organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­chloro­phen­yl)-2,4-di­methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 28 October 2010; accepted 29 October 2010; online 6 November 2010)

In the title compound, C14H13Cl2NO2S, the dihedral angle between the two aromatic rings is 70.4 (1)°. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯Cl hydrogen bond.

Related literature

For the preparation of the compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o576.]); Nirmala et al. (2010a[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1017.],b[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1090.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13Cl2NO2S

  • Mr = 330.21

  • Monoclinic, P 21 /c

  • a = 9.198 (1) Å

  • b = 9.933 (1) Å

  • c = 16.099 (2) Å

  • β = 99.100 (1)°

  • V = 1452.4 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.37 mm−1

  • T = 299 K

  • 0.53 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3394 measured reflections

  • 2581 independent reflections

  • 2367 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.13

  • 2581 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.84 (2) 2.50 (2) 2.9517 (19) 115 (2)

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009; Nirmala et al., 2010a,b), in the present work, the structure of 2,4-dimethyl-N-(2,3-dichlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the SO bonds. The molecule is bent at the N atom with the C1—SO2—NH—C7 torsion angle of -50.3 (2)°, compared to the values of 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (II)(Gowda et al., 2009), -54.9 (3)° in 2,4-dimethyl-N-(3,5-dichlorophenyl)benzenesulfonamide (III) (Nirmala et al., 2010b), and 70.1 (2) and -66.0 (2)° in the two molecules of 2,4-dimethyl-N-(2,3-dimethylphenyl)- benzenesulfonamide (IV) (Nirmala et al., 2010a)

The two benzene rings in (I) are tilted relative to each other by 70.4 (1)°, compared to the values of 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in the two independent molecules of(II), 82.3 (1)° in (III), and 41.5 (1) and 43.8 (1)° in the two molecules of(IV). The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) through N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For the preparation of the compound, see: Savitha & Gowda (2006). For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009); Nirmala et al. (2010a,b). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform(40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 2,3-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N-(2,3-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its position refined with N—H = 0.86 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Structure description top

As part of a study of the substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009; Nirmala et al., 2010a,b), in the present work, the structure of 2,4-dimethyl-N-(2,3-dichlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the SO bonds. The molecule is bent at the N atom with the C1—SO2—NH—C7 torsion angle of -50.3 (2)°, compared to the values of 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (II)(Gowda et al., 2009), -54.9 (3)° in 2,4-dimethyl-N-(3,5-dichlorophenyl)benzenesulfonamide (III) (Nirmala et al., 2010b), and 70.1 (2) and -66.0 (2)° in the two molecules of 2,4-dimethyl-N-(2,3-dimethylphenyl)- benzenesulfonamide (IV) (Nirmala et al., 2010a)

The two benzene rings in (I) are tilted relative to each other by 70.4 (1)°, compared to the values of 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in the two independent molecules of(II), 82.3 (1)° in (III), and 41.5 (1) and 43.8 (1)° in the two molecules of(IV). The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) through N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

For the preparation of the compound, see: Savitha & Gowda (2006). For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009); Nirmala et al. (2010a,b). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(2,3-dichlorophenyl)-2,4-dimethylbenzenesulfonamide top
Crystal data top
C14H13Cl2NO2SF(000) = 680
Mr = 330.21Dx = 1.510 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.198 (1) Åθ = 4.9–22.5°
b = 9.933 (1) ŵ = 5.37 mm1
c = 16.099 (2) ÅT = 299 K
β = 99.100 (1)°Prism, colorless
V = 1452.4 (3) Å30.53 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.041
Radiation source: fine-focus sealed tubeθmax = 66.9°, θmin = 4.9°
Graphite monochromatorh = 1010
ω/2θ scansk = 110
3394 measured reflectionsl = 194
2581 independent reflections3 standard reflections every 120 min
2367 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.3328P]
where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.66 e Å3
Crystal data top
C14H13Cl2NO2SV = 1452.4 (3) Å3
Mr = 330.21Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.198 (1) ŵ = 5.37 mm1
b = 9.933 (1) ÅT = 299 K
c = 16.099 (2) Å0.53 × 0.20 × 0.20 mm
β = 99.100 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.041
3394 measured reflections3 standard reflections every 120 min
2581 independent reflections intensity decay: 1.0%
2367 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.26 e Å3
2581 reflectionsΔρmin = 0.66 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25244 (6)0.10202 (6)0.09534 (4)0.05416 (19)
Cl20.08838 (6)0.14100 (6)0.06647 (4)0.0576 (2)
S10.45032 (5)0.26140 (5)0.21630 (3)0.04180 (18)
O10.60015 (16)0.22571 (19)0.21346 (11)0.0561 (4)
O20.41640 (18)0.33596 (18)0.28705 (10)0.0545 (4)
N10.36407 (18)0.11597 (18)0.21294 (12)0.0432 (4)
H1N0.409 (3)0.052 (2)0.1949 (16)0.052*
C10.3736 (2)0.3504 (2)0.12509 (13)0.0385 (4)
C20.3976 (2)0.3127 (2)0.04461 (13)0.0418 (5)
C30.3316 (3)0.3909 (2)0.02241 (14)0.0492 (5)
H30.34820.36880.07630.059*
C40.2427 (3)0.4999 (2)0.01297 (16)0.0535 (6)
C50.2205 (3)0.5337 (2)0.06777 (17)0.0592 (6)
H50.16060.60650.07570.071*
C60.2859 (3)0.4606 (2)0.13590 (15)0.0509 (5)
H60.27130.48520.18970.061*
C70.2086 (2)0.10239 (19)0.19856 (12)0.0366 (4)
C80.1436 (2)0.00162 (19)0.14533 (12)0.0370 (4)
C90.0078 (2)0.0153 (2)0.13289 (13)0.0409 (5)
C100.0959 (2)0.0673 (2)0.17213 (14)0.0482 (5)
H100.19750.05550.16340.058*
C110.0319 (2)0.1676 (3)0.22442 (15)0.0513 (5)
H110.09100.22450.25060.062*
C120.1197 (2)0.1853 (2)0.23870 (14)0.0467 (5)
H120.16170.25240.27510.056*
C130.4877 (3)0.1928 (3)0.02611 (16)0.0583 (6)
H13A0.58920.20750.04940.070*
H13B0.47890.18090.03370.070*
H13C0.45260.11360.05080.070*
C140.1715 (4)0.5790 (3)0.0878 (2)0.0778 (9)
H14A0.24340.59930.12320.093*
H14B0.13240.66130.06920.093*
H14C0.09330.52700.11890.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0441 (3)0.0501 (3)0.0692 (4)0.0080 (2)0.0118 (3)0.0127 (2)
Cl20.0507 (3)0.0612 (4)0.0571 (3)0.0150 (2)0.0028 (2)0.0009 (3)
S10.0302 (3)0.0512 (3)0.0432 (3)0.00367 (19)0.00317 (19)0.0066 (2)
O10.0278 (7)0.0756 (11)0.0636 (10)0.0026 (7)0.0036 (7)0.0020 (8)
O20.0526 (9)0.0673 (10)0.0427 (8)0.0068 (8)0.0050 (7)0.0160 (7)
N10.0296 (8)0.0444 (10)0.0554 (10)0.0026 (7)0.0059 (7)0.0006 (8)
C10.0325 (9)0.0398 (10)0.0436 (10)0.0056 (8)0.0072 (8)0.0065 (8)
C20.0340 (10)0.0454 (11)0.0474 (11)0.0083 (8)0.0105 (8)0.0089 (9)
C30.0472 (12)0.0552 (13)0.0448 (11)0.0144 (10)0.0067 (9)0.0055 (9)
C40.0542 (13)0.0437 (12)0.0602 (14)0.0143 (10)0.0014 (11)0.0032 (10)
C50.0653 (15)0.0387 (11)0.0729 (16)0.0055 (11)0.0092 (12)0.0036 (11)
C60.0575 (13)0.0440 (11)0.0527 (13)0.0017 (10)0.0136 (10)0.0096 (10)
C70.0292 (9)0.0394 (10)0.0415 (10)0.0019 (7)0.0070 (8)0.0068 (8)
C80.0335 (10)0.0376 (10)0.0408 (10)0.0050 (8)0.0087 (8)0.0084 (8)
C90.0359 (10)0.0441 (10)0.0419 (10)0.0037 (8)0.0037 (8)0.0107 (8)
C100.0295 (9)0.0602 (13)0.0564 (12)0.0035 (9)0.0110 (9)0.0133 (10)
C110.0395 (11)0.0573 (13)0.0607 (13)0.0094 (10)0.0185 (10)0.0021 (11)
C120.0402 (11)0.0494 (12)0.0528 (12)0.0012 (9)0.0143 (9)0.0042 (10)
C130.0533 (13)0.0682 (15)0.0563 (13)0.0088 (12)0.0179 (11)0.0144 (12)
C140.080 (2)0.0654 (17)0.082 (2)0.0069 (15)0.0054 (16)0.0205 (15)
Geometric parameters (Å, º) top
Cl1—C81.7221 (19)C5—H50.9300
Cl2—C91.733 (2)C6—H60.9300
S1—O11.4307 (16)C7—C121.389 (3)
S1—O21.4338 (16)C7—C81.390 (3)
S1—N11.6448 (18)C8—C91.385 (3)
S1—C11.763 (2)C9—C101.375 (3)
N1—C71.419 (2)C10—C111.375 (3)
N1—H1N0.839 (17)C10—H100.9300
C1—C61.387 (3)C11—C121.387 (3)
C1—C21.399 (3)C11—H110.9300
C2—C31.389 (3)C12—H120.9300
C2—C131.507 (3)C13—H13A0.9600
C3—C41.379 (4)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.388 (4)C14—H14A0.9600
C4—C141.499 (4)C14—H14B0.9600
C5—C61.372 (4)C14—H14C0.9600
O1—S1—O2119.02 (10)C8—C7—N1119.57 (17)
O1—S1—N1104.09 (10)C9—C8—C7120.06 (18)
O2—S1—N1108.37 (10)C9—C8—Cl1120.38 (16)
O1—S1—C1111.01 (10)C7—C8—Cl1119.56 (15)
O2—S1—C1107.10 (10)C10—C9—C8120.9 (2)
N1—S1—C1106.58 (9)C10—C9—Cl2119.20 (16)
C7—N1—S1123.88 (14)C8—C9—Cl2119.90 (17)
C7—N1—H1N114.4 (18)C9—C10—C11119.14 (19)
S1—N1—H1N114.7 (18)C9—C10—H10120.4
C6—C1—C2120.5 (2)C11—C10—H10120.4
C6—C1—S1117.09 (16)C10—C11—C12121.0 (2)
C2—C1—S1122.40 (16)C10—C11—H11119.5
C3—C2—C1117.1 (2)C12—C11—H11119.5
C3—C2—C13118.4 (2)C11—C12—C7119.9 (2)
C1—C2—C13124.5 (2)C11—C12—H12120.1
C4—C3—C2123.2 (2)C7—C12—H12120.1
C4—C3—H3118.4C2—C13—H13A109.5
C2—C3—H3118.4C2—C13—H13B109.5
C3—C4—C5118.1 (2)H13A—C13—H13B109.5
C3—C4—C14120.9 (3)C2—C13—H13C109.5
C5—C4—C14121.0 (3)H13A—C13—H13C109.5
C6—C5—C4120.6 (2)H13B—C13—H13C109.5
C6—C5—H5119.7C4—C14—H14A109.5
C4—C5—H5119.7C4—C14—H14B109.5
C5—C6—C1120.5 (2)H14A—C14—H14B109.5
C5—C6—H6119.8C4—C14—H14C109.5
C1—C6—H6119.8H14A—C14—H14C109.5
C12—C7—C8119.07 (18)H14B—C14—H14C109.5
C12—C7—N1121.33 (19)
O1—S1—N1—C7167.74 (17)C4—C5—C6—C11.0 (4)
O2—S1—N1—C764.64 (19)C2—C1—C6—C50.5 (3)
C1—S1—N1—C750.33 (19)S1—C1—C6—C5179.00 (19)
O1—S1—C1—C6138.08 (17)S1—N1—C7—C1244.1 (3)
O2—S1—C1—C66.64 (19)S1—N1—C7—C8137.91 (17)
N1—S1—C1—C6109.19 (17)C12—C7—C8—C90.0 (3)
O1—S1—C1—C242.39 (19)N1—C7—C8—C9177.98 (17)
O2—S1—C1—C2173.83 (16)C12—C7—C8—Cl1179.87 (16)
N1—S1—C1—C270.35 (18)N1—C7—C8—Cl11.9 (2)
C6—C1—C2—C30.7 (3)C7—C8—C9—C100.5 (3)
S1—C1—C2—C3179.79 (15)Cl1—C8—C9—C10179.67 (16)
C6—C1—C2—C13178.4 (2)C7—C8—C9—Cl2179.99 (14)
S1—C1—C2—C131.1 (3)Cl1—C8—C9—Cl20.2 (2)
C1—C2—C3—C41.5 (3)C8—C9—C10—C110.1 (3)
C13—C2—C3—C4177.6 (2)Cl2—C9—C10—C11179.59 (17)
C2—C3—C4—C51.0 (3)C9—C10—C11—C120.8 (3)
C2—C3—C4—C14178.6 (2)C10—C11—C12—C71.2 (3)
C3—C4—C5—C60.3 (4)C8—C7—C12—C110.8 (3)
C14—C4—C5—C6179.9 (3)N1—C7—C12—C11178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.84 (2)2.50 (2)2.9517 (19)115 (2)

Experimental details

Crystal data
Chemical formulaC14H13Cl2NO2S
Mr330.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)9.198 (1), 9.933 (1), 16.099 (2)
β (°) 99.100 (1)
V3)1452.4 (3)
Z4
Radiation typeCu Kα
µ (mm1)5.37
Crystal size (mm)0.53 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3394, 2581, 2367
Rint0.041
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.13
No. of reflections2581
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.66

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.839 (17)2.50 (2)2.9517 (19)115 (2)
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1090.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds