.4 | C13—C14—C1 | 118.4 (5) |
C3—C4—C13 | 118.9 (5) | C13—C14—C15 | 124.9 (5) |
C3—C4—C5 | 119.8 (5) | C1—C14—C15 | 116.6 (5) |
C13—C4—C5 | 121.3 (5) | O3—C15—C16 | 120.8 (5) |
O1—C5—C6 | 122.4 (5) | O3—C15—C14 | 120.3 (5) |
O1—C5—C4 | 120.2 (5) | C16—C15—C14 | 118.6 (4) |
C6—C5—C4 | 117.4 (5) | C15—C16—C17 | 112.0 (4) |
C7—C6—C11 | 119.4 (5) | C15—C16—H16A | 109.2 |
C7—C6—C5 | 118.9 (5) | C17—C16—H16A | 109.2 |
C11—C6—C5 | 121.6 (5) | C15—C16—H16B | 109.2 |
C8—C7—C6 | 120.0 (5) | C17—C16—H16B | 109.2 |
C8—C7—H7A | 120.0 | H16A—C16—H16B | 107.9 |
C6—C7—H7A | 120.0 | C18—C17—C16 | 114.8 (5) |
C9—C8—C7 | 120.1 (6) | C18—C17—H17A | 108.6 |
C9—C8—H8A | 120.0 | C16—C17—H17A | 108.6 |
C7—C8—H8A | 120.0 | C18—C17—H17B | 108.6 |
C8—C9—C10 | 119.9 (6) | C16—C17—H17B | 108.6 |
C8—C9—H9A | 120.1 | H17A—C17—H17B | 107.6 |
C10—C9—H9A | 120.1 | O4—C18—O5 | 121.6 (5) |
C11—C10—C9 | 121.5 (6) | O4—C18—C17 | 124.5 (5) |
C11—C10—H10A | 119.2 | O5—C18—C17 | 113.8 (5) |
C9—C10—H10A | 119.2 | ||
C14—C1—C2—C3 | −1.8 (8) | C10—C11—C12—C13 | −176.1 (4) |
C1—C2—C3—C4 | 1.1 (8) | C6—C11—C12—C13 | 3.6 (6) |
C2—C3—C4—C13 | −1.2 (8) | C3—C4—C13—C14 | 1.8 (7) |
C2—C3—C4—C5 | 178.2 (5) | C5—C4—C13—C14 | −177.5 (4) |
C3—C4—C5—O1 | −2.2 (7) | C3—C4—C13—C12 | −175.4 (4) |
C13—C4—C5—O1 | 177.1 (5) | C5—C4—C13—C12 | 5.3 (7) |
C3—C4—C5—C6 | 178.1 (4) | O2—C12—C13—C14 | −4.1 (7) |
C13—C4—C5—C6 | −2.6 (7) | C11—C12—C13—C14 | 177.0 (4) |
O1—C5—C6—C7 | −0.1 (7) | O2—C12—C13—C4 | 173.2 (4) |
C4—C5—C6—C7 | 179.6 (4) | C11—C12—C13—C4 | −5.8 (6) |
O1—C5—C6—C11 | −179.3 (5) | C4—C13—C14—C1 | −2.5 (7) |
C4—C5—C6—C11 | 0.4 (7) | C12—C13—C14—C1 | 174.8 (4) |
C11—C6—C7—C8 | −0.8 (7) | C4—C13—C14—C15 | 173.8 (4) |
C5—C6—C7—C8 | 180.0 (5) | C12—C13—C14—C15 | −8.9 (7) |
C6—C7—C8—C9 | 1.5 (8) | C2—C1—C14—C13 | 2.4 (7) |
C7—C8—C9—C10 | −0.9 (8) | C2—C1—C14—C15 | −174.2 (5) |
C8—C9—C10—C11 | −0.4 (8) | C13—C14—C15—O3 | 118.0 (6) |
C9—C10—C11—C6 | 1.1 (8) | C1—C14—C15—O3 | −65.7 (7) |
C9—C10—C11—C12 | −179.2 (5) | C13—C14—C15—C16 | −69.1 (6) |
C7—C6—C11—C10 | −0.4 (7) | C1—C14—C15—C16 | 107.2 (5) |
C5—C6—C11—C10 | 178.7 (5) | O3—C15—C16—C17 | −24.0 (7) |
C7—C6—C11—C12 | 179.8 (4) | C14—C15—C16—C17 | 163.1 (4) |
C5—C6—C11—C12 | −1.1 (7) | C15—C16—C17—C18 | 81.7 (5) |
C10—C11—C12—O2 | 4.9 (7) | C16—C17—C18—O4 | 18.2 (7) |
C6—C11—C12—O2 | −175.3 (4) | C16—C17—C18—O5 | −163.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4i | 0.82 | 1.86 | 2.681 (6) | 177 |
C7—H7A···O1ii | 0.93 | 2.43 | 3.255 (7) | 147 |
C16—H16A···O3iii | 0.97 | 2.48 | 3.375 (6) | 154 |
Symmetry codes: (i) −x−1, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C18H12O5 |
Mr | 308.28 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 5.168 (1), 19.523 (4), 14.367 (3) |
β (°) | 99.58 (3) |
V (Å3) | 1429.3 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.979, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2892, 2593, 1048 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.078, 0.161, 1.00 |
No. of reflections | 2593 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.23 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4i | 0.82 | 1.86 | 2.681 (6) | 177 |
C7—H7A···O1ii | 0.93 | 2.43 | 3.255 (7) | 147 |
C16—H16A···O3iii | 0.97 | 2.48 | 3.375 (6) | 154 |
Symmetry codes: (i) −x−1, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z. |
Acknowledgements
This work was supported by the National High-tech R&D Program of China (Nos. 2007AA02Z200 and 2007AA06A402).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Brown, J. P. (1980). Mutat. Res. 75, 243–277. CrossRef CAS PubMed Web of Science Google Scholar
Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Inbasekaran, M. N., Witiak, D. T., Barone, K. & Loper, J. C. (1980). J. Med. Chem. 23, 278–281. CrossRef CAS PubMed Web of Science Google Scholar
Johnson, M. G., Kiyokawa, H., Tani, S., Koyama, J., Morris-Natschke, S. L., Mauger, A., Bowers-Daines, M. M., Lange, B. C. & Lee, K. (1997). Bioorg. Med. Chem. 5, 1469–1479. CrossRef CAS PubMed Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anthraquinone compounds are widely used in the chemical industry and medicine. Natural and synthetic anthraquinone compounds are used in food, cosmetics, hair color agent and textile dyes (Brown et al., 1980). In medicine, many of anthraquinones have diarrhea, anti-cell and other effects. The activity of anthraquinone derivatives has a great relationship with their planar frame structure (Johnson et al., 1997). We report here the crystal structure of the title compound, (I).
The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The anthrecene moiety is almost planar with an r.m.s. deviation of 0.0399 Å and a maximum deviation of 0.099 (4) Å for O2. In the crystal, molecules are linked to each other to form chains framework via intermolecular O—H···O and weak C—H···O hydrogen bonds.