organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(E)-(2-Methyl-3-nitro­phen­yl)imino­meth­yl]-2-naphthol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: ybingol@omu.edu.tr

(Received 23 October 2010; accepted 25 October 2010; online 6 November 2010)

The title Schiff base compound, C18H14N2O3, has an inter­mediate state between NH and OH tautomers. The mol­ecular structure is stabilized by an O—H⋯N hydrogen bond. The dihedral angle between the naphthalene ring system and the benzene ring is 37.44 (5)°.

Related literature

For the biological properties of Schiff bases, see: Lozier et al. (1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For Schiff base tautomerism, see: Hökelek et al. (2000[Hökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61-69.]); Karabıyık et al. (2007[Karabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215-o218.]); Odabaşoğlu et al. (2005[Odabąsogˇlu, M., Albayrak, C. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425-o426.]); Kılıç et al. (2009[Kılıç, I., Ağar, E., Erşahin, F. & Işık, Ş. (2009). Acta Cryst. E65, o737.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O3

  • Mr = 306.31

  • Monoclinic, P 21 /c

  • a = 12.5520 (9) Å

  • b = 7.4731 (4) Å

  • c = 15.8610 (13) Å

  • β = 90.806 (6)°

  • V = 1487.65 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.7 × 0.47 × 0.12 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.989, Tmax = 0.997

  • 9684 measured reflections

  • 3088 independent reflections

  • 1969 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.153

  • S = 0.94

  • 3088 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.10 (3) 1.48 (3) 2.5310 (19) 159 (3)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). Schiff bases have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). There are two types of intramolecular hydrogen bonds in Schiff bases, namely N—H···O in keto (NH) (Hökelek et al., 2000) and N···H—O in enol (OH) (Odabaşoǧlu et al., 2005) tautomeric forms. Our investigations shows that in the title compound is described as an intermediate state between NH and OH tautomers. An ORTEP-3 (Farrugia, 1997) plot of the molecule of (I) is shown in Fig.1. The C2—O1 [1.331 (2) Å] and C11—N1 [1.299 (2) Å] bond lengths are intermediate between the single and double C—O (1.362 and 1.222 Å, respectively) and C—N bond lengths (1.339 and 1.279 Å, respectively) (Allen et al., 1987). The molecular structure is stabilized by an intramolecular O—H···N hydrogen bond. It is a well known fact that H atoms participating in intramolecular hydrogen bonds in Schiff bases are rather mobile. The molecule can be regarded as having an intermediate state between its canonical OH and NH forms, and therefore the O1—H1 bond [1.10 (3) Å] remains somewhat longer than its expected value (Karabıyık et al., 2007). Similar results were observed for 2-[(4-Methoxyphenyl)iminomethyl]-4- nitrophenol (Kılıç et al., 2009). The molecule of the title compound is not planar, with a dihedral angle of 37.44 (5)° between naphthalene and benzene rings.

Related literature top

For the biological properties of Schiff bases, see: Lozier et al. (1975). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009); Yeap et al. (2009). For Schiff base tautomerism, see: Hökelek et al. (2000); Karabıyık et al. (2007); Odabaşoǧlu et al. (2005); Kılıç et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by refluxing a mixture of a solution containing 2-hydroxy-1-naphthaldehyde (172 mg, 0,0986 mmol) in ethanol (30 ml) and a solution containing 2-methyl-3-nitroaniline (15 mg, 0,0986 mmol) in ethanol (30 ml. The reaction mixture was stirred for 1 h under reflux. Single crystals of the title compound for x-ray analysis were obtained by slow evaporation of an ethanol solution (Yield 68%; m.p. 428–432 K).

Refinement top

H atoms bonded to C were placed in calculated positions and constrained to ride on their parent atoms, with C–H = 0.93–0.96 Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl). The H atom bonded to O was freely refined.

Structure description top

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). Schiff bases have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). There are two types of intramolecular hydrogen bonds in Schiff bases, namely N—H···O in keto (NH) (Hökelek et al., 2000) and N···H—O in enol (OH) (Odabaşoǧlu et al., 2005) tautomeric forms. Our investigations shows that in the title compound is described as an intermediate state between NH and OH tautomers. An ORTEP-3 (Farrugia, 1997) plot of the molecule of (I) is shown in Fig.1. The C2—O1 [1.331 (2) Å] and C11—N1 [1.299 (2) Å] bond lengths are intermediate between the single and double C—O (1.362 and 1.222 Å, respectively) and C—N bond lengths (1.339 and 1.279 Å, respectively) (Allen et al., 1987). The molecular structure is stabilized by an intramolecular O—H···N hydrogen bond. It is a well known fact that H atoms participating in intramolecular hydrogen bonds in Schiff bases are rather mobile. The molecule can be regarded as having an intermediate state between its canonical OH and NH forms, and therefore the O1—H1 bond [1.10 (3) Å] remains somewhat longer than its expected value (Karabıyık et al., 2007). Similar results were observed for 2-[(4-Methoxyphenyl)iminomethyl]-4- nitrophenol (Kılıç et al., 2009). The molecule of the title compound is not planar, with a dihedral angle of 37.44 (5)° between naphthalene and benzene rings.

For the biological properties of Schiff bases, see: Lozier et al. (1975). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009); Yeap et al. (2009). For Schiff base tautomerism, see: Hökelek et al. (2000); Karabıyık et al. (2007); Odabaşoǧlu et al. (2005); Kılıç et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1-[(E)-(2-Methyl-3-nitrophenyl)iminomethyl]-2-naphthol top
Crystal data top
C18H14N2O3F(000) = 640
Mr = 306.31Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8237 reflections
a = 12.5520 (9) Åθ = 1.3–27.3°
b = 7.4731 (4) ŵ = 0.10 mm1
c = 15.8610 (13) ÅT = 296 K
β = 90.806 (6)°PRISM., yellow
V = 1487.65 (18) Å30.7 × 0.47 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
3088 independent reflections
Radiation source: fine-focus sealed tube1969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.6°
ω scansh = 1515
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.989, Tmax = 0.997l = 1917
9684 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3088 reflectionsΔρmax = 0.24 e Å3
213 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C18H14N2O3V = 1487.65 (18) Å3
Mr = 306.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5520 (9) ŵ = 0.10 mm1
b = 7.4731 (4) ÅT = 296 K
c = 15.8610 (13) Å0.7 × 0.47 × 0.12 mm
β = 90.806 (6)°
Data collection top
Stoe IPDS II
diffractometer
3088 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1969 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.997Rint = 0.061
9684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.24 e Å3
3088 reflectionsΔρmin = 0.19 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41741 (13)0.0570 (2)0.21696 (11)0.0439 (4)
C20.35899 (13)0.0014 (2)0.28723 (11)0.0489 (4)
C30.24646 (15)0.0112 (3)0.28256 (13)0.0605 (5)
H30.20850.04980.32910.073*
C40.19459 (14)0.0329 (3)0.21045 (13)0.0627 (5)
H40.12060.02580.20860.075*
C50.24883 (13)0.0898 (3)0.13724 (12)0.0510 (4)
C60.19243 (15)0.1360 (3)0.06252 (14)0.0618 (5)
H60.11840.13090.06160.074*
C70.24441 (16)0.1873 (3)0.00749 (14)0.0648 (5)
H70.20620.21810.05600.078*
C80.35511 (16)0.1941 (3)0.00694 (13)0.0606 (5)
H80.39070.22700.05560.073*
C90.41227 (14)0.1526 (3)0.06482 (11)0.0515 (5)
H90.48620.15940.06420.062*
C100.36138 (12)0.1001 (2)0.13924 (11)0.0441 (4)
C110.53047 (13)0.0720 (2)0.22409 (12)0.0471 (4)
H110.56860.10780.17720.057*
C120.69421 (13)0.0479 (2)0.29892 (11)0.0487 (4)
C130.74005 (13)0.1057 (2)0.37579 (11)0.0461 (4)
C140.85070 (14)0.1110 (3)0.37726 (12)0.0557 (5)
C150.91392 (15)0.0627 (4)0.31127 (15)0.0757 (7)
H150.98770.07020.31590.091*
C160.86568 (16)0.0027 (4)0.23779 (15)0.0813 (7)
H160.90680.03230.19240.098*
C170.75641 (15)0.0048 (3)0.23229 (13)0.0655 (6)
H170.72390.04610.18300.079*
C180.67164 (14)0.1657 (3)0.44710 (12)0.0562 (5)
H18A0.71610.20050.49400.084*
H18B0.62600.06920.46370.084*
H18C0.62900.26570.42920.084*
N10.58208 (11)0.0375 (2)0.29377 (9)0.0481 (4)
N20.90826 (13)0.1746 (3)0.45348 (12)0.0695 (5)
O10.40602 (11)0.0411 (2)0.36024 (8)0.0609 (4)
O20.88124 (15)0.1224 (3)0.52187 (11)0.1036 (7)
O30.98286 (12)0.2763 (3)0.44235 (12)0.0997 (6)
H10.489 (3)0.023 (4)0.343 (2)0.128 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (8)0.0410 (9)0.0437 (9)0.0020 (7)0.0038 (7)0.0022 (8)
C20.0532 (9)0.0499 (10)0.0435 (10)0.0026 (7)0.0003 (7)0.0048 (8)
C30.0548 (10)0.0759 (14)0.0510 (11)0.0020 (9)0.0092 (8)0.0036 (10)
C40.0419 (9)0.0810 (14)0.0652 (13)0.0029 (9)0.0014 (9)0.0089 (11)
C50.0472 (9)0.0541 (11)0.0515 (11)0.0041 (7)0.0059 (8)0.0083 (9)
C60.0506 (10)0.0709 (13)0.0634 (13)0.0104 (9)0.0158 (9)0.0083 (11)
C70.0716 (12)0.0672 (13)0.0552 (12)0.0102 (10)0.0218 (10)0.0007 (10)
C80.0738 (12)0.0603 (12)0.0474 (11)0.0026 (9)0.0073 (9)0.0052 (9)
C90.0531 (9)0.0517 (10)0.0496 (11)0.0050 (8)0.0061 (8)0.0033 (9)
C100.0478 (9)0.0391 (9)0.0453 (9)0.0011 (7)0.0044 (7)0.0029 (7)
C110.0493 (9)0.0461 (10)0.0459 (10)0.0011 (7)0.0026 (7)0.0003 (8)
C120.0470 (9)0.0509 (10)0.0480 (10)0.0015 (7)0.0048 (7)0.0003 (8)
C130.0473 (8)0.0476 (10)0.0434 (9)0.0002 (7)0.0050 (7)0.0031 (8)
C140.0487 (9)0.0655 (12)0.0526 (11)0.0008 (8)0.0113 (8)0.0018 (9)
C150.0443 (10)0.1099 (19)0.0727 (15)0.0034 (10)0.0026 (9)0.0122 (14)
C160.0546 (11)0.122 (2)0.0674 (14)0.0087 (12)0.0058 (10)0.0223 (15)
C170.0570 (10)0.0860 (15)0.0533 (12)0.0069 (10)0.0049 (9)0.0168 (11)
C180.0567 (10)0.0636 (12)0.0481 (10)0.0007 (8)0.0018 (8)0.0019 (9)
N10.0471 (8)0.0497 (8)0.0473 (8)0.0010 (6)0.0083 (6)0.0003 (7)
N20.0517 (9)0.0915 (14)0.0646 (12)0.0002 (9)0.0173 (8)0.0044 (11)
O10.0635 (8)0.0769 (10)0.0422 (7)0.0031 (7)0.0009 (6)0.0051 (7)
O20.1009 (13)0.154 (2)0.0552 (10)0.0192 (12)0.0220 (9)0.0058 (11)
O30.0650 (9)0.1341 (17)0.0991 (13)0.0299 (10)0.0239 (9)0.0091 (12)
Geometric parameters (Å, º) top
C1—C21.406 (2)C11—H110.9300
C1—C111.426 (2)C12—C171.380 (3)
C1—C101.447 (2)C12—C131.409 (2)
C2—O11.331 (2)C12—N11.411 (2)
C2—C31.417 (3)C13—C141.389 (2)
C3—C41.349 (3)C13—C181.498 (3)
C3—H30.9300C14—C151.371 (3)
C4—C51.420 (3)C14—N21.478 (3)
C4—H40.9300C15—C161.381 (3)
C5—C61.415 (3)C15—H150.9300
C5—C101.415 (2)C16—C171.374 (3)
C6—C71.351 (3)C16—H160.9300
C6—H60.9300C17—H170.9300
C7—C81.390 (3)C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C8—C91.372 (3)C18—H18C0.9600
C8—H80.9300N2—O21.206 (2)
C9—C101.406 (2)N2—O31.221 (2)
C9—H90.9300O1—H11.10 (3)
C11—N11.299 (2)
C2—C1—C11119.33 (16)C1—C11—H11118.8
C2—C1—C10119.26 (15)C17—C12—C13121.45 (16)
C11—C1—C10121.41 (15)C17—C12—N1120.96 (16)
O1—C2—C1122.05 (15)C13—C12—N1117.52 (15)
O1—C2—C3117.35 (16)C14—C13—C12114.78 (16)
C1—C2—C3120.60 (16)C14—C13—C18124.22 (16)
C4—C3—C2119.81 (18)C12—C13—C18120.91 (15)
C4—C3—H3120.1C15—C14—C13124.69 (17)
C2—C3—H3120.1C15—C14—N2115.32 (16)
C3—C4—C5122.38 (17)C13—C14—N2119.98 (17)
C3—C4—H4118.8C14—C15—C16118.58 (18)
C5—C4—H4118.8C14—C15—H15120.7
C6—C5—C10119.57 (18)C16—C15—H15120.7
C6—C5—C4121.22 (16)C17—C16—C15119.5 (2)
C10—C5—C4119.21 (16)C17—C16—H16120.3
C7—C6—C5121.06 (17)C15—C16—H16120.3
C7—C6—H6119.5C16—C17—C12120.96 (19)
C5—C6—H6119.5C16—C17—H17119.5
C6—C7—C8119.95 (17)C12—C17—H17119.5
C6—C7—H7120.0C13—C18—H18A109.5
C8—C7—H7120.0C13—C18—H18B109.5
C9—C8—C7120.52 (19)H18A—C18—H18B109.5
C9—C8—H8119.7C13—C18—H18C109.5
C7—C8—H8119.7H18A—C18—H18C109.5
C8—C9—C10121.39 (17)H18B—C18—H18C109.5
C8—C9—H9119.3C11—N1—C12121.57 (15)
C10—C9—H9119.3C11—N1—H197.0 (12)
C9—C10—C5117.49 (16)C12—N1—H1141.0 (12)
C9—C10—C1123.80 (15)O2—N2—O3123.89 (19)
C5—C10—C1118.71 (16)O2—N2—C14119.41 (19)
N1—C11—C1122.38 (17)O3—N2—C14116.68 (19)
N1—C11—H11118.8C2—O1—H199.5 (17)
C11—C1—C2—O11.2 (3)C2—C1—C11—N10.6 (3)
C10—C1—C2—O1179.59 (16)C10—C1—C11—N1178.56 (17)
C11—C1—C2—C3178.70 (17)C17—C12—C13—C142.2 (3)
C10—C1—C2—C30.5 (3)N1—C12—C13—C14179.22 (16)
O1—C2—C3—C4178.99 (19)C17—C12—C13—C18178.92 (19)
C1—C2—C3—C40.9 (3)N1—C12—C13—C184.1 (3)
C2—C3—C4—C51.0 (3)C12—C13—C14—C150.9 (3)
C3—C4—C5—C6179.8 (2)C18—C13—C14—C15177.5 (2)
C3—C4—C5—C100.4 (3)C12—C13—C14—N2178.16 (18)
C10—C5—C6—C71.0 (3)C18—C13—C14—N21.6 (3)
C4—C5—C6—C7178.9 (2)C13—C14—C15—C160.6 (4)
C5—C6—C7—C80.5 (3)N2—C14—C15—C16179.7 (2)
C6—C7—C8—C91.4 (3)C14—C15—C16—C170.8 (4)
C7—C8—C9—C100.8 (3)C15—C16—C17—C120.5 (4)
C8—C9—C10—C50.6 (3)C13—C12—C17—C162.1 (3)
C8—C9—C10—C1179.21 (17)N1—C12—C17—C16179.0 (2)
C6—C5—C10—C91.5 (3)C1—C11—N1—C12178.07 (15)
C4—C5—C10—C9178.39 (18)C17—C12—N1—C1137.0 (3)
C6—C5—C10—C1178.35 (17)C13—C12—N1—C11145.97 (18)
C4—C5—C10—C11.8 (3)C15—C14—N2—O2135.8 (2)
C2—C1—C10—C9178.35 (16)C13—C14—N2—O245.0 (3)
C11—C1—C10—C92.5 (3)C15—C14—N2—O342.8 (3)
C2—C1—C10—C51.8 (2)C13—C14—N2—O3136.3 (2)
C11—C1—C10—C5177.34 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.10 (3)1.48 (3)2.5310 (19)159 (3)

Experimental details

Crystal data
Chemical formulaC18H14N2O3
Mr306.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.5520 (9), 7.4731 (4), 15.8610 (13)
β (°) 90.806 (6)
V3)1487.65 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.7 × 0.47 × 0.12
Data collection
DiffractometerStoe IPDS II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.989, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
9684, 3088, 1969
Rint0.061
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.153, 0.94
No. of reflections3088
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.10 (3)1.48 (3)2.5310 (19)159 (3)
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215–o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKılıç, I., Ağar, E., Erşahin, F. & Işık, Ş. (2009). Acta Cryst. E65, o737.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOdabąsogˇlu, M., Albayrak, C. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425–o426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds