organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(di­methyl­amino)-1,2-bis­­(2,4,6-triiso­propyl­phen­yl)diborane(4)

aInstitut fuer Anorganische Chemie, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
*Correspondence e-mail: h.braunschweig@mail.uni-wuerzburg.de

(Received 12 November 2010; accepted 26 November 2010; online 30 November 2010)

In the mol­ecular structure of the title compound, C34H58B2N2, each B atom of the diborane(4) is connected to one dimethyl­amino group and one Tip ligand (Tip = 2,4,6-triisopropyl­phen­yl). These findings indicate that the increased steric demand of the Tip groups exerts influence solely on the B—B separation but not on the overall geometry of the title compound.

Related literature

For the synthesis of the title compound with 1,2-bis­(di­methyl­amino)-1,2-dichloro­diborane(4) as starting material, see: Hunold (1988[Hunold, R. (1988). PhD thesis, Philipps-University Marburg, Germany.]). For 1,2-diaryl-1,2-bis­(dimethyl­amino)­di­boranes(4) (aryl = phenyl or mesit­yl), see: Moezzi et al. (1992[Moezzi, A., Olmstead, M. M. & Power, P. P. (1992). J. Chem. Soc. Dalton Trans. pp. 2429-2434.]) and for dimesityldiboranes(4), see: Hommer et al. (1998[Hommer, H., Knizek, J., Nöth, H., Ponikwar, W. & Schwenk-Kircher, H. (1998). Eur. J. Inorg. Chem. pp. 1519-1527.]).

[Scheme 1]

Experimental

Crystal data
  • C34H58B2N2

  • Mr = 516.44

  • Triclinic, [P \overline 1]

  • a = 9.6066 (19) Å

  • b = 13.919 (3) Å

  • c = 14.015 (3) Å

  • α = 82.983 (3)°

  • β = 71.549 (3)°

  • γ = 78.300 (3)°

  • V = 1737.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 171 K

  • 0.40 × 0.17 × 0.12 mm

Data collection
  • Bruker APEXI CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.494, Tmax = 0.745

  • 19559 measured reflections

  • 7202 independent reflections

  • 5554 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.173

  • S = 1.03

  • 7202 reflections

  • 359 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART-NT (Bruker, 1997[Bruker (1997). SMART-NT, SAINT-Plus-NT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus-NT (Bruker, 1997[Bruker (1997). SMART-NT, SAINT-Plus-NT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1997[Bruker (1997). SMART-NT, SAINT-Plus-NT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The B–B bond of 1,2-bis(dimethylamino)-1,2-bis(2,4,6-triisopropylphenyl)diborane(4) is with 1.731 (2) Å slightly longer with respect to those reported previously for phenyl (1.714 (4) Å) and mesityl (1.717 (15) Å) substituted 1,2-bis(dimethylamino)diboranes(4) (Moezzi et al., 1992), but the B–N (about 1.40 Å) and B–Ci (about 1.59 Å) bonds are comparable to the corresponding bond lengths of the afore mentioned compounds.

In the case of 1,2-bis(dimethylamino)-1,2-bis(2,4,6-trimethylphenyl)diborane(4) a reaction with MeOH and etheric HCl leads to 1,2-bis(2,4,6-trimethylphenyl)-1,2-di(methoxy)diborane(4), this is not possible with 1,2-bis(dimethylamino)-1,2-bis(2,4,6-triisopropylphenyl)diborane(4) (Hunold, 1988).

Related literature top

For the synthesis of the title compound with 1,2-bis(dimethylamino)-1,2-dichlorodiborane(4) as starting material, see: Hunold (1988). For 1,2-diaryl-1,2-bis(dimethylamino)diboranes(4) (aryl = phenyl or mesityl), see: Moezzi et al. (1992) and for dimesityldiboranes(4), see: Hommer et al. (1998).

Experimental top

A solution of 2,4,6-triisopropylphenyllithium (2.09 g, 7.34 mmol, 2.18 eq) in Et2O (25 ml) was added to 1,2-bis(dimethylamino)-1,2-dibromodiborane(4) (0.908 g, 3.36 mmol) dissolved in Et2O (15 ml). The reaction mixture was refluxed for 16 h. All volatiles were removed under reduced pressure. The crude product was crystallized from hexane to yield 60% 1,2-bis(dimethylamino)-1,2-bis(2,4,6-triisopropylphenyl)diborane(4) as colourless crystals (1.04 g, 2.01 mmol).

NMR: 1H NMR (300.0 K, 500.13 MHz, CDCl3): δ = 0.02 (d, 3JH–H = 6.70 Hz, 6H, CH3), 0.92 (d, 3JH–H = 6.85 Hz, 6H, CH3), 1.12–1.18 (m, 18H, CH3), 1.22 (d, 3JH–H = 6.85 Hz, 6H, CH3), 2.15–2.23 (m, 2H, CH), 2.70–2.78 (m, 2H, CH), 2.78–2.85 (m, 2H, CH), 2.64 (s, 6H, NCH3), 3.12 (s, 6H, NCH3), 6.62–6.65 (m, 2H, CHarom.), 6.81–6.83 p.p.m. (m, 2H, CHarom.); 11B NMR (296.1 K, 160.46 MHz, CDCl3): δ = 49.6 p.p.m.; 13C NMR (300.0 K, 160.46 MHz, CDCl3): δ = 149.15 (s, Ci), 148.17 (s, Ci), 146.66 (s, Ci), 142.00 (s, Ci), 120.11 (s, CHarom.), 119.41 (s, CHarom.), 43.94 (s, NCH3), 42.29 (s, NCH3), 34.36 (s, CH), 34.16 (s, CH), 33.98 (s, CH), 25.35 (s, CH3), 25.27 (s, CH3), 24.41 (s, CH3), 24.13 (s, CH3), 22.64 p.p.m. (s, CH3).

Analysis calcd. for C34H58B2N2: C, 79.07; H, 11.32; N, 5.42%. Found: C, 78.79; H, 11.21; N, 5.20%.

Refinement top

The H atoms were placed at idealized positions and treated as riding atoms with C–H = 0.98 Å (CH3), 1.00 Å (aliphatic CH) and 0.95 Å (aromatic CH). Uiso(H) values were fixed at 1.5 times (for primary H atoms) and 1.2 times (tertiary or aromatic H atoms) Ueq of the attached C atoms.

Structure description top

The B–B bond of 1,2-bis(dimethylamino)-1,2-bis(2,4,6-triisopropylphenyl)diborane(4) is with 1.731 (2) Å slightly longer with respect to those reported previously for phenyl (1.714 (4) Å) and mesityl (1.717 (15) Å) substituted 1,2-bis(dimethylamino)diboranes(4) (Moezzi et al., 1992), but the B–N (about 1.40 Å) and B–Ci (about 1.59 Å) bonds are comparable to the corresponding bond lengths of the afore mentioned compounds.

In the case of 1,2-bis(dimethylamino)-1,2-bis(2,4,6-trimethylphenyl)diborane(4) a reaction with MeOH and etheric HCl leads to 1,2-bis(2,4,6-trimethylphenyl)-1,2-di(methoxy)diborane(4), this is not possible with 1,2-bis(dimethylamino)-1,2-bis(2,4,6-triisopropylphenyl)diborane(4) (Hunold, 1988).

For the synthesis of the title compound with 1,2-bis(dimethylamino)-1,2-dichlorodiborane(4) as starting material, see: Hunold (1988). For 1,2-diaryl-1,2-bis(dimethylamino)diboranes(4) (aryl = phenyl or mesityl), see: Moezzi et al. (1992) and for dimesityldiboranes(4), see: Hommer et al. (1998).

Computing details top

Data collection: SMART-NT (Bruker, 1997); cell refinement: SAINT-Plus-NT (Bruker, 1997); data reduction: SAINT-Plus-NT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme and displacement ellipsoids for the non-H atoms at the 50% probability level. Hydrogen atoms are omitted for clarity.
1,2-Bis(dimethylamino)-1,2-bis(2,4,6-triisopropylphenyl)diborane(4) top
Crystal data top
C34H58B2N2Z = 2
Mr = 516.44F(000) = 572
Triclinic, P1Dx = 0.987 Mg m3
Hall symbol: -P 1Melting point: 192.11 K
a = 9.6066 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.919 (3) ÅCell parameters from 5619 reflections
c = 14.015 (3) Åθ = 2.2–26.5°
α = 82.983 (3)°µ = 0.06 mm1
β = 71.549 (3)°T = 171 K
γ = 78.300 (3)°Block, colourless
V = 1737.4 (6) Å30.40 × 0.17 × 0.12 mm
Data collection top
Bruker APEXI CCD
diffractometer
7202 independent reflections
Radiation source: sealed tube5554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 26.6°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.494, Tmax = 0.745k = 1717
19559 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0841P)2 + 0.3205P]
where P = (Fo2 + 2Fc2)/3
7202 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C34H58B2N2γ = 78.300 (3)°
Mr = 516.44V = 1737.4 (6) Å3
Triclinic, P1Z = 2
a = 9.6066 (19) ÅMo Kα radiation
b = 13.919 (3) ŵ = 0.06 mm1
c = 14.015 (3) ÅT = 171 K
α = 82.983 (3)°0.40 × 0.17 × 0.12 mm
β = 71.549 (3)°
Data collection top
Bruker APEXI CCD
diffractometer
7202 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5554 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.745Rint = 0.062
19559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
7202 reflectionsΔρmin = 0.24 e Å3
359 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.51577 (18)0.82586 (12)0.21886 (12)0.0269 (3)
B20.54148 (19)0.73592 (12)0.31158 (12)0.0280 (3)
N10.57731 (15)0.91179 (9)0.20047 (9)0.0333 (3)
C10.5537 (2)0.99154 (13)0.12572 (14)0.0497 (5)
H1A0.48780.97560.09120.057 (6)*
H1B0.64960.99960.07640.061 (6)*
H1C0.50781.05280.15960.066 (6)*
C20.6729 (2)0.93496 (13)0.25401 (13)0.0430 (4)
H2A0.68510.88200.30520.043 (5)*
H2B0.62720.99690.28670.057 (6)*
H2C0.77050.94160.20620.057 (6)*
N20.68120 (15)0.68380 (10)0.31429 (10)0.0366 (3)
C30.82264 (19)0.69513 (15)0.23912 (14)0.0482 (4)
H3A0.80590.74900.18980.042 (5)*
H3B0.86630.63400.20470.058 (6)*
H3C0.89090.71000.27230.067 (6)*
C40.7037 (2)0.60721 (15)0.39242 (15)0.0552 (5)
H4A0.60780.60210.44330.054 (6)*
H4B0.77180.62430.42440.088 (8)*
H4C0.74660.54410.36170.070 (7)*
C50.41071 (16)0.81281 (10)0.15445 (10)0.0274 (3)
C60.46957 (17)0.75872 (11)0.06756 (11)0.0318 (3)
C70.37787 (19)0.74638 (12)0.01237 (12)0.0375 (4)
H70.41990.71050.04660.045*
C80.22699 (19)0.78480 (12)0.04069 (12)0.0375 (4)
C90.16922 (18)0.83731 (12)0.12656 (12)0.0365 (4)
H90.06600.86450.14710.044*
C100.25752 (17)0.85167 (10)0.18397 (11)0.0308 (3)
C110.63496 (18)0.71524 (12)0.03242 (12)0.0389 (4)
H110.67430.71530.09050.047*
C120.1276 (2)0.76690 (14)0.01881 (14)0.0464 (4)
H120.02280.79630.01750.056*
C130.18586 (18)0.90841 (12)0.27877 (12)0.0375 (4)
H130.26370.90400.31330.045*
C140.7191 (2)0.77944 (16)0.05258 (18)0.0640 (6)
H14A0.69750.84710.03210.096*
H14B0.68780.77820.11250.096*
H14C0.82630.75450.06810.096*
C150.6675 (2)0.60935 (14)0.00323 (18)0.0636 (6)
H15A0.61340.56880.05950.095*
H15B0.77480.58440.01250.095*
H15C0.63540.60670.05600.095*
C160.1325 (3)0.65785 (16)0.02416 (18)0.0636 (6)
H16A0.06680.64910.06240.095*
H16B0.09900.62750.04420.095*
H16C0.23480.62660.05780.095*
C170.1674 (3)0.8170 (2)0.12350 (19)0.0882 (9)
H17A0.10130.80440.15960.132*
H17B0.27100.79120.16020.132*
H17C0.15570.88800.11850.132*
C180.1340 (3)1.01727 (14)0.25493 (18)0.0669 (6)
H18A0.08881.05080.31790.100*
H18B0.06031.02420.21850.100*
H18C0.21961.04670.21310.100*
C190.05621 (19)0.86431 (14)0.35297 (13)0.0449 (4)
H19A0.09040.79460.36850.067*
H19B0.02460.87080.32280.067*
H19C0.01990.89930.41510.067*
C200.39744 (16)0.70813 (10)0.39634 (10)0.0284 (3)
C210.33107 (17)0.76128 (11)0.48375 (11)0.0309 (3)
C220.20580 (18)0.73635 (11)0.55681 (11)0.0350 (4)
H220.16380.77260.61550.042*
C230.13993 (18)0.65943 (11)0.54635 (11)0.0348 (4)
C240.20400 (19)0.60811 (11)0.45993 (11)0.0356 (4)
H240.16040.55550.45140.043*
C250.33014 (18)0.63093 (11)0.38507 (11)0.0319 (3)
C260.3937 (2)0.57152 (12)0.29141 (12)0.0417 (4)
H260.47590.60320.24370.050*
C270.0016 (2)0.63573 (14)0.62444 (13)0.0469 (4)
H270.01670.57070.60970.056*
C280.39924 (19)0.84595 (12)0.49932 (12)0.0382 (4)
H280.47140.86290.43330.046*
C290.4616 (3)0.46551 (14)0.31668 (17)0.0662 (6)
H29A0.53520.46620.35150.099*
H29B0.51030.43150.25430.099*
H29C0.38270.43120.36040.099*
C300.2782 (3)0.57269 (15)0.23764 (13)0.0536 (5)
H30A0.23670.64090.22170.080*
H30B0.19810.53940.28140.080*
H30C0.32550.53860.17520.080*
C310.1356 (2)0.7113 (2)0.6151 (2)0.0797 (7)
H31A0.22580.69450.66560.120*
H31B0.14530.71160.54750.120*
H31C0.12210.77650.62610.120*
C320.0069 (3)0.62659 (18)0.73136 (14)0.0639 (6)
H32A0.09420.57800.73610.096*
H32B0.08350.60550.77750.096*
H32C0.01540.69040.74970.096*
C330.4866 (3)0.81472 (16)0.5746 (2)0.0688 (6)
H33A0.56010.75540.55310.103*
H33B0.41810.80090.64120.103*
H33C0.53790.86770.57810.103*
C340.2852 (2)0.93833 (13)0.53104 (17)0.0562 (5)
H34A0.22980.95780.48180.084*
H34B0.33640.99150.53420.084*
H34C0.21580.92530.59750.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0259 (8)0.0282 (8)0.0253 (8)0.0020 (6)0.0074 (6)0.0024 (6)
B20.0348 (9)0.0261 (8)0.0258 (8)0.0041 (6)0.0128 (7)0.0033 (6)
N10.0410 (7)0.0300 (6)0.0346 (7)0.0105 (5)0.0184 (6)0.0034 (5)
C10.0680 (13)0.0368 (9)0.0545 (11)0.0206 (9)0.0322 (10)0.0147 (8)
C20.0491 (10)0.0434 (10)0.0461 (10)0.0187 (8)0.0225 (8)0.0009 (8)
N20.0356 (7)0.0375 (7)0.0340 (7)0.0011 (6)0.0132 (6)0.0026 (5)
C30.0330 (9)0.0562 (11)0.0502 (11)0.0012 (8)0.0116 (8)0.0012 (9)
C40.0545 (12)0.0535 (12)0.0497 (11)0.0102 (9)0.0223 (9)0.0120 (9)
C50.0316 (8)0.0258 (7)0.0262 (7)0.0060 (6)0.0115 (6)0.0027 (5)
C60.0369 (8)0.0313 (8)0.0276 (7)0.0051 (6)0.0121 (6)0.0013 (6)
C70.0458 (9)0.0415 (9)0.0286 (8)0.0067 (7)0.0153 (7)0.0053 (6)
C80.0429 (9)0.0414 (9)0.0347 (8)0.0104 (7)0.0197 (7)0.0007 (7)
C90.0329 (8)0.0380 (9)0.0416 (9)0.0043 (7)0.0169 (7)0.0011 (7)
C100.0331 (8)0.0277 (7)0.0333 (8)0.0052 (6)0.0132 (6)0.0001 (6)
C110.0393 (9)0.0453 (9)0.0318 (8)0.0012 (7)0.0135 (7)0.0081 (7)
C120.0492 (10)0.0537 (11)0.0471 (10)0.0122 (8)0.0278 (8)0.0025 (8)
C130.0336 (8)0.0389 (9)0.0417 (9)0.0008 (7)0.0142 (7)0.0107 (7)
C140.0422 (11)0.0548 (12)0.0795 (15)0.0053 (9)0.0015 (10)0.0042 (11)
C150.0574 (13)0.0438 (11)0.0723 (14)0.0034 (9)0.0005 (11)0.0108 (10)
C160.0714 (14)0.0623 (13)0.0758 (15)0.0225 (11)0.0409 (12)0.0053 (11)
C170.119 (2)0.108 (2)0.0763 (16)0.0654 (18)0.0728 (16)0.0400 (15)
C180.0763 (15)0.0375 (10)0.0713 (14)0.0027 (10)0.0018 (12)0.0118 (10)
C190.0394 (9)0.0502 (10)0.0413 (9)0.0012 (8)0.0090 (7)0.0076 (8)
C200.0355 (8)0.0241 (7)0.0269 (7)0.0026 (6)0.0137 (6)0.0009 (5)
C210.0369 (8)0.0275 (7)0.0298 (8)0.0050 (6)0.0120 (6)0.0026 (6)
C220.0412 (9)0.0355 (8)0.0288 (8)0.0079 (7)0.0081 (7)0.0083 (6)
C230.0392 (9)0.0358 (8)0.0306 (8)0.0107 (7)0.0093 (7)0.0022 (6)
C240.0473 (9)0.0303 (8)0.0331 (8)0.0142 (7)0.0134 (7)0.0011 (6)
C250.0427 (9)0.0260 (7)0.0277 (7)0.0056 (6)0.0117 (6)0.0020 (6)
C260.0572 (11)0.0342 (8)0.0316 (8)0.0152 (8)0.0041 (7)0.0069 (7)
C270.0484 (10)0.0499 (10)0.0416 (10)0.0225 (8)0.0006 (8)0.0117 (8)
C280.0440 (9)0.0371 (8)0.0348 (8)0.0148 (7)0.0067 (7)0.0078 (7)
C290.0898 (17)0.0394 (10)0.0592 (13)0.0027 (10)0.0113 (12)0.0176 (9)
C300.0842 (15)0.0497 (11)0.0352 (9)0.0282 (10)0.0178 (9)0.0072 (8)
C310.0397 (12)0.1007 (19)0.0950 (18)0.0201 (12)0.0103 (12)0.0055 (15)
C320.0706 (14)0.0744 (14)0.0379 (10)0.0280 (11)0.0071 (9)0.0076 (9)
C330.0684 (14)0.0534 (12)0.1082 (19)0.0114 (10)0.0560 (14)0.0135 (12)
C340.0718 (14)0.0369 (9)0.0727 (13)0.0073 (9)0.0361 (11)0.0159 (9)
Geometric parameters (Å, º) top
B1—N11.401 (2)C16—H16C0.9800
B1—C51.599 (2)C17—H17A0.9800
B1—B21.731 (2)C17—H17B0.9800
B2—N21.400 (2)C17—H17C0.9800
B2—C201.594 (2)C18—H18A0.9800
N1—C21.458 (2)C18—H18B0.9800
N1—C11.465 (2)C18—H18C0.9800
C1—H1A0.9800C19—H19A0.9800
C1—H1B0.9800C19—H19B0.9800
C1—H1C0.9800C19—H19C0.9800
C2—H2A0.9800C20—C251.409 (2)
C2—H2B0.9800C20—C211.411 (2)
C2—H2C0.9800C21—C221.386 (2)
N2—C31.456 (2)C21—C281.527 (2)
N2—C41.468 (2)C22—C231.393 (2)
C3—H3A0.9800C22—H220.9500
C3—H3B0.9800C23—C241.385 (2)
C3—H3C0.9800C23—C271.519 (2)
C4—H4A0.9800C24—C251.393 (2)
C4—H4B0.9800C24—H240.9500
C4—H4C0.9800C25—C261.527 (2)
C5—C101.406 (2)C26—C301.523 (3)
C5—C61.409 (2)C26—C291.535 (3)
C6—C71.389 (2)C26—H261.0000
C6—C111.523 (2)C27—C321.515 (3)
C7—C81.385 (2)C27—C311.518 (3)
C7—H70.9500C27—H271.0000
C8—C91.385 (2)C28—C331.519 (3)
C8—C121.523 (2)C28—C341.520 (3)
C9—C101.395 (2)C28—H281.0000
C9—H90.9500C29—H29A0.9800
C10—C131.523 (2)C29—H29B0.9800
C11—C141.515 (3)C29—H29C0.9800
C11—C151.522 (3)C30—H30A0.9800
C11—H111.0000C30—H30B0.9800
C12—C171.513 (3)C30—H30C0.9800
C12—C161.519 (3)C31—H31A0.9800
C12—H121.0000C31—H31B0.9800
C13—C181.527 (3)C31—H31C0.9800
C13—C191.531 (2)C32—H32A0.9800
C13—H131.0000C32—H32B0.9800
C14—H14A0.9800C32—H32C0.9800
C14—H14B0.9800C33—H33A0.9800
C14—H14C0.9800C33—H33B0.9800
C15—H15A0.9800C33—H33C0.9800
C15—H15B0.9800C34—H34A0.9800
C15—H15C0.9800C34—H34B0.9800
C16—H16A0.9800C34—H34C0.9800
C16—H16B0.9800
N1—B1—C5118.26 (12)C12—C17—H17A109.5
N1—B1—B2123.11 (13)C12—C17—H17B109.5
C5—B1—B2118.57 (12)H17A—C17—H17B109.5
N2—B2—C20118.14 (13)C12—C17—H17C109.5
N2—B2—B1123.73 (13)H17A—C17—H17C109.5
C20—B2—B1118.08 (12)H17B—C17—H17C109.5
B1—N1—C2124.67 (13)C13—C18—H18A109.5
B1—N1—C1124.99 (13)C13—C18—H18B109.5
C2—N1—C1110.35 (13)H18A—C18—H18B109.5
N1—C1—H1A109.5C13—C18—H18C109.5
N1—C1—H1B109.5H18A—C18—H18C109.5
H1A—C1—H1B109.5H18B—C18—H18C109.5
N1—C1—H1C109.5C13—C19—H19A109.5
H1A—C1—H1C109.5C13—C19—H19B109.5
H1B—C1—H1C109.5H19A—C19—H19B109.5
N1—C2—H2A109.5C13—C19—H19C109.5
N1—C2—H2B109.5H19A—C19—H19C109.5
H2A—C2—H2B109.5H19B—C19—H19C109.5
N1—C2—H2C109.5C25—C20—C21117.84 (13)
H2A—C2—H2C109.5C25—C20—B2120.87 (12)
H2B—C2—H2C109.5C21—C20—B2121.27 (13)
B2—N2—C3125.20 (13)C22—C21—C20120.65 (13)
B2—N2—C4124.01 (14)C22—C21—C28119.45 (13)
C3—N2—C4110.75 (14)C20—C21—C28119.89 (13)
N2—C3—H3A109.5C21—C22—C23121.62 (14)
N2—C3—H3B109.5C21—C22—H22119.2
H3A—C3—H3B109.5C23—C22—H22119.2
N2—C3—H3C109.5C24—C23—C22117.69 (14)
H3A—C3—H3C109.5C24—C23—C27121.01 (14)
H3B—C3—H3C109.5C22—C23—C27121.24 (14)
N2—C4—H4A109.5C23—C24—C25122.26 (14)
N2—C4—H4B109.5C23—C24—H24118.9
H4A—C4—H4B109.5C25—C24—H24118.9
N2—C4—H4C109.5C24—C25—C20119.92 (13)
H4A—C4—H4C109.5C24—C25—C26119.26 (13)
H4B—C4—H4C109.5C20—C25—C26120.82 (13)
C10—C5—C6118.13 (13)C30—C26—C25112.10 (15)
C10—C5—B1121.56 (13)C30—C26—C29110.65 (16)
C6—C5—B1120.28 (13)C25—C26—C29111.51 (14)
C7—C6—C5120.25 (14)C30—C26—H26107.4
C7—C6—C11119.63 (14)C25—C26—H26107.4
C5—C6—C11120.11 (13)C29—C26—H26107.4
C8—C7—C6121.97 (15)C32—C27—C31110.46 (18)
C8—C7—H7119.0C32—C27—C23113.23 (16)
C6—C7—H7119.0C31—C27—C23110.64 (16)
C7—C8—C9117.65 (14)C32—C27—H27107.4
C7—C8—C12120.96 (15)C31—C27—H27107.4
C9—C8—C12121.36 (15)C23—C27—H27107.4
C8—C9—C10122.21 (15)C33—C28—C34110.25 (15)
C8—C9—H9118.9C33—C28—C21110.89 (14)
C10—C9—H9118.9C34—C28—C21113.31 (14)
C9—C10—C5119.79 (14)C33—C28—H28107.4
C9—C10—C13119.37 (14)C34—C28—H28107.4
C5—C10—C13120.84 (13)C21—C28—H28107.4
C14—C11—C15110.69 (15)C26—C29—H29A109.5
C14—C11—C6111.02 (14)C26—C29—H29B109.5
C15—C11—C6113.97 (15)H29A—C29—H29B109.5
C14—C11—H11106.9C26—C29—H29C109.5
C15—C11—H11106.9H29A—C29—H29C109.5
C6—C11—H11106.9H29B—C29—H29C109.5
C17—C12—C16110.57 (19)C26—C30—H30A109.5
C17—C12—C8111.54 (16)C26—C30—H30B109.5
C16—C12—C8111.67 (15)H30A—C30—H30B109.5
C17—C12—H12107.6C26—C30—H30C109.5
C16—C12—H12107.6H30A—C30—H30C109.5
C8—C12—H12107.6H30B—C30—H30C109.5
C10—C13—C18112.27 (15)C27—C31—H31A109.5
C10—C13—C19112.46 (13)C27—C31—H31B109.5
C18—C13—C19109.82 (15)H31A—C31—H31B109.5
C10—C13—H13107.3C27—C31—H31C109.5
C18—C13—H13107.3H31A—C31—H31C109.5
C19—C13—H13107.3H31B—C31—H31C109.5
C11—C14—H14A109.5C27—C32—H32A109.5
C11—C14—H14B109.5C27—C32—H32B109.5
H14A—C14—H14B109.5H32A—C32—H32B109.5
C11—C14—H14C109.5C27—C32—H32C109.5
H14A—C14—H14C109.5H32A—C32—H32C109.5
H14B—C14—H14C109.5H32B—C32—H32C109.5
C11—C15—H15A109.5C28—C33—H33A109.5
C11—C15—H15B109.5C28—C33—H33B109.5
H15A—C15—H15B109.5H33A—C33—H33B109.5
C11—C15—H15C109.5C28—C33—H33C109.5
H15A—C15—H15C109.5H33A—C33—H33C109.5
H15B—C15—H15C109.5H33B—C33—H33C109.5
C12—C16—H16A109.5C28—C34—H34A109.5
C12—C16—H16B109.5C28—C34—H34B109.5
H16A—C16—H16B109.5H34A—C34—H34B109.5
C12—C16—H16C109.5C28—C34—H34C109.5
H16A—C16—H16C109.5H34A—C34—H34C109.5
H16B—C16—H16C109.5H34B—C34—H34C109.5
N1—B1—B2—N260.4 (2)C7—C8—C12—C1657.7 (2)
C5—B1—B2—N2122.56 (16)C9—C8—C12—C16120.30 (19)
N1—B1—B2—C20121.99 (16)C9—C10—C13—C1868.8 (2)
C5—B1—B2—C2055.08 (17)C5—C10—C13—C18111.88 (18)
C5—B1—N1—C2178.94 (14)C9—C10—C13—C1955.62 (19)
B2—B1—N1—C21.9 (2)C5—C10—C13—C19123.66 (15)
C5—B1—N1—C10.3 (2)N2—B2—C20—C2585.40 (18)
B2—B1—N1—C1177.42 (15)B1—B2—C20—C2592.38 (16)
C20—B2—N2—C3175.60 (15)N2—B2—C20—C2196.14 (17)
B1—B2—N2—C32.0 (2)B1—B2—C20—C2186.08 (17)
C20—B2—N2—C42.1 (2)C25—C20—C21—C221.4 (2)
B1—B2—N2—C4179.74 (15)B2—C20—C21—C22179.95 (13)
N1—B1—C5—C1085.85 (18)C25—C20—C21—C28179.70 (14)
B2—B1—C5—C1091.36 (16)B2—C20—C21—C281.2 (2)
N1—B1—C5—C696.22 (17)C20—C21—C22—C230.8 (2)
B2—B1—C5—C686.57 (17)C28—C21—C22—C23179.69 (15)
C10—C5—C6—C71.2 (2)C21—C22—C23—C240.0 (2)
B1—C5—C6—C7179.19 (14)C21—C22—C23—C27177.07 (15)
C10—C5—C6—C11179.92 (13)C22—C23—C24—C250.2 (2)
B1—C5—C6—C112.1 (2)C27—C23—C24—C25177.26 (15)
C5—C6—C7—C80.9 (2)C23—C24—C25—C200.5 (2)
C11—C6—C7—C8179.67 (15)C23—C24—C25—C26179.50 (15)
C6—C7—C8—C90.4 (2)C21—C20—C25—C241.3 (2)
C6—C7—C8—C12177.61 (15)B2—C20—C25—C24179.78 (13)
C7—C8—C9—C100.2 (2)C21—C20—C25—C26178.71 (14)
C12—C8—C9—C10177.80 (15)B2—C20—C25—C260.2 (2)
C8—C9—C10—C50.5 (2)C24—C25—C26—C3056.03 (19)
C8—C9—C10—C13178.74 (14)C20—C25—C26—C30123.95 (16)
C6—C5—C10—C91.0 (2)C24—C25—C26—C2968.7 (2)
B1—C5—C10—C9178.97 (13)C20—C25—C26—C29111.36 (18)
C6—C5—C10—C13178.28 (13)C24—C23—C27—C32133.00 (18)
B1—C5—C10—C130.3 (2)C22—C23—C27—C3250.0 (2)
C7—C6—C11—C1479.3 (2)C24—C23—C27—C31102.4 (2)
C5—C6—C11—C1499.42 (18)C22—C23—C27—C3174.6 (2)
C7—C6—C11—C1546.5 (2)C22—C21—C28—C3376.2 (2)
C5—C6—C11—C15134.77 (16)C20—C21—C28—C33102.66 (18)
C7—C8—C12—C1766.6 (2)C22—C21—C28—C3448.4 (2)
C9—C8—C12—C17115.4 (2)C20—C21—C28—C34132.74 (16)

Experimental details

Crystal data
Chemical formulaC34H58B2N2
Mr516.44
Crystal system, space groupTriclinic, P1
Temperature (K)171
a, b, c (Å)9.6066 (19), 13.919 (3), 14.015 (3)
α, β, γ (°)82.983 (3), 71.549 (3), 78.300 (3)
V3)1737.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.40 × 0.17 × 0.12
Data collection
DiffractometerBruker APEXI CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.494, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
19559, 7202, 5554
Rint0.062
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.173, 1.03
No. of reflections7202
No. of parameters359
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: SMART-NT (Bruker, 1997), SAINT-Plus-NT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1997).

 

Acknowledgements

Financial support by the DFG is gratefully acknowlegded.

References

First citationBruker (1997). SMART-NT, SAINT-Plus-NT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHommer, H., Knizek, J., Nöth, H., Ponikwar, W. & Schwenk-Kircher, H. (1998). Eur. J. Inorg. Chem. pp. 1519–1527.  CrossRef Google Scholar
First citationHunold, R. (1988). PhD thesis, Philipps-University Marburg, Germany.  Google Scholar
First citationMoezzi, A., Olmstead, M. M. & Power, P. P. (1992). J. Chem. Soc. Dalton Trans. pp. 2429–2434.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds