inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

K2LaCl5

aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bDepartment für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, 50939 Köln, Germany
*Correspondence e-mail: gerd.meyer@uni-koeln.de

(Received 28 October 2010; accepted 4 November 2010; online 10 November 2010)

The ternary title compound, dipotassium lanthanum penta­chloride, K2LaCl5, is isotypic with Y2HfS5 and various ternary rare-earth metal(III) halides with the general formula A2MX5 (A = NH4, InI, Na–Cs; M = La–Dy; X = Cl–I). The La3+ cations and three of the four symmetry-independent chloride anions are located on a crystallographic mirror plane. The La3+ cations are surrounded by seven chloride anions, each in the shape of a monocapped trigonal prism, whereas the coordination spheres of the K+ cations exhibit one more cap. Three of the four independent chloride anions reside in a fivefold cationic coordination, leading to distorted square pyramids. The fourth chloride anion has only four cationic neighbours, forming no specific polyhedron.

Related literature

For the U3Ch5-type structure (Ch = S and Se) and its relationship to Y2HfS5, see: Moseley et al. (1972[Moseley, P. T., Brown, D. & Whittaker, B. (1972). Acta Cryst. B28, 1816-1821.]); Potel et al. (1972[Potel, M., Brochu, R., Padiou, J. & Grandjean, D. (1972). C. R. Acad. Sci. Paris, 275, 1419-1421.]); Jeitschko & Donohue (1975[Jeitschko, W. & Donohue, P. C. (1975). Acta Cryst. B31, 1890-1895.]). For the low-temperature phase of Yb5Sb3, see: Brunton & Steinfink (1971[Brunton, G. D. & Steinfink, H. (1971). Inorg. Chem. 10, 2301-2303.]). For the series of the ternary rare-earth metal(III) halides with A = NH4, InI, Na – Cs; M = La – Dy; X = Cl – I, see: Meyer & Hüttl (1983[Meyer, G. & Hüttl, E. (1983). Z. Anorg. Allg. Chem. 497, 191-198.]); Meyer et al. (1985[Meyer, G., Soose, J., Moritz, A., Vitt, V. & Holljes, Th. (1985). Z. Anorg. Allg. Chem. 521, 161-172.]); Wickleder & Meyer (1995[Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 740-742.]).

Experimental

Crystal data
  • K2LaCl5

  • Mr = 394.36

  • Orthorhombic, P n m a

  • a = 12.7402 (8) Å

  • b = 8.8635 (6) Å

  • c = 8.0174 (5) Å

  • V = 905.35 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.02 mm−1

  • T = 293 K

  • 0.33 × 0.28 × 0.24 mm

Data collection
  • Stoe IPDS-I diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.106, Tmax = 0.185

  • 12421 measured reflections

  • 1650 independent reflections

  • 872 reflections with I > 2σ(I)

  • Rint = 0.139

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.142

  • S = 0.90

  • 1650 reflections

  • 44 parameters

  • Δρmax = 1.58 e Å−3

  • Δρmin = −2.64 e Å−3

Table 1
Selected bond lengths (Å)

K—Cl1i 3.160 (3)
K—Cl2 3.177 (3)
K—Cl1ii 3.206 (3)
K—Cl2iii 3.234 (3)
K—Cl3iv 3.272 (4)
K—Cl4 3.304 (3)
K—Cl4iii 3.327 (3)
K—Cl3 3.351 (4)
La—Cl3v 2.812 (3)
La—Cl1i 2.833 (3)
La—Cl2vi 2.845 (3)
La—Cl4 2.858 (2)
La—Cl4vii 2.858 (2)
La—Cl4viii 2.895 (2)
La—Cl4ix 2.895 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) x, y, z-1; (vi) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vii) [x, -y+{\script{1\over 2}}, z]; (viii) [-x+1, y-{\script{1\over 2}}, -z]; (ix) -x+1, -y+1, -z.

Data collection: DIF4 (Stoe & Cie, 1992[Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.]); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992[Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ternary rare-earth metal(III) halide K2LaCl5 (Fig. 1) belongs to the A2MX5 series (A = NH4, In, Na – Cs; M = La – Dy; X = Cl – I) (Meyer & Hüttl, 1983; Meyer et al., 1985; Wickleder & Meyer 1995). It can be described as ordered structural variety of U3Ch5 (Ch = S and Se) or the low-temperature phase of Yb5Sb3, respectively, as anti-isotypical arrangement. While the K+ cations have eight contacts to Cl- anions (Fig. 2), the La3+ cations are surrounded by only seven of them. In both cases distorted mono- or bicapped trigonal prisms [LaCl7]4– or [KCl8]7– originate. For the lanthanum bearing ones they are linked via common edges and form chains, which run along [010] (Fig. 3). Together with the chloride anions (Cl1)-, (Cl2)and (Cl3)-, La3+ occupies the 4c position and shows the site symmetry m, while the (Cl4)- anion and the K+ cation are located at the 8d position with the site symmetry 1.

Related literature top

For the U3Ch5-type structure (Ch = S and Se) and its relationship to Y2HfS5, see: Moseley et al. (1972); Potel et al. (1972); Jeitschko & Donohue (1975). For the low-temperature phase of Yb5Sb3, see: Brunton & Steinfink (1971). For the series of the ternary rare-earth metal(III) halides with A = NH4, In, Na – Cs; M = La – Dy; X = Cl – I, see: Meyer & Hüttl (1983); Meyer et al. (1985); Wickleder & Meyer (1995).

Experimental top

Colourless, transparent, brick-shaped single crystals of K2LaCl5 were obtained as by-product from the reaction of potassium azide (KN3), lanthanum (La), the corresponding sesquioxide (La2O3) and trichloride (LaCl3) in the presence of KCl as flux with the purpose to synthesize K2La4ONCl9. The mixture was transferred into a torch-sealed, evacuated, fused silica vessel, heated at 1123 K for seven days, followed by cooling to room temperature within 24 h.

Structure description top

The ternary rare-earth metal(III) halide K2LaCl5 (Fig. 1) belongs to the A2MX5 series (A = NH4, In, Na – Cs; M = La – Dy; X = Cl – I) (Meyer & Hüttl, 1983; Meyer et al., 1985; Wickleder & Meyer 1995). It can be described as ordered structural variety of U3Ch5 (Ch = S and Se) or the low-temperature phase of Yb5Sb3, respectively, as anti-isotypical arrangement. While the K+ cations have eight contacts to Cl- anions (Fig. 2), the La3+ cations are surrounded by only seven of them. In both cases distorted mono- or bicapped trigonal prisms [LaCl7]4– or [KCl8]7– originate. For the lanthanum bearing ones they are linked via common edges and form chains, which run along [010] (Fig. 3). Together with the chloride anions (Cl1)-, (Cl2)and (Cl3)-, La3+ occupies the 4c position and shows the site symmetry m, while the (Cl4)- anion and the K+ cation are located at the 8d position with the site symmetry 1.

For the U3Ch5-type structure (Ch = S and Se) and its relationship to Y2HfS5, see: Moseley et al. (1972); Potel et al. (1972); Jeitschko & Donohue (1975). For the low-temperature phase of Yb5Sb3, see: Brunton & Steinfink (1971). For the series of the ternary rare-earth metal(III) halides with A = NH4, In, Na – Cs; M = La – Dy; X = Cl – I, see: Meyer & Hüttl (1983); Meyer et al. (1985); Wickleder & Meyer (1995).

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4 (Stoe & Cie, 1992); data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of K2LaCl5 as viewed along [010].
[Figure 2] Fig. 2. Coordination sphere of the K+ cations with the shape of a bicapped trigonal prism. [Symmetry codes: (i) –x+1/2, –y + 1, z1/2; (ii) x+1/2, y, –z+3/2; (iii) –x+3/2, –y + 1, z+1/2; (iv) –x+3/2, –y + 1, z1/2.]
[Figure 3] Fig. 3. View at the chain formed by edge-sharing monocapped trigonal prisms [LaCl7]4– with its contacts to the K+ cations. Displacement ellipsoids are drawn at 90% probability level.
dipotassium lanthanum pentachloride top
Crystal data top
K2LaCl5F(000) = 720
Mr = 394.36Dx = 2.893 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nθ = 3.4–33.0°
a = 12.7402 (8) ŵ = 7.02 mm1
b = 8.8635 (6) ÅT = 293 K
c = 8.0174 (5) ÅBricks, colourless
V = 905.35 (10) Å30.33 × 0.28 × 0.24 mm
Z = 4
Data collection top
Stoe IPDS-I
diffractometer
1650 independent reflections
Radiation source: fine-focus sealed tube872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
imaging plate detector system scansθmax = 33.0°, θmin = 3.4°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
h = 1919
Tmin = 0.106, Tmax = 0.185k = 1111
12421 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0799P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max = 0.004
S = 0.90Δρmax = 1.58 e Å3
1650 reflectionsΔρmin = 2.64 e Å3
44 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0094 (12)
Crystal data top
K2LaCl5V = 905.35 (10) Å3
Mr = 394.36Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.7402 (8) ŵ = 7.02 mm1
b = 8.8635 (6) ÅT = 293 K
c = 8.0174 (5) Å0.33 × 0.28 × 0.24 mm
Data collection top
Stoe IPDS-I
diffractometer
1650 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
872 reflections with I > 2σ(I)
Tmin = 0.106, Tmax = 0.185Rint = 0.139
12421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05944 parameters
wR(F2) = 0.1420 restraints
S = 0.90Δρmax = 1.58 e Å3
1650 reflectionsΔρmin = 2.64 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.67125 (15)0.4946 (3)0.5481 (3)0.0379 (5)
La0.50680 (5)0.25000.07776 (8)0.0248 (2)
Cl10.0065 (2)0.75000.9311 (4)0.0310 (6)
Cl20.7911 (2)0.25000.3299 (4)0.0333 (7)
Cl30.6828 (2)0.25000.8662 (4)0.0374 (8)
Cl40.57990 (17)0.5441 (3)0.1663 (3)0.0342 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0381 (10)0.0363 (14)0.0393 (11)0.0014 (8)0.0014 (7)0.0070 (9)
La0.0286 (3)0.0234 (4)0.0222 (3)0.0000.0022 (3)0.000
Cl10.0347 (13)0.0354 (17)0.0228 (11)0.0000.0016 (12)0.000
Cl20.0282 (13)0.039 (2)0.0322 (15)0.0000.0006 (11)0.000
Cl30.0368 (15)0.045 (2)0.0308 (15)0.0000.0088 (12)0.000
Cl40.0460 (12)0.0267 (13)0.0301 (10)0.0030 (9)0.0102 (8)0.0025 (8)
Geometric parameters (Å, º) top
K—Cl1i3.160 (3)La—Cl4x2.895 (2)
K—Cl23.177 (3)La—Kvi4.389 (2)
K—Cl1ii3.206 (3)La—Kxi4.389 (2)
K—Cl2iii3.234 (3)Cl1—Laxii2.833 (3)
K—Cl3iv3.272 (4)Cl1—Kxii3.160 (3)
K—Cl43.304 (3)Cl1—Kxiii3.160 (3)
K—Cl4iii3.327 (3)Cl1—Kxiv3.206 (3)
K—Cl33.351 (4)Cl1—Kxv3.206 (3)
K—Kv4.336 (5)Cl2—Laxvi2.845 (3)
K—Lavi4.389 (2)Cl2—Kv3.177 (3)
K—Kvi4.432 (4)Cl2—Kxvii3.234 (3)
K—Kiii4.4838 (18)Cl2—Kiv3.234 (3)
La—Cl3vii2.812 (3)Cl3—Laxviii2.812 (3)
La—Cl1i2.833 (3)Cl3—Kiii3.272 (4)
La—Cl2viii2.845 (3)Cl3—Kxix3.272 (3)
La—Cl42.858 (2)Cl3—Kv3.351 (4)
La—Cl4v2.858 (2)Cl4—Lax2.895 (2)
La—Cl4ix2.895 (2)Cl4—Kiv3.327 (3)
Cl1i—K—Cl271.80 (8)Cl3vii—La—Cl483.68 (6)
Cl1i—K—Cl1ii91.76 (5)Cl1i—La—Cl475.64 (5)
Cl2—K—Cl1ii148.21 (10)Cl2viii—La—Cl4104.48 (5)
Cl1i—K—Cl2iii141.81 (10)Cl3vii—La—Cl4v83.68 (6)
Cl2—K—Cl2iii142.29 (7)Cl1i—La—Cl4v75.64 (5)
Cl1ii—K—Cl2iii64.80 (8)Cl2viii—La—Cl4v104.48 (5)
Cl1i—K—Cl3iv136.03 (10)Cl4—La—Cl4v131.62 (9)
Cl2—K—Cl3iv87.34 (7)Cl3vii—La—Cl4ix84.06 (7)
Cl1ii—K—Cl3iv86.34 (8)Cl1i—La—Cl4ix132.50 (6)
Cl2iii—K—Cl3iv75.11 (8)Cl2viii—La—Cl4ix78.89 (7)
Cl1i—K—Cl465.30 (7)Cl4—La—Cl4ix150.15 (6)
Cl2—K—Cl475.52 (8)Cl4v—La—Cl4ix73.58 (7)
Cl1ii—K—Cl472.88 (8)Cl3vii—La—Cl4x84.06 (7)
Cl2iii—K—Cl4127.34 (10)Cl1i—La—Cl4x132.50 (6)
Cl3iv—K—Cl472.27 (8)Cl2viii—La—Cl4x78.89 (7)
Cl1i—K—Cl4iii130.30 (10)Cl4—La—Cl4x73.58 (7)
Cl2—K—Cl4iii68.18 (8)Cl4v—La—Cl4x150.15 (6)
Cl1ii—K—Cl4iii136.98 (9)Cl4ix—La—Cl4x78.15 (9)
Cl2iii—K—Cl4iii74.46 (8)Cl3vii—La—Kvi145.53 (4)
Cl3iv—K—Cl4iii69.93 (8)Cl1i—La—Kvi46.84 (5)
Cl4—K—Cl4iii127.83 (9)Cl2viii—La—Kvi47.41 (5)
Cl1i—K—Cl379.12 (8)Cl4—La—Kvi61.85 (6)
Cl2—K—Cl387.50 (8)Cl4v—La—Kvi117.97 (6)
Cl1ii—K—Cl3116.64 (9)Cl4ix—La—Kvi126.15 (5)
Cl2iii—K—Cl385.10 (7)Cl4x—La—Kvi86.55 (6)
Cl3iv—K—Cl3139.63 (8)Cl3vii—La—Kxi145.53 (4)
Cl4—K—Cl3143.76 (10)Cl1i—La—Kxi46.84 (5)
Cl4iii—K—Cl371.00 (8)Cl2viii—La—Kxi47.41 (5)
Cl1i—K—Kv46.68 (5)Cl4—La—Kxi117.97 (6)
Cl2—K—Kv46.96 (6)Cl4v—La—Kxi61.85 (6)
Cl1ii—K—Kv134.91 (5)Cl4ix—La—Kxi86.55 (6)
Cl2iii—K—Kv134.42 (6)Cl4x—La—Kxi126.15 (6)
Cl3iv—K—Kv133.77 (6)Kvi—La—Kxi62.09 (7)
Cl4—K—Kv97.63 (6)Laxii—Cl1—Kxii107.21 (8)
Cl4iii—K—Kv84.07 (6)Laxii—Cl1—Kxiii107.21 (8)
Cl3—K—Kv49.68 (5)Kxii—Cl1—Kxiii86.64 (11)
Cl1i—K—Lavi102.32 (7)Laxii—Cl1—Kxiv93.04 (7)
Cl2—K—Lavi167.59 (9)Kxii—Cl1—Kxiv159.73 (10)
Cl1ii—K—Lavi40.13 (5)Kxiii—Cl1—Kxiv88.24 (5)
Cl2iii—K—Lavi40.37 (6)Laxii—Cl1—Kxv93.04 (7)
Cl3iv—K—Lavi103.97 (7)Kxii—Cl1—Kxv88.24 (5)
Cl4—K—Lavi112.49 (7)Kxiii—Cl1—Kxv159.73 (10)
Cl4iii—K—Lavi110.55 (6)Kxiv—Cl1—Kxv89.82 (11)
Cl3—K—Lavi80.57 (6)Laxvi—Cl2—Kv108.72 (9)
Kv—K—Lavi121.04 (3)Laxvi—Cl2—K108.72 (9)
Cl1i—K—Kvi46.30 (6)Kv—Cl2—K86.07 (11)
Cl2—K—Kvi113.09 (10)Laxvi—Cl2—Kxvii92.22 (8)
Cl1ii—K—Kvi45.45 (6)Kv—Cl2—Kxvii88.75 (3)
Cl2iii—K—Kvi104.62 (9)K—Cl2—Kxvii159.00 (11)
Cl3iv—K—Kvi117.84 (10)Laxvi—Cl2—Kiv92.22 (8)
Cl4—K—Kvi59.28 (6)Kv—Cl2—Kiv159.00 (11)
Cl4iii—K—Kvi171.90 (11)K—Cl2—Kiv88.75 (3)
Cl3—K—Kvi100.93 (9)Kxvii—Cl2—Kiv88.84 (11)
Kv—K—Kvi91.23 (7)Laxviii—Cl3—Kiii100.62 (8)
Lavi—K—Kvi66.36 (5)Laxviii—Cl3—Kxix100.62 (8)
Cl1i—K—Kiii125.25 (10)Kiii—Cl3—Kxix87.54 (11)
Cl2—K—Kiii106.95 (10)Laxviii—Cl3—K115.09 (9)
Cl1ii—K—Kiii104.75 (8)Kiii—Cl3—K85.21 (4)
Cl2iii—K—Kiii45.10 (6)Kxix—Cl3—K144.27 (10)
Cl3iv—K—Kiii97.44 (9)Laxviii—Cl3—Kv115.10 (9)
Cl4—K—Kiii169.44 (11)Kiii—Cl3—Kv144.27 (10)
Cl4iii—K—Kiii47.24 (6)Kxix—Cl3—Kv85.21 (4)
Cl3—K—Kiii46.65 (6)K—Cl3—Kv80.64 (10)
Kv—K—Kiii91.22 (6)La—Cl4—Lax106.42 (7)
Lavi—K—Kiii67.00 (4)La—Cl4—K102.93 (8)
Kvi—K—Kiii126.56 (8)Lax—Cl4—K147.62 (10)
Cl3vii—La—Cl1i127.18 (9)La—Cl4—Kiv98.37 (8)
Cl3vii—La—Cl2viii157.97 (10)Lax—Cl4—Kiv103.65 (8)
Cl1i—La—Cl2viii74.85 (9)K—Cl4—Kiv85.10 (6)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y, z+3/2; (iii) x+3/2, y+1, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x, y+1/2, z; (vi) x+1, y+1, z+1; (vii) x, y, z1; (viii) x1/2, y, z+1/2; (ix) x+1, y1/2, z; (x) x+1, y+1, z; (xi) x+1, y1/2, z+1; (xii) x+1/2, y+1, z+1/2; (xiii) x+1/2, y+1/2, z+1/2; (xiv) x1/2, y+3/2, z+3/2; (xv) x1/2, y, z+3/2; (xvi) x+1/2, y, z+1/2; (xvii) x+3/2, y1/2, z1/2; (xviii) x, y, z+1; (xix) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaK2LaCl5
Mr394.36
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)12.7402 (8), 8.8635 (6), 8.0174 (5)
V3)905.35 (10)
Z4
Radiation typeMo Kα
µ (mm1)7.02
Crystal size (mm)0.33 × 0.28 × 0.24
Data collection
DiffractometerStoe IPDS-I
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1999)
Tmin, Tmax0.106, 0.185
No. of measured, independent and
observed [I > 2σ(I)] reflections
12421, 1650, 872
Rint0.139
(sin θ/λ)max1)0.766
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.142, 0.90
No. of reflections1650
No. of parameters44
Δρmax, Δρmin (e Å3)1.58, 2.64

Computer programs: DIF4 (Stoe & Cie, 1992), REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
K—Cl1i3.160 (3)La—Cl3v2.812 (3)
K—Cl23.177 (3)La—Cl1i2.833 (3)
K—Cl1ii3.206 (3)La—Cl2vi2.845 (3)
K—Cl2iii3.234 (3)La—Cl42.858 (2)
K—Cl3iv3.272 (4)La—Cl4vii2.858 (2)
K—Cl43.304 (3)La—Cl4viii2.895 (2)
K—Cl4iii3.327 (3)La—Cl4ix2.895 (2)
K—Cl33.351 (4)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y, z+3/2; (iii) x+3/2, y+1, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x, y, z1; (vi) x1/2, y, z+1/2; (vii) x, y+1/2, z; (viii) x+1, y1/2, z; (ix) x+1, y+1, z.
 

Acknowledgements

Financial support by the state of Baden-Württemberg (Stuttgart) and the Deutsche Forschungsgemeinschaft is gratefully acknowledged. Furthermore our thanks go to Dr Falk Lissner for the data collection.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrunton, G. D. & Steinfink, H. (1971). Inorg. Chem. 10, 2301–2303.  CrossRef CAS Web of Science Google Scholar
First citationJeitschko, W. & Donohue, P. C. (1975). Acta Cryst. B31, 1890–1895.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMeyer, G. & Hüttl, E. (1983). Z. Anorg. Allg. Chem. 497, 191–198.  CrossRef CAS Web of Science Google Scholar
First citationMeyer, G., Soose, J., Moritz, A., Vitt, V. & Holljes, Th. (1985). Z. Anorg. Allg. Chem. 521, 161–172.  CrossRef CAS Web of Science Google Scholar
First citationMoseley, P. T., Brown, D. & Whittaker, B. (1972). Acta Cryst. B28, 1816–1821.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPotel, M., Brochu, R., Padiou, J. & Grandjean, D. (1972). C. R. Acad. Sci. Paris, 275, 1419–1421.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 740–742.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds