inorganic compounds
K2LaCl5
aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bDepartment für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, 50939 Köln, Germany
*Correspondence e-mail: gerd.meyer@uni-koeln.de
The ternary title compound, dipotassium lanthanum pentachloride, K2LaCl5, is isotypic with Y2HfS5 and various ternary rare-earth metal(III) halides with the general formula A2MX5 (A = NH4, InI, Na–Cs; M = La–Dy; X = Cl–I). The La3+ cations and three of the four symmetry-independent chloride anions are located on a crystallographic mirror plane. The La3+ cations are surrounded by seven chloride anions, each in the shape of a monocapped trigonal prism, whereas the coordination spheres of the K+ cations exhibit one more cap. Three of the four independent chloride anions reside in a fivefold cationic coordination, leading to distorted square pyramids. The fourth chloride anion has only four cationic neighbours, forming no specific polyhedron.
Related literature
For the U3Ch5-type structure (Ch = S and Se) and its relationship to Y2HfS5, see: Moseley et al. (1972); Potel et al. (1972); Jeitschko & Donohue (1975). For the low-temperature phase of Yb5Sb3, see: Brunton & Steinfink (1971). For the series of the ternary rare-earth metal(III) halides with A = NH4, InI, Na – Cs; M = La – Dy; X = Cl – I, see: Meyer & Hüttl (1983); Meyer et al. (1985); Wickleder & Meyer (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: DIF4 (Stoe & Cie, 1992); cell DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810045198/bt5401sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045198/bt5401Isup2.hkl
Colourless, transparent, brick-shaped single crystals of K2LaCl5 were obtained as by-product from the reaction of potassium azide (KN3), lanthanum (La), the corresponding sesquioxide (La2O3) and trichloride (LaCl3) in the presence of KCl as
with the purpose to synthesize K2La4ONCl9. The mixture was transferred into a torch-sealed, evacuated, fused silica vessel, heated at 1123 K for seven days, followed by cooling to room temperature within 24 h.The ternary rare-earth metal(III) halide K2LaCl5 (Fig. 1) belongs to the A2MX5 series (A = NH4, In, Na – Cs; M = La – Dy; X = Cl – I) (Meyer & Hüttl, 1983; Meyer et al., 1985; Wickleder & Meyer 1995). It can be described as ordered structural variety of U3Ch5 (Ch = S and Se) or the low-temperature phase of Yb5Sb3, respectively, as anti-isotypical arrangement. While the K+ cations have eight contacts to Cl- anions (Fig. 2), the La3+ cations are surrounded by only seven of them. In both cases distorted mono- or bicapped trigonal prisms [LaCl7]4– or [KCl8]7– originate. For the lanthanum bearing ones they are linked via common edges and form chains, which run along [010] (Fig. 3). Together with the chloride anions (Cl1)-, (Cl2)– and (Cl3)-, La3+ occupies the 4c position and shows the
m, while the (Cl4)- anion and the K+ cation are located at the 8d position with the 1.For the U3Ch5-type structure (Ch = S and Se) and its relationship to Y2HfS5, see: Moseley et al. (1972); Potel et al. (1972); Jeitschko & Donohue (1975). For the low-temperature phase of Yb5Sb3, see: Brunton & Steinfink (1971). For the series of the ternary rare-earth metal(III) halides with A = NH4, In, Na – Cs; M = La – Dy; X = Cl – I, see: Meyer & Hüttl (1983); Meyer et al. (1985); Wickleder & Meyer (1995).
Data collection: DIF4 (Stoe & Cie, 1992); cell
DIF4 (Stoe & Cie, 1992); data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Crystal structure of K2LaCl5 as viewed along [010]. | |
Fig. 2. Coordination sphere of the K+ cations with the shape of a bicapped trigonal prism. [Symmetry codes: (i) –x+1/2, –y + 1, z–1/2; (ii) x+1/2, y, –z+3/2; (iii) –x+3/2, –y + 1, z+1/2; (iv) –x+3/2, –y + 1, z–1/2.] | |
Fig. 3. View at the chain formed by edge-sharing monocapped trigonal prisms [LaCl7]4– with its contacts to the K+ cations. Displacement ellipsoids are drawn at 90% probability level. |
K2LaCl5 | F(000) = 720 |
Mr = 394.36 | Dx = 2.893 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | θ = 3.4–33.0° |
a = 12.7402 (8) Å | µ = 7.02 mm−1 |
b = 8.8635 (6) Å | T = 293 K |
c = 8.0174 (5) Å | Bricks, colourless |
V = 905.35 (10) Å3 | 0.33 × 0.28 × 0.24 mm |
Z = 4 |
Stoe IPDS-I diffractometer | 1650 independent reflections |
Radiation source: fine-focus sealed tube | 872 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.139 |
imaging plate detector system scans | θmax = 33.0°, θmin = 3.4° |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) | h = −19→19 |
Tmin = 0.106, Tmax = 0.185 | k = −11→11 |
12421 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | w = 1/[σ2(Fo2) + (0.0799P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.142 | (Δ/σ)max = 0.004 |
S = 0.90 | Δρmax = 1.58 e Å−3 |
1650 reflections | Δρmin = −2.64 e Å−3 |
44 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0094 (12) |
K2LaCl5 | V = 905.35 (10) Å3 |
Mr = 394.36 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 12.7402 (8) Å | µ = 7.02 mm−1 |
b = 8.8635 (6) Å | T = 293 K |
c = 8.0174 (5) Å | 0.33 × 0.28 × 0.24 mm |
Stoe IPDS-I diffractometer | 1650 independent reflections |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) | 872 reflections with I > 2σ(I) |
Tmin = 0.106, Tmax = 0.185 | Rint = 0.139 |
12421 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 44 parameters |
wR(F2) = 0.142 | 0 restraints |
S = 0.90 | Δρmax = 1.58 e Å−3 |
1650 reflections | Δρmin = −2.64 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
K | 0.67125 (15) | 0.4946 (3) | 0.5481 (3) | 0.0379 (5) | |
La | 0.50680 (5) | 0.2500 | 0.07776 (8) | 0.0248 (2) | |
Cl1 | −0.0065 (2) | 0.7500 | 0.9311 (4) | 0.0310 (6) | |
Cl2 | 0.7911 (2) | 0.2500 | 0.3299 (4) | 0.0333 (7) | |
Cl3 | 0.6828 (2) | 0.2500 | 0.8662 (4) | 0.0374 (8) | |
Cl4 | 0.57990 (17) | 0.5441 (3) | 0.1663 (3) | 0.0342 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K | 0.0381 (10) | 0.0363 (14) | 0.0393 (11) | 0.0014 (8) | −0.0014 (7) | −0.0070 (9) |
La | 0.0286 (3) | 0.0234 (4) | 0.0222 (3) | 0.000 | 0.0022 (3) | 0.000 |
Cl1 | 0.0347 (13) | 0.0354 (17) | 0.0228 (11) | 0.000 | 0.0016 (12) | 0.000 |
Cl2 | 0.0282 (13) | 0.039 (2) | 0.0322 (15) | 0.000 | 0.0006 (11) | 0.000 |
Cl3 | 0.0368 (15) | 0.045 (2) | 0.0308 (15) | 0.000 | 0.0088 (12) | 0.000 |
Cl4 | 0.0460 (12) | 0.0267 (13) | 0.0301 (10) | −0.0030 (9) | −0.0102 (8) | 0.0025 (8) |
K—Cl1i | 3.160 (3) | La—Cl4x | 2.895 (2) |
K—Cl2 | 3.177 (3) | La—Kvi | 4.389 (2) |
K—Cl1ii | 3.206 (3) | La—Kxi | 4.389 (2) |
K—Cl2iii | 3.234 (3) | Cl1—Laxii | 2.833 (3) |
K—Cl3iv | 3.272 (4) | Cl1—Kxii | 3.160 (3) |
K—Cl4 | 3.304 (3) | Cl1—Kxiii | 3.160 (3) |
K—Cl4iii | 3.327 (3) | Cl1—Kxiv | 3.206 (3) |
K—Cl3 | 3.351 (4) | Cl1—Kxv | 3.206 (3) |
K—Kv | 4.336 (5) | Cl2—Laxvi | 2.845 (3) |
K—Lavi | 4.389 (2) | Cl2—Kv | 3.177 (3) |
K—Kvi | 4.432 (4) | Cl2—Kxvii | 3.234 (3) |
K—Kiii | 4.4838 (18) | Cl2—Kiv | 3.234 (3) |
La—Cl3vii | 2.812 (3) | Cl3—Laxviii | 2.812 (3) |
La—Cl1i | 2.833 (3) | Cl3—Kiii | 3.272 (4) |
La—Cl2viii | 2.845 (3) | Cl3—Kxix | 3.272 (3) |
La—Cl4 | 2.858 (2) | Cl3—Kv | 3.351 (4) |
La—Cl4v | 2.858 (2) | Cl4—Lax | 2.895 (2) |
La—Cl4ix | 2.895 (2) | Cl4—Kiv | 3.327 (3) |
Cl1i—K—Cl2 | 71.80 (8) | Cl3vii—La—Cl4 | 83.68 (6) |
Cl1i—K—Cl1ii | 91.76 (5) | Cl1i—La—Cl4 | 75.64 (5) |
Cl2—K—Cl1ii | 148.21 (10) | Cl2viii—La—Cl4 | 104.48 (5) |
Cl1i—K—Cl2iii | 141.81 (10) | Cl3vii—La—Cl4v | 83.68 (6) |
Cl2—K—Cl2iii | 142.29 (7) | Cl1i—La—Cl4v | 75.64 (5) |
Cl1ii—K—Cl2iii | 64.80 (8) | Cl2viii—La—Cl4v | 104.48 (5) |
Cl1i—K—Cl3iv | 136.03 (10) | Cl4—La—Cl4v | 131.62 (9) |
Cl2—K—Cl3iv | 87.34 (7) | Cl3vii—La—Cl4ix | 84.06 (7) |
Cl1ii—K—Cl3iv | 86.34 (8) | Cl1i—La—Cl4ix | 132.50 (6) |
Cl2iii—K—Cl3iv | 75.11 (8) | Cl2viii—La—Cl4ix | 78.89 (7) |
Cl1i—K—Cl4 | 65.30 (7) | Cl4—La—Cl4ix | 150.15 (6) |
Cl2—K—Cl4 | 75.52 (8) | Cl4v—La—Cl4ix | 73.58 (7) |
Cl1ii—K—Cl4 | 72.88 (8) | Cl3vii—La—Cl4x | 84.06 (7) |
Cl2iii—K—Cl4 | 127.34 (10) | Cl1i—La—Cl4x | 132.50 (6) |
Cl3iv—K—Cl4 | 72.27 (8) | Cl2viii—La—Cl4x | 78.89 (7) |
Cl1i—K—Cl4iii | 130.30 (10) | Cl4—La—Cl4x | 73.58 (7) |
Cl2—K—Cl4iii | 68.18 (8) | Cl4v—La—Cl4x | 150.15 (6) |
Cl1ii—K—Cl4iii | 136.98 (9) | Cl4ix—La—Cl4x | 78.15 (9) |
Cl2iii—K—Cl4iii | 74.46 (8) | Cl3vii—La—Kvi | 145.53 (4) |
Cl3iv—K—Cl4iii | 69.93 (8) | Cl1i—La—Kvi | 46.84 (5) |
Cl4—K—Cl4iii | 127.83 (9) | Cl2viii—La—Kvi | 47.41 (5) |
Cl1i—K—Cl3 | 79.12 (8) | Cl4—La—Kvi | 61.85 (6) |
Cl2—K—Cl3 | 87.50 (8) | Cl4v—La—Kvi | 117.97 (6) |
Cl1ii—K—Cl3 | 116.64 (9) | Cl4ix—La—Kvi | 126.15 (5) |
Cl2iii—K—Cl3 | 85.10 (7) | Cl4x—La—Kvi | 86.55 (6) |
Cl3iv—K—Cl3 | 139.63 (8) | Cl3vii—La—Kxi | 145.53 (4) |
Cl4—K—Cl3 | 143.76 (10) | Cl1i—La—Kxi | 46.84 (5) |
Cl4iii—K—Cl3 | 71.00 (8) | Cl2viii—La—Kxi | 47.41 (5) |
Cl1i—K—Kv | 46.68 (5) | Cl4—La—Kxi | 117.97 (6) |
Cl2—K—Kv | 46.96 (6) | Cl4v—La—Kxi | 61.85 (6) |
Cl1ii—K—Kv | 134.91 (5) | Cl4ix—La—Kxi | 86.55 (6) |
Cl2iii—K—Kv | 134.42 (6) | Cl4x—La—Kxi | 126.15 (6) |
Cl3iv—K—Kv | 133.77 (6) | Kvi—La—Kxi | 62.09 (7) |
Cl4—K—Kv | 97.63 (6) | Laxii—Cl1—Kxii | 107.21 (8) |
Cl4iii—K—Kv | 84.07 (6) | Laxii—Cl1—Kxiii | 107.21 (8) |
Cl3—K—Kv | 49.68 (5) | Kxii—Cl1—Kxiii | 86.64 (11) |
Cl1i—K—Lavi | 102.32 (7) | Laxii—Cl1—Kxiv | 93.04 (7) |
Cl2—K—Lavi | 167.59 (9) | Kxii—Cl1—Kxiv | 159.73 (10) |
Cl1ii—K—Lavi | 40.13 (5) | Kxiii—Cl1—Kxiv | 88.24 (5) |
Cl2iii—K—Lavi | 40.37 (6) | Laxii—Cl1—Kxv | 93.04 (7) |
Cl3iv—K—Lavi | 103.97 (7) | Kxii—Cl1—Kxv | 88.24 (5) |
Cl4—K—Lavi | 112.49 (7) | Kxiii—Cl1—Kxv | 159.73 (10) |
Cl4iii—K—Lavi | 110.55 (6) | Kxiv—Cl1—Kxv | 89.82 (11) |
Cl3—K—Lavi | 80.57 (6) | Laxvi—Cl2—Kv | 108.72 (9) |
Kv—K—Lavi | 121.04 (3) | Laxvi—Cl2—K | 108.72 (9) |
Cl1i—K—Kvi | 46.30 (6) | Kv—Cl2—K | 86.07 (11) |
Cl2—K—Kvi | 113.09 (10) | Laxvi—Cl2—Kxvii | 92.22 (8) |
Cl1ii—K—Kvi | 45.45 (6) | Kv—Cl2—Kxvii | 88.75 (3) |
Cl2iii—K—Kvi | 104.62 (9) | K—Cl2—Kxvii | 159.00 (11) |
Cl3iv—K—Kvi | 117.84 (10) | Laxvi—Cl2—Kiv | 92.22 (8) |
Cl4—K—Kvi | 59.28 (6) | Kv—Cl2—Kiv | 159.00 (11) |
Cl4iii—K—Kvi | 171.90 (11) | K—Cl2—Kiv | 88.75 (3) |
Cl3—K—Kvi | 100.93 (9) | Kxvii—Cl2—Kiv | 88.84 (11) |
Kv—K—Kvi | 91.23 (7) | Laxviii—Cl3—Kiii | 100.62 (8) |
Lavi—K—Kvi | 66.36 (5) | Laxviii—Cl3—Kxix | 100.62 (8) |
Cl1i—K—Kiii | 125.25 (10) | Kiii—Cl3—Kxix | 87.54 (11) |
Cl2—K—Kiii | 106.95 (10) | Laxviii—Cl3—K | 115.09 (9) |
Cl1ii—K—Kiii | 104.75 (8) | Kiii—Cl3—K | 85.21 (4) |
Cl2iii—K—Kiii | 45.10 (6) | Kxix—Cl3—K | 144.27 (10) |
Cl3iv—K—Kiii | 97.44 (9) | Laxviii—Cl3—Kv | 115.10 (9) |
Cl4—K—Kiii | 169.44 (11) | Kiii—Cl3—Kv | 144.27 (10) |
Cl4iii—K—Kiii | 47.24 (6) | Kxix—Cl3—Kv | 85.21 (4) |
Cl3—K—Kiii | 46.65 (6) | K—Cl3—Kv | 80.64 (10) |
Kv—K—Kiii | 91.22 (6) | La—Cl4—Lax | 106.42 (7) |
Lavi—K—Kiii | 67.00 (4) | La—Cl4—K | 102.93 (8) |
Kvi—K—Kiii | 126.56 (8) | Lax—Cl4—K | 147.62 (10) |
Cl3vii—La—Cl1i | 127.18 (9) | La—Cl4—Kiv | 98.37 (8) |
Cl3vii—La—Cl2viii | 157.97 (10) | Lax—Cl4—Kiv | 103.65 (8) |
Cl1i—La—Cl2viii | 74.85 (9) | K—Cl4—Kiv | 85.10 (6) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x+1/2, y, −z+3/2; (iii) −x+3/2, −y+1, z+1/2; (iv) −x+3/2, −y+1, z−1/2; (v) x, −y+1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x, y, z−1; (viii) x−1/2, y, −z+1/2; (ix) −x+1, y−1/2, −z; (x) −x+1, −y+1, −z; (xi) −x+1, y−1/2, −z+1; (xii) −x+1/2, −y+1, z+1/2; (xiii) −x+1/2, y+1/2, z+1/2; (xiv) x−1/2, −y+3/2, −z+3/2; (xv) x−1/2, y, −z+3/2; (xvi) x+1/2, y, −z+1/2; (xvii) −x+3/2, y−1/2, z−1/2; (xviii) x, y, z+1; (xix) −x+3/2, y−1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | K2LaCl5 |
Mr | 394.36 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 293 |
a, b, c (Å) | 12.7402 (8), 8.8635 (6), 8.0174 (5) |
V (Å3) | 905.35 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.02 |
Crystal size (mm) | 0.33 × 0.28 × 0.24 |
Data collection | |
Diffractometer | Stoe IPDS-I |
Absorption correction | Numerical (X-SHAPE; Stoe & Cie, 1999) |
Tmin, Tmax | 0.106, 0.185 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12421, 1650, 872 |
Rint | 0.139 |
(sin θ/λ)max (Å−1) | 0.766 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.142, 0.90 |
No. of reflections | 1650 |
No. of parameters | 44 |
Δρmax, Δρmin (e Å−3) | 1.58, −2.64 |
Computer programs: DIF4 (Stoe & Cie, 1992), REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).
K—Cl1i | 3.160 (3) | La—Cl3v | 2.812 (3) |
K—Cl2 | 3.177 (3) | La—Cl1i | 2.833 (3) |
K—Cl1ii | 3.206 (3) | La—Cl2vi | 2.845 (3) |
K—Cl2iii | 3.234 (3) | La—Cl4 | 2.858 (2) |
K—Cl3iv | 3.272 (4) | La—Cl4vii | 2.858 (2) |
K—Cl4 | 3.304 (3) | La—Cl4viii | 2.895 (2) |
K—Cl4iii | 3.327 (3) | La—Cl4ix | 2.895 (2) |
K—Cl3 | 3.351 (4) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x+1/2, y, −z+3/2; (iii) −x+3/2, −y+1, z+1/2; (iv) −x+3/2, −y+1, z−1/2; (v) x, y, z−1; (vi) x−1/2, y, −z+1/2; (vii) x, −y+1/2, z; (viii) −x+1, y−1/2, −z; (ix) −x+1, −y+1, −z. |
Acknowledgements
Financial support by the state of Baden-Württemberg (Stuttgart) and the Deutsche Forschungsgemeinschaft is gratefully acknowledged. Furthermore our thanks go to Dr Falk Lissner for the data collection.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brunton, G. D. & Steinfink, H. (1971). Inorg. Chem. 10, 2301–2303. CrossRef CAS Web of Science Google Scholar
Jeitschko, W. & Donohue, P. C. (1975). Acta Cryst. B31, 1890–1895. CrossRef CAS IUCr Journals Web of Science Google Scholar
Meyer, G. & Hüttl, E. (1983). Z. Anorg. Allg. Chem. 497, 191–198. CrossRef CAS Web of Science Google Scholar
Meyer, G., Soose, J., Moritz, A., Vitt, V. & Holljes, Th. (1985). Z. Anorg. Allg. Chem. 521, 161–172. CrossRef CAS Web of Science Google Scholar
Moseley, P. T., Brown, D. & Whittaker, B. (1972). Acta Cryst. B28, 1816–1821. CrossRef CAS IUCr Journals Web of Science Google Scholar
Potel, M., Brochu, R., Padiou, J. & Grandjean, D. (1972). C. R. Acad. Sci. Paris, 275, 1419–1421. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 740–742. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The ternary rare-earth metal(III) halide K2LaCl5 (Fig. 1) belongs to the A2MX5 series (A = NH4, In, Na – Cs; M = La – Dy; X = Cl – I) (Meyer & Hüttl, 1983; Meyer et al., 1985; Wickleder & Meyer 1995). It can be described as ordered structural variety of U3Ch5 (Ch = S and Se) or the low-temperature phase of Yb5Sb3, respectively, as anti-isotypical arrangement. While the K+ cations have eight contacts to Cl- anions (Fig. 2), the La3+ cations are surrounded by only seven of them. In both cases distorted mono- or bicapped trigonal prisms [LaCl7]4– or [KCl8]7– originate. For the lanthanum bearing ones they are linked via common edges and form chains, which run along [010] (Fig. 3). Together with the chloride anions (Cl1)-, (Cl2)– and (Cl3)-, La3+ occupies the 4c position and shows the site symmetry m, while the (Cl4)- anion and the K+ cation are located at the 8d position with the site symmetry 1.