metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[μ-10,21-di­methyl-2,7,13,18-tetra­phenyl-3,6,14,17-tetra­aza­tri­cyclo­[17.3.1.18,12]tetra­cosa-1(23),2,6,8,10,12(24),13,17,19,21-deca­ene-23,24-diolato]dicopper(II) ethanol hemisolvate dihydrate

aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 15 October 2010; accepted 18 October 2010; online 10 November 2010)

The dinuclear title complex, [Cu2(C46H38N4O2)Cl2]·0.5C2H5OH·2H2O, is located on crystallographic inversion centres with two half-mol­ecules in the asymmetric unit. The two CuII atoms are coordinated by a hexa­dentate dianionic ligand formed in situ from the condensation of two tridentate ligands by four imine N atoms and two bridging phenolate O atoms along with two Cl atoms at axial positions. The coordination geometry around the metal atoms is distorted square-pyramidal (τ = 0.185 and 0.199). The non-bonding Cu⋯Cu distances are 2.9556 (12) and 2.9506 (12) Å in the two dimers. The packing is stabilized through solvent-mediated inter­molecular O—H⋯O and O—H⋯Cl hydrogen bonds. The diamine chain of one of the dimers is disordered over two positions in a 0.680 (5):0.320 (5) ratio.

Related literature

For general background to phenol-based Schiff base metal complexes with N,N,O donors, see: Generex & Barton (2010[Generex, J. C. & Barton, J. K. (2010). Chem. Rev. 110, 1642-1662.]); Fenton et al. (2010[Fenton, H., Tidmash, I. S. & Ward, M. D. (2010). Dalton Trans. pp. 3805-3815.]); Reisner et al. (2008[Reisner, E., Arion, V. B., Keepler, B. K. & Pombeiro, A. J. L. (2008). Inorg. Chim. Acta, 361, 1569-1583.]). For related phenol-based Schiff base complexes, see: Gupta et al. (2002[Gupta, S. K., Hitchock, P. B. & Kushwah, Y. S. (2002). Polyhedron, 21, 1787-1793.], 2007[Gupta, S. K., Hitchock, P. B., Kushwah, Y. S. & Argal, G. S. (2007). Inorg. Chim. Acta, 360, 2147-2152.], 2008[Gupta, S. K., Hitchock, P. B. & Argal, G. S. (2008). Inorg. Chim. Acta, 361, 2139-2146.]). For a description of the geometry of penta­coordinated atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C46H38N4O2)Cl2]·0.5C2H6O·2H2O

  • Mr = 935.85

  • Monoclinic, P 21 /n

  • a = 15.1983 (4) Å

  • b = 16.2680 (5) Å

  • c = 19.3344 (5) Å

  • β = 103.964 (2)°

  • V = 4639.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.738, Tmax = 0.813

  • 36333 measured reflections

  • 6669 independent reflections

  • 4664 reflections with I > 2σ(I)

  • Rint = 0.054

  • θmax = 23.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.137

  • S = 1.05

  • 6669 reflections

  • 575 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H4⋯O2W 0.82 2.20 2.96 (2) 154
O1W—H1W1⋯Cl1i 0.82 (2) 2.54 (2) 3.355 (4) 171 (4)
O1W—H1W2⋯Cl2 0.82 (2) 2.56 (2) 3.374 (4) 174 (3)
O2W—H2W1⋯O3W 0.85 1.86 2.71 (3) 179
O2W—H2W2⋯O3 0.97 2.27 2.96 (2) 127
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenol-based Schiff base metal complexes with NNO donors have recently drawn more attention due to their adjustable coordination ability and interesting application in bio-inorganic and therapeutic chemistry (Generex & Barton, 2010; Fenton et al., 2010; Reisner et al., 2008). As part of our investigations on the phenol based Schiff base complexes (Gupta et al., 2002, 2007, 2008), we herein report the synthesis and crystal structure of a dimeric copper (II) complex. The molecular structure of the complex is shown in Fig.1. The dimeric complex consists of [Cu2Cl2{(µ-O)C6H2(Me-4)PhCN(CH 2)2NCPh}2].2H2O. 0.5 EtOH wherein the copper (II) ion is five- coordinated with four imine N, two bridging phenolato O and two Cl at axial positions, giving a square pyramidal geometry [τ = 0.185 and 0.199 for Cu1 and Cu2, respectively (Addison et al., 1984)]. The copper atoms are displaced from the basal planes by 0.430 (1) and 0.436 (1) Å, respectively. The average Cu—Cl, Cu—O and Cu—N bond lengths are 2.428 (2), 1.931 (13) and 1.927 (4) A, respectively. the non-bonding Cu···..Cu distances are 2.9556 (12) and 2.9506 (12) Å. The packing is stabilized through solvent mediated intermolecular hydrogen bonds.

Related literature top

For general background to phenol-based Schiff base metal complexes with N,N,O donors, see: Generex & Barton (2010); Fenton et al., (2010); Reisner et al. (2008). For related phenol-based Schiff base complexes, see: Gupta et al. (2002, 2007, 2008). For a description of the geometry of pentacoordinated atoms, see: Addison et al. (1984).

Experimental top

Copper (II) chloride dihydrate (0.086 g, 0.51 mmol) dissolved in dry ethanol (20 ml) was added dropwise to an ethanol solution of tridentate ligand, 2-{N-(2-aminoethyl)benzimidoyl}-6-benzoyl-4-methylphenol (aebmpH) (0.365 g, 1.02 mmol) and heated to reflux. The clear solution so obtained was allowed to cool and dark green crystals suitable for X-ray diffraction were obtained in 40° yield.

Refinement top

The diamine chain of one of the dimers in the asymmetric unit is disordered. The site occupancy of the disordered components were refined [0.680 (5)/0.320 (5)]. The H atom bound to C atoms were restrained as riding atoms with d(C—H) = 0.93Å for aromatic CH and 0.97Å for secondary CH2 groups and 0.96Å for CH3 groups with Uiso(H) = 1.2Uequ(C). The hydroxyl hydrogen of ethanol solvate was fixed at 0.82 Å. The crystals did not scatter beyond 2θ of 46.7°. Recrystallization and fresh data collection did not improve the situation.

Structure description top

Phenol-based Schiff base metal complexes with NNO donors have recently drawn more attention due to their adjustable coordination ability and interesting application in bio-inorganic and therapeutic chemistry (Generex & Barton, 2010; Fenton et al., 2010; Reisner et al., 2008). As part of our investigations on the phenol based Schiff base complexes (Gupta et al., 2002, 2007, 2008), we herein report the synthesis and crystal structure of a dimeric copper (II) complex. The molecular structure of the complex is shown in Fig.1. The dimeric complex consists of [Cu2Cl2{(µ-O)C6H2(Me-4)PhCN(CH 2)2NCPh}2].2H2O. 0.5 EtOH wherein the copper (II) ion is five- coordinated with four imine N, two bridging phenolato O and two Cl at axial positions, giving a square pyramidal geometry [τ = 0.185 and 0.199 for Cu1 and Cu2, respectively (Addison et al., 1984)]. The copper atoms are displaced from the basal planes by 0.430 (1) and 0.436 (1) Å, respectively. The average Cu—Cl, Cu—O and Cu—N bond lengths are 2.428 (2), 1.931 (13) and 1.927 (4) A, respectively. the non-bonding Cu···..Cu distances are 2.9556 (12) and 2.9506 (12) Å. The packing is stabilized through solvent mediated intermolecular hydrogen bonds.

For general background to phenol-based Schiff base metal complexes with N,N,O donors, see: Generex & Barton (2010); Fenton et al., (2010); Reisner et al. (2008). For related phenol-based Schiff base complexes, see: Gupta et al. (2002, 2007, 2008). For a description of the geometry of pentacoordinated atoms, see: Addison et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoides are drawn at 50° probability level. Only one of the molecule in the asymmetric unit is shown for clarity. Solvent molecules are omitted.
[Figure 2] Fig. 2. The packing diagram of the molecules in the unit cell viewed down the a axis. The intermolecular H-bonding interactions are shown with dashed lines.
Dichlorido[µ-10,21-dimethyl-2,7,13,18-tetraphenyl-3,6,14,17- tetraazatricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21- decaene-23,24-diolato]dicopper(II) ethanol hemisolvate dihydrate top
Crystal data top
[Cu2(C46H38N4O2)Cl2]·0.5C2H6O·2H2OF(000) = 1932
Mr = 935.85Dx = 1.340 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6395 reflections
a = 15.1983 (4) Åθ = 2.1–22.5°
b = 16.2680 (5) ŵ = 1.08 mm1
c = 19.3344 (5) ÅT = 293 K
β = 103.964 (2)°Needle, brown
V = 4639.1 (2) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6669 independent reflections
Radiation source: fine-focus sealed tube4664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω and φ scanθmax = 23.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1616
Tmin = 0.738, Tmax = 0.813k = 1818
36333 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0717P)2 + 3.5141P]
where P = (Fo2 + 2Fc2)/3
6669 reflections(Δ/σ)max = 0.001
575 parametersΔρmax = 0.51 e Å3
13 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu2(C46H38N4O2)Cl2]·0.5C2H6O·2H2OV = 4639.1 (2) Å3
Mr = 935.85Z = 2
Monoclinic, P21/nMo Kα radiation
a = 15.1983 (4) ŵ = 1.08 mm1
b = 16.2680 (5) ÅT = 293 K
c = 19.3344 (5) Å0.30 × 0.20 × 0.20 mm
β = 103.964 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6669 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4664 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.813Rint = 0.054
36333 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.04413 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.51 e Å3
6669 reflectionsΔρmin = 0.34 e Å3
575 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.09084 (3)0.47211 (2)1.039422 (19)0.04010 (11)
Cu20.52512 (3)0.47246 (3)0.57491 (2)0.04566 (12)
Cl11.17520 (9)0.59912 (7)1.06780 (7)0.0984 (4)
Cl20.53483 (9)0.59915 (7)0.64348 (7)0.0943 (4)
O10.97493 (14)0.50362 (14)1.05664 (11)0.0473 (6)
O20.58164 (14)0.50367 (15)0.49873 (11)0.0519 (7)
O30.5295 (5)0.5394 (8)0.7957 (6)0.283 (7)0.50
H40.54850.53410.83890.425*0.50
O1W0.5206 (3)0.7508 (3)0.5223 (2)0.1308 (15)
H1W10.5577 (17)0.7868 (13)0.538 (2)0.196*
H1W20.526 (3)0.7165 (15)0.5540 (15)0.196*
O2W0.6367 (7)0.4809 (11)0.9357 (13)0.370 (13)0.50
H2W10.61630.44220.95690.555*0.50
H2W20.61630.46490.88610.555*0.50
O3W0.5749 (10)0.3569 (14)1.0049 (11)0.443 (12)0.50
H3W10.52020.36690.96090.665*0.50
H3W20.56440.36021.04420.665*0.50
N11.12269 (17)0.41850 (16)1.13139 (13)0.0396 (7)
N21.16146 (18)0.39153 (17)1.00425 (13)0.0458 (8)
N30.63697 (17)0.41998 (16)0.62346 (13)0.0435 (7)
N40.46031 (18)0.39075 (18)0.61374 (15)0.0554 (9)
C11.04385 (19)0.48096 (18)0.88252 (15)0.0341 (8)
C21.1145 (2)0.42521 (19)0.87872 (15)0.0369 (8)
C31.1337 (2)0.4126 (2)0.81264 (16)0.0443 (9)
H31.18050.37680.81010.053*
C41.0874 (2)0.4498 (2)0.75130 (16)0.0446 (9)
C51.0176 (2)0.50157 (19)0.75585 (16)0.0392 (8)
H50.98470.52650.71430.047*
C60.99364 (19)0.51866 (18)0.81944 (15)0.0350 (8)
C70.9157 (2)0.57477 (18)0.81663 (15)0.0362 (8)
C80.8847 (2)0.62559 (19)0.75101 (15)0.0400 (9)
C90.9455 (3)0.6785 (2)0.73011 (16)0.0494 (10)
H91.00640.67830.75430.059*
C100.9154 (3)0.7317 (2)0.67306 (19)0.0651 (12)
H100.95570.76800.65990.078*
C110.8266 (3)0.7308 (2)0.63641 (19)0.0720 (13)
H110.80680.76670.59840.086*
C120.7674 (3)0.6784 (3)0.65477 (19)0.0695 (13)
H120.70730.67780.62880.083*
C130.7953 (2)0.6251 (2)0.71241 (17)0.0513 (10)
H130.75400.58930.72480.062*
C141.2011 (2)0.3657 (2)1.13193 (18)0.0608 (11)
H14A1.25630.39721.14860.073*
H14B1.20200.32071.16500.073*
C151.1991 (3)0.3324 (3)1.06185 (18)0.0741 (13)
H15A1.16270.28281.05460.089*
H15B1.26020.31771.05960.089*
C161.1640 (2)0.3759 (2)0.93993 (16)0.0393 (8)
C171.2154 (2)0.3023 (2)0.92484 (16)0.0430 (9)
C181.1723 (3)0.2301 (2)0.90520 (18)0.0561 (10)
H181.10950.22740.89700.067*
C191.2206 (3)0.1607 (3)0.8974 (2)0.0750 (13)
H191.19050.11120.88470.090*
C201.3116 (3)0.1643 (3)0.9080 (2)0.0838 (14)
H201.34410.11720.90290.101*
C211.3553 (3)0.2362 (3)0.9260 (2)0.0807 (14)
H211.41790.23870.93230.097*
C221.3082 (2)0.3061 (3)0.93507 (19)0.0614 (11)
H221.33880.35540.94800.074*
C231.1097 (3)0.4335 (3)0.68094 (18)0.0719 (12)
H23A1.12620.37690.67850.108*
H23B1.15930.46790.67640.108*
H23C1.05760.44550.64300.108*
C240.6667 (2)0.52384 (19)0.50571 (15)0.0368 (8)
C250.3096 (2)0.41742 (19)0.54154 (15)0.0372 (8)
C260.2183 (2)0.39777 (19)0.53150 (16)0.0412 (9)
H260.20230.35920.56180.049*
C270.1505 (2)0.4319 (2)0.47948 (16)0.0396 (8)
C280.1757 (2)0.48855 (19)0.43462 (16)0.0387 (8)
H280.13050.51250.39920.046*
C290.7350 (2)0.48847 (18)0.56032 (15)0.0356 (8)
C300.7164 (2)0.42868 (19)0.61303 (15)0.0382 (8)
C310.7943 (2)0.37859 (19)0.65308 (17)0.0424 (9)
C320.8411 (2)0.3293 (2)0.61612 (19)0.0515 (10)
H320.82680.33070.56660.062*
C330.9089 (3)0.2780 (2)0.6522 (2)0.0712 (13)
H330.93890.24390.62680.085*
C340.9321 (3)0.2768 (3)0.7248 (3)0.0818 (15)
H340.97810.24220.74890.098*
C350.8880 (3)0.3265 (3)0.7621 (2)0.0721 (13)
H350.90440.32600.81170.087*
C360.8191 (2)0.3776 (2)0.72694 (18)0.0533 (10)
H360.78930.41130.75280.064*
C370.6168 (3)0.3678 (4)0.6819 (3)0.0512 (14)0.680 (5)
H37A0.61410.40170.72260.061*0.680 (5)
H37B0.66380.32690.69700.061*0.680 (5)
C380.5260 (3)0.3264 (4)0.6524 (3)0.0598 (17)0.680 (5)
H38A0.53250.28280.61980.072*0.680 (5)
H38B0.50370.30260.69090.072*0.680 (5)
C37'0.6112 (7)0.3476 (9)0.6580 (6)0.0512 (14)0.320 (5)
H37C0.65840.33470.70010.061*0.320 (5)
H37D0.60470.30110.62570.061*0.320 (5)
C38'0.5228 (7)0.3623 (8)0.6789 (7)0.0598 (17)0.320 (5)
H38C0.50100.31190.69580.072*0.320 (5)
H38D0.53030.40360.71610.072*0.320 (5)
C390.3754 (2)0.3723 (2)0.59562 (17)0.0444 (9)
C400.3429 (2)0.2996 (2)0.62927 (18)0.0482 (9)
C410.3327 (3)0.2247 (2)0.5969 (2)0.0681 (12)
H410.34410.21840.55200.082*
C420.3054 (3)0.1576 (3)0.6310 (3)0.0912 (17)
H420.30080.10590.60980.109*
C430.2855 (3)0.1676 (3)0.6957 (3)0.0975 (16)
H430.26520.12300.71760.117*
C440.2948 (3)0.2402 (3)0.7275 (2)0.0872 (15)
H440.28200.24580.77190.105*
C450.3234 (2)0.3077 (3)0.6954 (2)0.0652 (12)
H450.32960.35850.71810.078*
C460.0538 (2)0.4050 (2)0.46937 (19)0.0549 (10)
H46A0.03820.40440.51460.082*
H46B0.04650.35090.44900.082*
H46C0.01470.44260.43800.082*
C470.3985 (7)0.4819 (7)0.8194 (8)0.250 (11)0.50
H47A0.33470.47440.79970.375*0.50
H47B0.40880.49740.86860.375*0.50
H47C0.42980.43140.81570.375*0.50
C480.4334 (9)0.5483 (9)0.7789 (9)0.292 (9)0.50
H48A0.40840.54200.72800.350*0.50
H48B0.41670.60210.79320.350*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0408 (2)0.0455 (2)0.03363 (19)0.01844 (18)0.00837 (16)0.00292 (17)
Cu20.0359 (2)0.0530 (2)0.0464 (2)0.00232 (19)0.00656 (18)0.02143 (19)
Cl10.1143 (9)0.0656 (7)0.1098 (9)0.0300 (7)0.0164 (8)0.0062 (7)
Cl20.1024 (9)0.0662 (7)0.1126 (9)0.0039 (7)0.0227 (8)0.0161 (7)
O10.0457 (12)0.0634 (14)0.0318 (11)0.0272 (11)0.0076 (10)0.0027 (10)
O20.0329 (12)0.0715 (15)0.0484 (13)0.0072 (11)0.0040 (10)0.0273 (12)
O30.356 (14)0.345 (15)0.188 (9)0.215 (12)0.141 (10)0.125 (9)
O1W0.115 (3)0.156 (3)0.126 (3)0.016 (3)0.037 (2)0.023 (3)
O2W0.065 (6)0.325 (19)0.71 (4)0.021 (9)0.071 (12)0.06 (2)
O3W0.179 (12)0.61 (3)0.51 (2)0.054 (16)0.029 (14)0.38 (2)
N10.0407 (14)0.0414 (15)0.0360 (13)0.0166 (12)0.0075 (12)0.0054 (12)
N20.0478 (15)0.0525 (16)0.0367 (14)0.0245 (13)0.0094 (12)0.0040 (12)
N30.0389 (14)0.0464 (15)0.0441 (14)0.0024 (13)0.0079 (12)0.0175 (13)
N40.0385 (15)0.0663 (19)0.0591 (17)0.0008 (14)0.0074 (13)0.0333 (15)
C10.0316 (15)0.0389 (17)0.0325 (15)0.0062 (14)0.0090 (13)0.0023 (14)
C20.0344 (16)0.0396 (17)0.0377 (16)0.0095 (14)0.0106 (13)0.0003 (14)
C30.0442 (17)0.0458 (19)0.0465 (18)0.0181 (16)0.0179 (15)0.0028 (15)
C40.0471 (18)0.052 (2)0.0375 (17)0.0124 (16)0.0164 (15)0.0008 (15)
C50.0440 (18)0.0428 (18)0.0294 (15)0.0084 (15)0.0065 (14)0.0006 (14)
C60.0312 (16)0.0340 (17)0.0392 (16)0.0051 (14)0.0072 (13)0.0050 (14)
C70.0375 (16)0.0336 (16)0.0331 (16)0.0081 (14)0.0000 (14)0.0052 (14)
C80.0495 (19)0.0389 (17)0.0285 (15)0.0117 (16)0.0032 (14)0.0051 (14)
C90.066 (2)0.0419 (19)0.0377 (17)0.0053 (18)0.0082 (16)0.0042 (15)
C100.105 (3)0.046 (2)0.049 (2)0.007 (2)0.026 (2)0.0054 (17)
C110.105 (3)0.062 (2)0.041 (2)0.033 (2)0.003 (2)0.0060 (19)
C120.077 (3)0.075 (3)0.045 (2)0.034 (2)0.009 (2)0.003 (2)
C130.050 (2)0.054 (2)0.0442 (19)0.0151 (18)0.0004 (16)0.0048 (17)
C140.061 (2)0.072 (2)0.054 (2)0.0405 (19)0.0219 (17)0.0171 (18)
C150.094 (3)0.085 (3)0.045 (2)0.059 (2)0.0195 (19)0.0149 (19)
C160.0315 (16)0.0468 (18)0.0407 (17)0.0097 (15)0.0112 (14)0.0001 (15)
C170.0429 (18)0.051 (2)0.0375 (16)0.0212 (16)0.0149 (14)0.0071 (15)
C180.061 (2)0.051 (2)0.062 (2)0.0161 (19)0.0267 (18)0.0044 (18)
C190.105 (3)0.054 (2)0.071 (2)0.023 (2)0.031 (2)0.005 (2)
C200.115 (3)0.077 (3)0.066 (2)0.061 (3)0.032 (2)0.010 (2)
C210.063 (2)0.112 (3)0.072 (3)0.053 (2)0.025 (2)0.008 (2)
C220.050 (2)0.076 (3)0.061 (2)0.023 (2)0.0181 (18)0.001 (2)
C230.084 (3)0.094 (3)0.0438 (19)0.040 (2)0.0275 (19)0.006 (2)
C240.0306 (16)0.0436 (18)0.0364 (16)0.0036 (15)0.0082 (13)0.0047 (14)
C250.0341 (16)0.0409 (17)0.0376 (16)0.0016 (15)0.0106 (13)0.0034 (14)
C260.0467 (18)0.0422 (18)0.0395 (16)0.0061 (15)0.0196 (14)0.0023 (14)
C270.0346 (16)0.0431 (18)0.0406 (17)0.0060 (15)0.0080 (14)0.0016 (15)
C280.0357 (17)0.0415 (18)0.0360 (16)0.0005 (15)0.0027 (14)0.0007 (14)
C290.0374 (17)0.0324 (16)0.0368 (16)0.0027 (14)0.0085 (14)0.0005 (13)
C300.0400 (17)0.0355 (17)0.0359 (16)0.0073 (15)0.0029 (14)0.0010 (14)
C310.0374 (18)0.0356 (17)0.0480 (19)0.0053 (15)0.0019 (15)0.0076 (15)
C320.049 (2)0.0409 (19)0.060 (2)0.0059 (17)0.0038 (17)0.0013 (17)
C330.052 (2)0.051 (2)0.105 (3)0.008 (2)0.007 (2)0.002 (2)
C340.058 (2)0.067 (3)0.102 (3)0.009 (2)0.015 (2)0.029 (3)
C350.066 (3)0.077 (3)0.058 (2)0.015 (2)0.014 (2)0.024 (2)
C360.051 (2)0.054 (2)0.048 (2)0.0067 (18)0.0026 (17)0.0053 (17)
C370.046 (2)0.067 (3)0.040 (3)0.006 (2)0.008 (2)0.024 (2)
C380.042 (2)0.061 (4)0.076 (4)0.008 (3)0.014 (2)0.035 (3)
C37'0.046 (2)0.067 (3)0.040 (3)0.006 (2)0.008 (2)0.024 (2)
C38'0.042 (2)0.061 (4)0.076 (4)0.008 (3)0.014 (2)0.035 (3)
C390.0420 (18)0.0497 (19)0.0457 (18)0.0010 (16)0.0190 (15)0.0100 (15)
C400.0364 (17)0.054 (2)0.057 (2)0.0025 (16)0.0180 (15)0.0226 (17)
C410.066 (2)0.058 (2)0.085 (3)0.003 (2)0.028 (2)0.012 (2)
C420.071 (3)0.055 (3)0.149 (4)0.005 (2)0.029 (3)0.020 (3)
C430.075 (3)0.086 (3)0.140 (4)0.004 (3)0.044 (3)0.064 (3)
C440.080 (3)0.108 (4)0.085 (3)0.010 (3)0.042 (2)0.048 (3)
C450.060 (2)0.074 (3)0.067 (2)0.010 (2)0.0260 (19)0.025 (2)
C460.0427 (19)0.066 (2)0.057 (2)0.0076 (18)0.0131 (17)0.0036 (18)
C470.201 (18)0.156 (13)0.35 (3)0.001 (13)0.019 (18)0.134 (15)
C480.346 (18)0.231 (17)0.39 (2)0.177 (15)0.275 (16)0.174 (15)
Geometric parameters (Å, º) top
Cu1—N21.920 (3)C18—H180.9300
Cu1—O1i1.9258 (19)C19—C201.349 (6)
Cu1—N11.934 (2)C19—H190.9300
Cu1—O11.939 (2)C20—C211.350 (6)
Cu1—Cl12.4238 (12)C20—H200.9300
Cu1—Cu1i2.9563 (7)C21—C221.377 (6)
Cu2—N41.913 (3)C21—H210.9300
Cu2—O2ii1.922 (2)C22—H220.9300
Cu2—N31.931 (2)C23—H23A0.9600
Cu2—O21.943 (2)C23—H23B0.9600
Cu2—Cl22.4356 (13)C23—H23C0.9600
Cu2—Cu2ii2.9512 (8)C24—C291.412 (4)
O1—C1i1.300 (4)C24—C25ii1.427 (4)
O1—Cu1i1.9258 (19)C25—C261.391 (4)
O2—C241.309 (4)C25—C24ii1.427 (4)
O2—Cu2ii1.922 (2)C25—C391.458 (4)
O3—C481.425 (13)C26—C271.372 (4)
O3—H40.8200C26—H260.9300
O1W—H1W10.820 (17)C27—C281.382 (4)
O1W—H1W20.818 (17)C27—C461.500 (4)
O2W—H2W10.8494C28—C29ii1.388 (4)
O2W—H2W20.9688C28—H280.9300
O3W—H3W11.0487C29—C28ii1.388 (4)
O3W—H3W20.8157C29—C301.485 (4)
N1—C7i1.282 (4)C30—C311.491 (4)
N1—C141.467 (4)C31—C321.380 (5)
N2—C161.279 (4)C31—C361.386 (5)
N2—C151.478 (4)C32—C331.378 (5)
N3—C301.279 (4)C32—H320.9300
N3—C37'1.453 (13)C33—C341.363 (6)
N3—C371.502 (6)C33—H330.9300
N4—C391.289 (4)C34—C351.363 (6)
N4—C38'1.458 (12)C34—H340.9300
N4—C381.514 (6)C35—C361.380 (5)
C1—O1i1.300 (4)C35—H350.9300
C1—C61.413 (4)C36—H360.9300
C1—C21.421 (4)C37—C381.517 (7)
C2—C31.393 (4)C37—H37A0.9700
C2—C161.476 (4)C37—H37B0.9700
C3—C41.366 (4)C38—H38A0.9700
C3—H30.9300C38—H38B0.9700
C4—C51.374 (5)C37'—C38'1.512 (13)
C4—C231.502 (5)C37'—H37C0.9700
C5—C61.392 (4)C37'—H37D0.9700
C5—H50.9300C38'—H38C0.9700
C6—C71.486 (4)C38'—H38D0.9700
C7—N1i1.282 (4)C39—C401.490 (5)
C7—C81.492 (4)C40—C411.363 (5)
C8—C131.384 (4)C40—C451.386 (5)
C8—C91.392 (5)C41—C421.389 (6)
C9—C101.390 (5)C41—H410.9300
C9—H90.9300C42—C431.366 (7)
C10—C111.363 (6)C42—H420.9300
C10—H100.9300C43—C441.323 (7)
C11—C121.348 (6)C43—H430.9300
C11—H110.9300C44—C451.382 (6)
C12—C131.395 (5)C44—H440.9300
C12—H120.9300C45—H450.9300
C13—H130.9300C46—H46A0.9600
C14—C151.452 (5)C46—H46B0.9600
C14—H14A0.9700C46—H46C0.9600
C14—H14B0.9700C47—C481.505 (10)
C15—H15A0.9700C47—H47A0.9600
C15—H15B0.9700C47—H47B0.9600
C16—C171.496 (4)C47—H47C0.9600
C17—C181.354 (5)C48—H48A0.9700
C17—C221.378 (5)C48—H48B0.9700
C18—C191.374 (5)
N2—Cu1—O1i90.16 (10)C18—C19—H19119.9
N2—Cu1—N188.88 (11)C19—C20—C21119.9 (4)
O1i—Cu1—N1159.32 (11)C19—C20—H20120.0
N2—Cu1—O1148.23 (11)C21—C20—H20120.0
O1i—Cu1—O180.20 (10)C20—C21—C22120.7 (4)
N1—Cu1—O189.86 (10)C20—C21—H21119.7
N2—Cu1—Cl1110.60 (9)C22—C21—H21119.7
O1i—Cu1—Cl199.59 (8)C21—C22—C17119.4 (4)
N1—Cu1—Cl1100.07 (8)C21—C22—H22120.3
O1—Cu1—Cl1100.87 (8)C17—C22—H22120.3
N2—Cu1—Cu1i124.02 (7)C4—C23—H23A109.5
O1i—Cu1—Cu1i40.26 (7)C4—C23—H23B109.5
N1—Cu1—Cu1i127.43 (8)H23A—C23—H23B109.5
O1—Cu1—Cu1i39.93 (6)C4—C23—H23C109.5
Cl1—Cu1—Cu1i103.43 (4)H23A—C23—H23C109.5
N4—Cu2—O2ii90.49 (10)H23B—C23—H23C109.5
N4—Cu2—N388.75 (11)O2—C24—C29120.3 (3)
O2ii—Cu2—N3159.37 (11)O2—C24—C25ii119.8 (3)
N4—Cu2—O2147.45 (12)C29—C24—C25ii119.9 (3)
O2ii—Cu2—O280.47 (10)C26—C25—C24ii117.5 (3)
N3—Cu2—O289.18 (10)C26—C25—C39118.2 (3)
N4—Cu2—Cl2110.11 (10)C24ii—C25—C39124.2 (3)
O2ii—Cu2—Cl299.31 (8)C27—C26—C25123.9 (3)
N3—Cu2—Cl2100.31 (9)C27—C26—H26118.1
O2—Cu2—Cl2102.22 (8)C25—C26—H26118.1
N4—Cu2—Cu2ii124.09 (8)C26—C27—C28117.2 (3)
O2ii—Cu2—Cu2ii40.49 (7)C26—C27—C46121.1 (3)
N3—Cu2—Cu2ii126.88 (8)C28—C27—C46121.6 (3)
O2—Cu2—Cu2ii39.97 (6)C27—C28—C29ii123.4 (3)
Cl2—Cu2—Cu2ii104.16 (4)C27—C28—H28118.3
C1i—O1—Cu1i131.06 (19)C29ii—C28—H28118.3
C1i—O1—Cu1127.82 (18)C28ii—C29—C24118.2 (3)
Cu1i—O1—Cu199.80 (10)C28ii—C29—C30118.2 (3)
C24—O2—Cu2ii131.45 (19)C24—C29—C30123.6 (3)
C24—O2—Cu2126.42 (19)N3—C30—C29121.6 (3)
Cu2ii—O2—Cu299.54 (10)N3—C30—C31121.3 (3)
C48—O3—H4109.5C29—C30—C31117.1 (3)
H1W1—O1W—H1W2105 (3)C32—C31—C36118.7 (3)
H2W1—O2W—H2W2102.3C32—C31—C30119.5 (3)
H3W1—O3W—H3W2116.8C36—C31—C30121.7 (3)
C7i—N1—C14124.5 (3)C33—C32—C31120.4 (4)
C7i—N1—Cu1128.4 (2)C33—C32—H32119.8
C14—N1—Cu1107.0 (2)C31—C32—H32119.8
C16—N2—C15120.4 (3)C34—C33—C32120.4 (4)
C16—N2—Cu1129.1 (2)C34—C33—H33119.8
C15—N2—Cu1109.0 (2)C32—C33—H33119.8
C30—N3—C37'122.1 (5)C35—C34—C33119.9 (4)
C30—N3—C37123.6 (3)C35—C34—H34120.0
C30—N3—Cu2128.9 (2)C33—C34—H34120.0
C37'—N3—Cu2106.2 (4)C34—C35—C36120.5 (4)
C37—N3—Cu2107.4 (2)C34—C35—H35119.7
C39—N4—C38'124.2 (5)C36—C35—H35119.7
C39—N4—C38118.2 (3)C35—C36—C31120.0 (4)
C39—N4—Cu2129.2 (2)C35—C36—H36120.0
C38'—N4—Cu2105.7 (5)C31—C36—H36120.0
C38—N4—Cu2109.5 (3)N3—C37—C38107.5 (4)
O1i—C1—C6120.4 (3)N3—C37—H37A110.2
O1i—C1—C2120.2 (2)C38—C37—H37A110.2
C6—C1—C2119.3 (3)N3—C37—H37B110.2
C3—C2—C1118.0 (3)C38—C37—H37B110.2
C3—C2—C16118.4 (3)H37A—C37—H37B108.5
C1—C2—C16123.4 (3)N4—C38—C37108.1 (4)
C4—C3—C2123.6 (3)N4—C38—H38A110.1
C4—C3—H3118.2C37—C38—H38A110.1
C2—C3—H3118.2N4—C38—H38B110.1
C3—C4—C5117.4 (3)C37—C38—H38B110.1
C3—C4—C23121.8 (3)H38A—C38—H38B108.4
C5—C4—C23120.8 (3)N3—C37'—C38'110.5 (10)
C4—C5—C6123.4 (3)N3—C37'—H37C109.6
C4—C5—H5118.3C38'—C37'—H37C109.6
C6—C5—H5118.3N3—C37'—H37D109.6
C5—C6—C1118.3 (3)C38'—C37'—H37D109.6
C5—C6—C7117.8 (3)H37C—C37'—H37D108.1
C1—C6—C7123.9 (3)N4—C38'—C37'104.8 (9)
N1i—C7—C6122.2 (3)N4—C38'—H38C110.8
N1i—C7—C8120.6 (3)C37'—C38'—H38C110.8
C6—C7—C8117.1 (3)N4—C38'—H38D110.8
C13—C8—C9118.8 (3)C37'—C38'—H38D110.8
C13—C8—C7121.5 (3)H38C—C38'—H38D108.9
C9—C8—C7119.6 (3)N4—C39—C25123.1 (3)
C10—C9—C8120.0 (3)N4—C39—C40118.8 (3)
C10—C9—H9120.0C25—C39—C40118.1 (3)
C8—C9—H9120.0C41—C40—C45118.9 (3)
C11—C10—C9120.1 (4)C41—C40—C39121.5 (3)
C11—C10—H10120.0C45—C40—C39119.6 (3)
C9—C10—H10120.0C40—C41—C42119.9 (4)
C12—C11—C10120.6 (4)C40—C41—H41120.0
C12—C11—H11119.7C42—C41—H41120.0
C10—C11—H11119.7C43—C42—C41119.8 (5)
C11—C12—C13120.7 (4)C43—C42—H42120.1
C11—C12—H12119.7C41—C42—H42120.1
C13—C12—H12119.7C44—C43—C42120.7 (4)
C8—C13—C12119.8 (4)C44—C43—H43119.6
C8—C13—H13120.1C42—C43—H43119.6
C12—C13—H13120.1C43—C44—C45120.7 (5)
C15—C14—N1112.2 (3)C43—C44—H44119.7
C15—C14—H14A109.2C45—C44—H44119.7
N1—C14—H14A109.2C44—C45—C40119.9 (4)
C15—C14—H14B109.2C44—C45—H45120.0
N1—C14—H14B109.2C40—C45—H45120.0
H14A—C14—H14B107.9C27—C46—H46A109.5
C14—C15—N2112.2 (3)C27—C46—H46B109.5
C14—C15—H15A109.2H46A—C46—H46B109.5
N2—C15—H15A109.2C27—C46—H46C109.5
C14—C15—H15B109.2H46A—C46—H46C109.5
N2—C15—H15B109.2H46B—C46—H46C109.5
H15A—C15—H15B107.9C48—C47—H47A109.5
N2—C16—C2122.8 (3)C48—C47—H47B109.5
N2—C16—C17119.2 (3)H47A—C47—H47B109.5
C2—C16—C17117.9 (3)C48—C47—H47C109.5
C18—C17—C22119.2 (3)H47A—C47—H47C109.5
C18—C17—C16120.6 (3)H47B—C47—H47C109.5
C22—C17—C16120.0 (3)O3—C48—C47106.2 (9)
C17—C18—C19120.5 (4)O3—C48—H48A110.5
C17—C18—H18119.7C47—C48—H48A110.5
C19—C18—H18119.7O3—C48—H48B110.5
C20—C19—C18120.3 (4)C47—C48—H48B110.5
C20—C19—H19119.9H48A—C48—H48B108.7
N2—Cu1—O1—C1i117.9 (3)C11—C12—C13—C80.3 (6)
O1i—Cu1—O1—C1i168.0 (3)C7i—N1—C14—C15146.7 (3)
N1—Cu1—O1—C1i30.2 (3)Cu1—N1—C14—C1532.8 (4)
Cl1—Cu1—O1—C1i70.0 (3)N1—C14—C15—N235.9 (5)
Cu1i—Cu1—O1—C1i168.0 (3)C16—N2—C15—C14172.2 (3)
N2—Cu1—O1—Cu1i74.1 (2)Cu1—N2—C15—C1420.5 (4)
O1i—Cu1—O1—Cu1i0.0C15—N2—C16—C2169.5 (3)
N1—Cu1—O1—Cu1i161.78 (11)Cu1—N2—C16—C25.0 (5)
Cl1—Cu1—O1—Cu1i97.99 (9)C15—N2—C16—C177.4 (5)
N4—Cu2—O2—C24121.0 (3)Cu1—N2—C16—C17171.8 (2)
O2ii—Cu2—O2—C24163.3 (3)C3—C2—C16—N2169.0 (3)
N3—Cu2—O2—C2434.6 (3)C1—C2—C16—N215.4 (5)
Cl2—Cu2—O2—C2465.8 (3)C3—C2—C16—C1714.1 (4)
Cu2ii—Cu2—O2—C24163.3 (3)C1—C2—C16—C17161.5 (3)
N4—Cu2—O2—Cu2ii75.7 (2)N2—C16—C17—C1895.3 (4)
O2ii—Cu2—O2—Cu2ii0.0C2—C16—C17—C1881.7 (4)
N3—Cu2—O2—Cu2ii162.08 (12)N2—C16—C17—C2280.7 (4)
Cl2—Cu2—O2—Cu2ii97.55 (9)C2—C16—C17—C22102.3 (4)
N2—Cu1—N1—C7i162.5 (3)C22—C17—C18—C191.7 (5)
O1i—Cu1—N1—C7i75.0 (4)C16—C17—C18—C19174.4 (3)
O1—Cu1—N1—C7i14.2 (3)C17—C18—C19—C201.2 (6)
Cl1—Cu1—N1—C7i86.8 (3)C18—C19—C20—C210.4 (6)
Cu1i—Cu1—N1—C7i28.9 (3)C19—C20—C21—C221.3 (7)
N2—Cu1—N1—C1417.0 (2)C20—C21—C22—C170.7 (6)
O1i—Cu1—N1—C14104.5 (3)C18—C17—C22—C210.8 (5)
O1—Cu1—N1—C14165.2 (2)C16—C17—C22—C21175.3 (3)
Cl1—Cu1—N1—C1493.8 (2)Cu2ii—O2—C24—C29170.8 (2)
Cu1i—Cu1—N1—C14150.57 (19)Cu2—O2—C24—C2931.4 (4)
O1i—Cu1—N2—C168.0 (3)Cu2ii—O2—C24—C25ii10.0 (5)
N1—Cu1—N2—C16167.4 (3)Cu2—O2—C24—C25ii147.8 (2)
O1—Cu1—N2—C1679.5 (4)C24ii—C25—C26—C270.5 (5)
Cl1—Cu1—N2—C1692.3 (3)C39—C25—C26—C27175.7 (3)
Cu1i—Cu1—N2—C1631.3 (3)C25—C26—C27—C280.5 (5)
O1i—Cu1—N2—C15157.8 (2)C25—C26—C27—C46177.1 (3)
N1—Cu1—N2—C151.5 (2)C26—C27—C28—C29ii0.3 (5)
O1—Cu1—N2—C1586.4 (3)C46—C27—C28—C29ii176.2 (3)
Cl1—Cu1—N2—C15101.9 (2)O2—C24—C29—C28ii179.7 (3)
Cu1i—Cu1—N2—C15134.6 (2)C25ii—C24—C29—C28ii1.1 (5)
N4—Cu2—N3—C30164.0 (3)O2—C24—C29—C300.9 (5)
O2ii—Cu2—N3—C3075.9 (4)C25ii—C24—C29—C30178.3 (3)
O2—Cu2—N3—C3016.4 (3)C37'—N3—C30—C29161.7 (6)
Cl2—Cu2—N3—C3085.8 (3)C37—N3—C30—C29172.6 (3)
Cu2ii—Cu2—N3—C3030.8 (3)Cu2—N3—C30—C293.5 (4)
N4—Cu2—N3—C37'3.1 (6)C37'—N3—C30—C3117.9 (7)
O2ii—Cu2—N3—C37'85.0 (6)C37—N3—C30—C317.9 (5)
O2—Cu2—N3—C37'144.4 (6)Cu2—N3—C30—C31176.1 (2)
Cl2—Cu2—N3—C37'113.3 (6)C28ii—C29—C30—N3162.3 (3)
Cu2ii—Cu2—N3—C37'130.1 (6)C24—C29—C30—N317.1 (5)
N4—Cu2—N3—C3719.5 (3)C28ii—C29—C30—C3118.1 (4)
O2ii—Cu2—N3—C37107.6 (4)C24—C29—C30—C31162.5 (3)
O2—Cu2—N3—C37167.0 (3)N3—C30—C31—C32121.2 (4)
Cl2—Cu2—N3—C3790.7 (3)C29—C30—C31—C3258.4 (4)
Cu2ii—Cu2—N3—C37152.7 (2)N3—C30—C31—C3656.2 (4)
O2ii—Cu2—N4—C396.0 (3)C29—C30—C31—C36124.2 (3)
N3—Cu2—N4—C39165.3 (3)C36—C31—C32—C332.3 (5)
O2—Cu2—N4—C3978.8 (4)C30—C31—C32—C33175.2 (3)
Cl2—Cu2—N4—C3994.1 (3)C31—C32—C33—C341.7 (6)
Cu2ii—Cu2—N4—C3930.1 (4)C32—C33—C34—C350.2 (6)
O2ii—Cu2—N4—C38'175.0 (6)C33—C34—C35—C360.7 (6)
N3—Cu2—N4—C38'25.6 (6)C34—C35—C36—C310.0 (6)
O2—Cu2—N4—C38'112.1 (6)C32—C31—C36—C351.5 (5)
Cl2—Cu2—N4—C38'74.9 (6)C30—C31—C36—C35176.0 (3)
Cu2ii—Cu2—N4—C38'160.9 (6)C30—N3—C37—C38142.6 (4)
O2ii—Cu2—N4—C38153.1 (3)C37'—N3—C37—C3849.3 (12)
N3—Cu2—N4—C386.2 (3)Cu2—N3—C37—C3840.7 (5)
O2—Cu2—N4—C3880.3 (3)C39—N4—C38—C37167.8 (4)
Cl2—Cu2—N4—C38106.8 (3)C38'—N4—C38—C3757.4 (10)
Cu2ii—Cu2—N4—C38129.0 (3)Cu2—N4—C38—C3730.5 (5)
O1i—C1—C2—C3178.2 (3)N3—C37—C38—N446.5 (6)
C6—C1—C2—C32.5 (4)C30—N3—C37'—C38'166.6 (7)
O1i—C1—C2—C166.2 (5)C37—N3—C37'—C38'65.7 (14)
C6—C1—C2—C16173.1 (3)Cu2—N3—C37'—C38'30.9 (10)
C1—C2—C3—C41.0 (5)C39—N4—C38'—C37'143.6 (8)
C16—C2—C3—C4174.8 (3)C38—N4—C38'—C37'55.2 (10)
C2—C3—C4—C50.9 (5)Cu2—N4—C38'—C37'46.7 (10)
C2—C3—C4—C23179.2 (3)N3—C37'—C38'—N452.5 (12)
C3—C4—C5—C61.3 (5)C38'—N4—C39—C25163.2 (7)
C23—C4—C5—C6179.7 (3)C38—N4—C39—C25161.6 (4)
C4—C5—C6—C10.2 (5)Cu2—N4—C39—C254.0 (5)
C4—C5—C6—C7179.0 (3)C38'—N4—C39—C4019.2 (8)
O1i—C1—C6—C5178.6 (3)C38—N4—C39—C4016.0 (5)
C2—C1—C6—C52.1 (4)Cu2—N4—C39—C40173.6 (2)
O1i—C1—C6—C72.3 (5)C26—C25—C39—N4173.4 (3)
C2—C1—C6—C7177.0 (3)C24ii—C25—C39—N411.7 (5)
C5—C6—C7—N1i165.9 (3)C26—C25—C39—C409.0 (5)
C1—C6—C7—N1i13.2 (5)C24ii—C25—C39—C40165.9 (3)
C5—C6—C7—C815.8 (4)N4—C39—C40—C4195.9 (4)
C1—C6—C7—C8165.1 (3)C25—C39—C40—C4181.8 (4)
N1i—C7—C8—C1355.5 (4)N4—C39—C40—C4583.3 (4)
C6—C7—C8—C13126.2 (3)C25—C39—C40—C4599.0 (4)
N1i—C7—C8—C9120.7 (3)C45—C40—C41—C421.5 (5)
C6—C7—C8—C957.6 (4)C39—C40—C41—C42177.6 (3)
C13—C8—C9—C102.4 (5)C40—C41—C42—C432.5 (6)
C7—C8—C9—C10173.9 (3)C41—C42—C43—C442.3 (7)
C8—C9—C10—C111.6 (5)C42—C43—C44—C451.2 (7)
C9—C10—C11—C120.2 (6)C43—C44—C45—C400.2 (6)
C10—C11—C12—C131.1 (6)C41—C40—C45—C440.4 (5)
C9—C8—C13—C121.5 (5)C39—C40—C45—C44178.8 (3)
C7—C8—C13—C12174.7 (3)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O2W0.822.202.96 (2)154
O1W—H1W1···Cl1iii0.82 (2)2.54 (2)3.355 (4)171 (4)
O1W—H1W2···Cl20.82 (2)2.56 (2)3.374 (4)174 (3)
O2W—H2W1···O3W0.851.862.71 (3)179
O2W—H2W2···O30.972.272.96 (2)127
Symmetry code: (iii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C46H38N4O2)Cl2]·0.5C2H6O·2H2O
Mr935.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.1983 (4), 16.2680 (5), 19.3344 (5)
β (°) 103.964 (2)
V3)4639.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.738, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
36333, 6669, 4664
Rint0.054
θmax (°)23.3
(sin θ/λ)max1)0.557
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.137, 1.05
No. of reflections6669
No. of parameters575
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.34

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O2W0.822.202.96 (2)154.3
O1W—H1W1···Cl1i0.820 (17)2.543 (16)3.355 (4)171 (4)
O1W—H1W2···Cl20.818 (17)2.559 (17)3.374 (4)174 (3)
O2W—H2W1···O3W0.851.862.71 (3)178.5
O2W—H2W2···O30.972.272.96 (2)127.3
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank the DST (grant No. SR/S1/IC-38/2007) and the UGC [grant No. F.37–500/2009(SR)] for financial support and the SAIF at IIT Madras for the use of the X-ray diffractometer.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFenton, H., Tidmash, I. S. & Ward, M. D. (2010). Dalton Trans. pp. 3805–3815.  Web of Science CSD CrossRef Google Scholar
First citationGenerex, J. C. & Barton, J. K. (2010). Chem. Rev. 110, 1642–1662.  Web of Science PubMed Google Scholar
First citationGupta, S. K., Hitchock, P. B. & Argal, G. S. (2008). Inorg. Chim. Acta, 361, 2139–2146.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, S. K., Hitchock, P. B. & Kushwah, Y. S. (2002). Polyhedron, 21, 1787–1793.  Web of Science CrossRef CAS Google Scholar
First citationGupta, S. K., Hitchock, P. B., Kushwah, Y. S. & Argal, G. S. (2007). Inorg. Chim. Acta, 360, 2147–2152.  Google Scholar
First citationReisner, E., Arion, V. B., Keepler, B. K. & Pombeiro, A. J. L. (2008). Inorg. Chim. Acta, 361, 1569–1583.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds