organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[4-(Di­ethyl­amino)­phen­yl]imino­methyl}-4,6-di­iodo­phenol

aDepartment of Chemistry, Dr Rangarajan Dr Sakunthala Engineering College, Chennai 600 062, India, bDepartment of Chemistry, Government Arts College, Melur, Madurai 625 106, India, cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and dDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: as_pandian59@yahoo.com

(Received 25 October 2010; accepted 28 October 2010; online 6 November 2010)

In the title compound, C17H18I2N2O, the dihedral angle between the aromatic rings is 5.4 (1)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.697 (1) Å].

Related literature

For Schiff base compounds in coordination chemistry, see: Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]); Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]). For their role in biological processes, see: May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Manvizhi et al. (2010[Manvizhi, K., Ranjith, S., Parthiban, K., Rajagopal, G. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2422.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18I2N2O

  • Mr = 520.13

  • Monoclinic, P 21 /n

  • a = 11.5562 (5) Å

  • b = 11.1325 (5) Å

  • c = 15.1207 (6) Å

  • β = 111.958 (2)°

  • V = 1804.15 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.49 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.450, Tmax = 0.572

  • 26163 measured reflections

  • 7041 independent reflections

  • 4445 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.105

  • S = 1.01

  • 7041 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.592 (3) 148
C16—H16BCg1ii 0.97 2.94 3.845 (4) 155
Symmetry code: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological processes (May et al., 2004). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound has been carried out.

The molecular structure is illustrated in Fig. 1. The geometric parameters of the title molecule agrees well with those reported for a similar structure (Manvizhi et al., 2010). The dihedral angle between the aromatic rings is 5.4 (1)°, showing that both the rings are almost coplanar.

In addition to the van der Waals interactions, the crystal packing is stabilized by C-H···π hydrogen bonds as well as by π-π interactions. The intramolecular O-H···N hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing (Fig. 2) is stabilized by C-H···π interactions between a H16B atom and a neighbouring ring, with a C16-H16B···Cg1i separation of 2.94 Å (Fig. 2 and Table 1; Cg1 is the centroid of the C8-C13 ring ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by π-π interactions with a Cg1···Cg2ii and a Cg2···Cg1ii separation of 3.697 (1)Å and 3.697 (1)Å, respectively (Fig. 2; Cg1 and Cg2 are the centroids of the C8-C13 benzene ring and C1-C6 benzene ring, respectively, symmetry code as in Table 1).

Related literature top

For Schiff base compounds in coordination chemistry, see: Weber et al. (2007); Chen et al. (2008). For and for their role in biological processes, see: May et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Manvizhi et al. (2010).

Experimental top

An ethanoic solution (30 ml) and N,N-diethyl aniline (10 mmol) was magnetically stirred in a round bottom flask followed by dropwise addition of 3,5-diiodosalicylaldehyde (10 mmol). The reaction mixture was then refluxed for two hours and upon cooling to 273K a yellow crystalline solid precipitated from the mixture. Single yellow crystals were obtained, filtered off, washed with ice cold ethanol and air dried.

Refinement top

All the H atoms were positioned geometrically, with O-H = 0.82 Å and and C-H = 0.93 - 0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.2Ueq.

Structure description top

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological processes (May et al., 2004). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound has been carried out.

The molecular structure is illustrated in Fig. 1. The geometric parameters of the title molecule agrees well with those reported for a similar structure (Manvizhi et al., 2010). The dihedral angle between the aromatic rings is 5.4 (1)°, showing that both the rings are almost coplanar.

In addition to the van der Waals interactions, the crystal packing is stabilized by C-H···π hydrogen bonds as well as by π-π interactions. The intramolecular O-H···N hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing (Fig. 2) is stabilized by C-H···π interactions between a H16B atom and a neighbouring ring, with a C16-H16B···Cg1i separation of 2.94 Å (Fig. 2 and Table 1; Cg1 is the centroid of the C8-C13 ring ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by π-π interactions with a Cg1···Cg2ii and a Cg2···Cg1ii separation of 3.697 (1)Å and 3.697 (1)Å, respectively (Fig. 2; Cg1 and Cg2 are the centroids of the C8-C13 benzene ring and C1-C6 benzene ring, respectively, symmetry code as in Table 1).

For Schiff base compounds in coordination chemistry, see: Weber et al. (2007); Chen et al. (2008). For and for their role in biological processes, see: May et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Manvizhi et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. C-H···π and π-π interactions (dotted lines) in the title compound. Cg1 and Cg2 denote the centroids of the C8-C13 ring and C1-C6 ring, respectively. [Symmetry code: (i) -1/2-x, -1/2+y, 1/2-z; (ii) -x, -y, -z.]
2-{[4-(Diethylamino)phenyl]iminomethyl}-4,6-diiodophenol top
Crystal data top
C17H18I2N2OF(000) = 992
Mr = 520.13Dx = 1.915 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7076 reflections
a = 11.5562 (5) Åθ = 1.9–33.5°
b = 11.1325 (5) ŵ = 3.49 mm1
c = 15.1207 (6) ÅT = 293 K
β = 111.958 (2)°Block, yellow
V = 1804.15 (13) Å30.24 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7041 independent reflections
Radiation source: fine-focus sealed tube4445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 33.5°, θmin = 1.9°
ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1017
Tmin = 0.450, Tmax = 0.572l = 2320
26163 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0437P)2 + 1.1802P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
7041 reflectionsΔρmax = 1.14 e Å3
202 parametersΔρmin = 1.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00078 (19)
Crystal data top
C17H18I2N2OV = 1804.15 (13) Å3
Mr = 520.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5562 (5) ŵ = 3.49 mm1
b = 11.1325 (5) ÅT = 293 K
c = 15.1207 (6) Å0.24 × 0.22 × 0.16 mm
β = 111.958 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7041 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4445 reflections with I > 2σ(I)
Tmin = 0.450, Tmax = 0.572Rint = 0.026
26163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.01Δρmax = 1.14 e Å3
7041 reflectionsΔρmin = 1.24 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.33796 (2)0.47955 (2)0.048244 (18)0.06508 (9)
I20.17213 (2)0.45975 (3)0.257569 (17)0.07853 (11)
O10.18770 (18)0.2470 (2)0.12546 (15)0.0561 (5)
H10.19350.19110.09200.084*
N10.1205 (2)0.10225 (19)0.01926 (16)0.0424 (5)
N20.2604 (2)0.2797 (2)0.20106 (18)0.0502 (5)
C10.0432 (2)0.3956 (2)0.12942 (18)0.0418 (5)
C20.0754 (2)0.2987 (2)0.08510 (19)0.0401 (5)
C30.0127 (2)0.2571 (2)0.00140 (18)0.0384 (5)
C40.1298 (2)0.3106 (2)0.0396 (2)0.0434 (5)
H40.18820.28270.09690.052*
C50.1596 (2)0.4050 (2)0.00723 (19)0.0413 (5)
C60.0732 (2)0.4483 (2)0.09115 (19)0.0424 (5)
H60.09310.51280.12200.051*
C70.0155 (3)0.1572 (2)0.0516 (2)0.0435 (5)
H70.04470.13210.10910.052*
C80.1490 (2)0.0059 (2)0.06823 (19)0.0393 (5)
C90.0659 (2)0.0478 (2)0.1498 (2)0.0448 (6)
H90.01600.02060.17530.054*
C100.1022 (3)0.1412 (3)0.1942 (2)0.0460 (6)
H100.04420.17520.24900.055*
C110.2248 (2)0.1854 (2)0.15812 (19)0.0414 (5)
C120.3081 (3)0.1300 (3)0.0757 (2)0.0474 (6)
H120.39060.15570.05010.057*
C130.2698 (3)0.0380 (2)0.03204 (19)0.0442 (6)
H130.32680.00440.02340.053*
C140.3909 (3)0.3145 (3)0.1708 (2)0.0564 (7)
H14A0.39510.39520.19360.068*
H14B0.42660.31680.10170.068*
C150.4696 (4)0.2328 (4)0.2052 (3)0.0820 (12)
H15A0.43820.23340.27370.123*
H15B0.55440.26050.18080.123*
H15C0.46620.15250.18320.123*
C160.1740 (3)0.3316 (3)0.2895 (3)0.0681 (9)
H16A0.09350.34210.28420.082*
H16B0.20420.41050.29770.082*
C170.1568 (4)0.2583 (5)0.3760 (3)0.0930 (15)
H17A0.13480.17770.36620.140*
H17B0.09140.29260.43000.140*
H17C0.23310.25750.38740.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04530 (12)0.06753 (15)0.07159 (16)0.01936 (9)0.00944 (10)0.00041 (10)
I20.05227 (14)0.1088 (2)0.05720 (15)0.01130 (12)0.00056 (10)0.03482 (13)
O10.0423 (10)0.0597 (12)0.0577 (12)0.0140 (9)0.0090 (9)0.0060 (10)
N10.0457 (12)0.0380 (10)0.0479 (12)0.0021 (9)0.0227 (10)0.0008 (9)
N20.0510 (13)0.0495 (13)0.0506 (14)0.0104 (10)0.0194 (11)0.0062 (11)
C10.0391 (12)0.0445 (13)0.0393 (13)0.0014 (10)0.0117 (10)0.0037 (10)
C20.0373 (12)0.0402 (12)0.0435 (13)0.0012 (9)0.0157 (10)0.0027 (10)
C30.0385 (12)0.0336 (11)0.0428 (13)0.0014 (9)0.0149 (10)0.0011 (9)
C40.0400 (13)0.0404 (12)0.0442 (14)0.0019 (10)0.0092 (10)0.0023 (11)
C50.0365 (12)0.0382 (12)0.0462 (14)0.0050 (9)0.0121 (10)0.0025 (10)
C60.0445 (14)0.0386 (12)0.0440 (14)0.0029 (10)0.0166 (11)0.0029 (10)
C70.0480 (14)0.0373 (12)0.0475 (14)0.0004 (10)0.0206 (12)0.0035 (11)
C80.0419 (13)0.0358 (11)0.0437 (13)0.0019 (9)0.0201 (11)0.0004 (10)
C90.0365 (12)0.0467 (14)0.0528 (16)0.0041 (10)0.0186 (11)0.0022 (12)
C100.0421 (13)0.0478 (14)0.0483 (15)0.0003 (11)0.0172 (11)0.0065 (12)
C110.0449 (13)0.0394 (12)0.0423 (13)0.0050 (10)0.0191 (11)0.0015 (10)
C120.0428 (13)0.0521 (15)0.0434 (14)0.0138 (11)0.0115 (11)0.0024 (12)
C130.0437 (13)0.0476 (14)0.0380 (13)0.0064 (11)0.0115 (11)0.0003 (11)
C140.0550 (17)0.0511 (16)0.0634 (19)0.0177 (13)0.0225 (15)0.0013 (14)
C150.059 (2)0.096 (3)0.098 (3)0.009 (2)0.037 (2)0.010 (2)
C160.066 (2)0.067 (2)0.071 (2)0.0094 (17)0.0248 (17)0.0222 (18)
C170.089 (3)0.123 (4)0.061 (2)0.037 (3)0.020 (2)0.004 (2)
Geometric parameters (Å, º) top
I1—C52.085 (2)C9—C101.385 (4)
I2—C12.080 (3)C9—H90.9300
O1—C21.340 (3)C10—C111.403 (4)
O1—H10.8200C10—H100.9300
N1—C71.281 (3)C11—C121.401 (4)
N1—C81.411 (3)C12—C131.378 (4)
N2—C111.375 (3)C12—H120.9300
N2—C141.456 (4)C13—H130.9300
N2—C161.457 (4)C14—C151.510 (5)
C1—C61.381 (4)C14—H14A0.9700
C1—C21.391 (4)C14—H14B0.9700
C2—C31.402 (4)C15—H15A0.9600
C3—C41.391 (3)C15—H15B0.9600
C3—C71.450 (3)C15—H15C0.9600
C4—C51.381 (4)C16—C171.489 (6)
C4—H40.9300C16—H16A0.9700
C5—C61.376 (4)C16—H16B0.9700
C6—H60.9300C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C91.383 (4)C17—H17C0.9600
C8—C131.384 (4)
C2—O1—H1109.5C11—C10—H10119.4
C7—N1—C8122.5 (2)N2—C11—C12121.9 (2)
C11—N2—C14120.8 (2)N2—C11—C10121.4 (3)
C11—N2—C16120.9 (2)C12—C11—C10116.7 (2)
C14—N2—C16117.2 (2)C13—C12—C11121.1 (2)
C6—C1—C2121.4 (2)C13—C12—H12119.5
C6—C1—I2119.38 (19)C11—C12—H12119.5
C2—C1—I2119.18 (19)C12—C13—C8122.0 (3)
O1—C2—C1120.1 (2)C12—C13—H13119.0
O1—C2—C3121.6 (2)C8—C13—H13119.0
C1—C2—C3118.3 (2)N2—C14—C15114.7 (3)
C4—C3—C2120.0 (2)N2—C14—H14A108.6
C4—C3—C7119.0 (2)C15—C14—H14A108.6
C2—C3—C7121.0 (2)N2—C14—H14B108.6
C5—C4—C3120.2 (2)C15—C14—H14B108.6
C5—C4—H4119.9H14A—C14—H14B107.6
C3—C4—H4119.9C14—C15—H15A109.5
C6—C5—C4120.4 (2)C14—C15—H15B109.5
C6—C5—I1119.91 (19)H15A—C15—H15B109.5
C4—C5—I1119.71 (19)C14—C15—H15C109.5
C5—C6—C1119.6 (2)H15A—C15—H15C109.5
C5—C6—H6120.2H15B—C15—H15C109.5
C1—C6—H6120.2N2—C16—C17114.2 (3)
N1—C7—C3122.2 (3)N2—C16—H16A108.7
N1—C7—H7118.9C17—C16—H16A108.7
C3—C7—H7118.9N2—C16—H16B108.7
C9—C8—C13117.5 (2)C17—C16—H16B108.7
C9—C8—N1125.2 (2)H16A—C16—H16B107.6
C13—C8—N1117.4 (2)C16—C17—H17A109.5
C8—C9—C10121.4 (3)C16—C17—H17B109.5
C8—C9—H9119.3H17A—C17—H17B109.5
C10—C9—H9119.3C16—C17—H17C109.5
C9—C10—C11121.3 (3)H17A—C17—H17C109.5
C9—C10—H10119.4H17B—C17—H17C109.5
C6—C1—C2—O1177.9 (2)C7—N1—C8—C13173.1 (2)
I2—C1—C2—O10.8 (3)C13—C8—C9—C100.6 (4)
C6—C1—C2—C31.6 (4)N1—C8—C9—C10179.1 (3)
I2—C1—C2—C3179.80 (18)C8—C9—C10—C110.2 (4)
O1—C2—C3—C4177.9 (2)C14—N2—C11—C129.1 (4)
C1—C2—C3—C41.5 (4)C16—N2—C11—C12176.7 (3)
O1—C2—C3—C71.1 (4)C14—N2—C11—C10171.8 (3)
C1—C2—C3—C7179.5 (2)C16—N2—C11—C104.3 (4)
C2—C3—C4—C50.2 (4)C9—C10—C11—N2178.7 (3)
C7—C3—C4—C5179.2 (2)C9—C10—C11—C120.4 (4)
C3—C4—C5—C61.1 (4)N2—C11—C12—C13178.0 (3)
C3—C4—C5—I1177.55 (19)C10—C11—C12—C131.1 (4)
C4—C5—C6—C11.1 (4)C11—C12—C13—C81.6 (4)
I1—C5—C6—C1177.6 (2)C9—C8—C13—C121.3 (4)
C2—C1—C6—C50.3 (4)N1—C8—C13—C12178.4 (2)
I2—C1—C6—C5178.9 (2)C11—N2—C14—C1576.2 (4)
C8—N1—C7—C3179.3 (2)C16—N2—C14—C1591.8 (4)
C4—C3—C7—N1178.5 (2)C11—N2—C16—C1776.8 (4)
C2—C3—C7—N10.6 (4)C14—N2—C16—C1791.2 (4)
C7—N1—C8—C96.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.592 (3)148
C16—H16B···Cg1ii0.972.943.845 (4)155
Symmetry code: (i) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18I2N2O
Mr520.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.5562 (5), 11.1325 (5), 15.1207 (6)
β (°) 111.958 (2)
V3)1804.15 (13)
Z4
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.450, 0.572
No. of measured, independent and
observed [I > 2σ(I)] reflections
26163, 7041, 4445
Rint0.026
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.01
No. of reflections7041
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 1.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.592 (3)148
C16—H16B···Cg1ii0.972.943.845 (4)155
Symmetry code: (i) x1/2, y1/2, z+1/2.
 

Acknowledgements

ASP thanks Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationManvizhi, K., Ranjith, S., Parthiban, K., Rajagopal, G. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds