organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3,6-Tri­bromo-1-methyl-1H-2,1-benzo­thia­zin-4(3H)-one 2,2-dioxide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 29 October 2010; accepted 3 November 2010; online 10 November 2010)

In the title compound, C9H6Br3NO3S, a halogenated benzothia­zine derivative, the thia­zine ring adopts a sofa conformation. The crystal studied was a racemic twin with a contribution of 72 (1)% of the major domain.

Related literature

For the synthesis and related structures, see: Shafiq et al. (2009a[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009a). Acta Cryst. E65, o430.],b[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Haider, Z. (2009b). Acta Cryst. E65, o1413.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6Br3NO3S

  • Mr = 447.94

  • Orthorhombic, P n a 21

  • a = 14.922 (1) Å

  • b = 12.1310 (8) Å

  • c = 7.0811 (4) Å

  • V = 1281.81 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.60 mm−1

  • T = 296 K

  • 0.28 × 0.21 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.096, Tmax = 0.144

  • 7900 measured reflections

  • 2941 independent reflections

  • 2221 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.071

  • S = 0.99

  • 2941 reflections

  • 156 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.55 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1242 Friedel pairs

  • Flack parameter: 0.00 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound, (I), is structurally related to the already reported crystal structures of 3,3-dichloro-1-ethyl-1H-2,1-benzothiazin-4 (3H)-one 2,2-dioxide, (II), (Shafiq et al., 2009a) and 6-bromo-3,3-dichloro-1-methyl-1H-2,1-benzothiazin-4 (3H)-one 2,2-dioxide, (III), (Shafiq et al., 2009b).

Like (II) and (III) the thiazine (C1/C6/C7/C8/S1/N1) ring in the crystal structure adopted a sofa form.

Related literature top

For the synthesis and related structures, see: Shafiq et al. (2009a,b).

Experimental top

The title compound was prepared following the already reported procedure (Shafiq et al., 2009b).

Refinement top

All H-atoms were positioned with idealized geometry with C—H = 0.93 Å and C—H = 0.96 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl). The crystal turned out to be a racemic twin with a contribution of 72 (1)% of the major domain.

Structure description top

The title compound, (I), is structurally related to the already reported crystal structures of 3,3-dichloro-1-ethyl-1H-2,1-benzothiazin-4 (3H)-one 2,2-dioxide, (II), (Shafiq et al., 2009a) and 6-bromo-3,3-dichloro-1-methyl-1H-2,1-benzothiazin-4 (3H)-one 2,2-dioxide, (III), (Shafiq et al., 2009b).

Like (II) and (III) the thiazine (C1/C6/C7/C8/S1/N1) ring in the crystal structure adopted a sofa form.

For the synthesis and related structures, see: Shafiq et al. (2009a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with displacement ellipsoids drawn at the 50% probability level.
3,3,6-Tribromo-1-methyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide top
Crystal data top
C9H6Br3NO3SF(000) = 848
Mr = 447.94Dx = 2.321 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2326 reflections
a = 14.922 (1) Åθ = 3.3–24.8°
b = 12.1310 (8) ŵ = 9.60 mm1
c = 7.0811 (4) ÅT = 296 K
V = 1281.81 (14) Å3Needle, light brown
Z = 40.28 × 0.21 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2941 independent reflections
Radiation source: fine-focus sealed tube2221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 28.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1519
Tmin = 0.096, Tmax = 0.144k = 1610
7900 measured reflectionsl = 89
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0309P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2941 reflectionsΔρmax = 0.54 e Å3
156 parametersΔρmin = 0.55 e Å3
1 restraintAbsolute structure: Flack (1983), 1242 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
C9H6Br3NO3SV = 1281.81 (14) Å3
Mr = 447.94Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.922 (1) ŵ = 9.60 mm1
b = 12.1310 (8) ÅT = 296 K
c = 7.0811 (4) Å0.28 × 0.21 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2941 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2221 reflections with I > 2σ(I)
Tmin = 0.096, Tmax = 0.144Rint = 0.033
7900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.54 e Å3
S = 0.99Δρmin = 0.55 e Å3
2941 reflectionsAbsolute structure: Flack (1983), 1242 Friedel pairs
156 parametersAbsolute structure parameter: 0.00 (3)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.56408 (4)0.70021 (5)0.24956 (8)0.05225 (17)
S10.21026 (9)0.32623 (11)0.3603 (2)0.0368 (3)
O10.2102 (3)0.6272 (3)0.2328 (8)0.0631 (13)
N10.3103 (2)0.3077 (3)0.2744 (6)0.0341 (9)
C10.3690 (3)0.3998 (3)0.2654 (7)0.0269 (10)
Br20.17819 (4)0.39549 (5)0.05254 (9)0.05073 (17)
O20.2124 (3)0.3737 (3)0.5431 (5)0.0505 (11)
C20.4609 (3)0.3843 (3)0.2690 (8)0.0352 (11)
H20.48410.31320.27540.042*
Br30.05403 (4)0.47720 (5)0.28558 (9)0.05946 (19)
O30.1596 (3)0.2288 (3)0.3279 (6)0.0569 (11)
C30.5178 (3)0.4721 (4)0.2632 (8)0.0385 (11)
H30.57940.46050.26570.046*
C40.4844 (3)0.5789 (4)0.2536 (7)0.0346 (11)
C50.3947 (3)0.5960 (3)0.2469 (7)0.0333 (11)
H50.37270.66760.24000.040*
C60.3348 (3)0.5074 (3)0.2503 (7)0.0279 (10)
C70.2389 (3)0.5345 (4)0.2336 (6)0.0309 (10)
C80.1729 (3)0.4378 (4)0.2090 (6)0.0325 (11)
C90.3419 (4)0.1959 (4)0.2311 (10)0.0553 (16)
H9C0.38400.19890.12870.083*
H9B0.29190.15060.19580.083*
H9A0.37050.16520.34050.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0503 (4)0.0549 (3)0.0516 (3)0.0277 (3)0.0009 (3)0.0028 (3)
S10.0342 (8)0.0388 (7)0.0376 (6)0.0059 (6)0.0022 (6)0.0082 (6)
O10.039 (2)0.0306 (19)0.120 (4)0.0096 (17)0.002 (3)0.006 (3)
N10.029 (2)0.0234 (19)0.050 (3)0.0030 (16)0.001 (2)0.002 (2)
C10.031 (3)0.022 (2)0.027 (2)0.0008 (18)0.004 (2)0.004 (2)
Br20.0663 (4)0.0518 (3)0.0341 (2)0.0025 (3)0.0111 (3)0.0066 (3)
O20.053 (3)0.069 (3)0.029 (2)0.009 (2)0.0066 (18)0.0041 (18)
C20.029 (3)0.029 (2)0.048 (3)0.0052 (19)0.005 (3)0.007 (3)
Br30.0275 (3)0.0677 (4)0.0831 (5)0.0025 (3)0.0073 (3)0.0042 (4)
O30.047 (2)0.043 (2)0.081 (3)0.0203 (19)0.005 (2)0.009 (2)
C30.025 (3)0.049 (3)0.041 (3)0.000 (2)0.002 (3)0.002 (3)
C40.031 (3)0.039 (3)0.033 (2)0.012 (2)0.000 (2)0.000 (3)
C50.041 (3)0.022 (2)0.037 (3)0.0056 (19)0.001 (2)0.002 (2)
C60.029 (3)0.028 (2)0.027 (2)0.0008 (18)0.000 (2)0.001 (2)
C70.030 (3)0.028 (2)0.034 (2)0.001 (2)0.000 (2)0.001 (2)
C80.025 (3)0.039 (3)0.033 (3)0.000 (2)0.001 (2)0.007 (2)
C90.063 (4)0.027 (3)0.076 (4)0.002 (3)0.014 (4)0.006 (3)
Geometric parameters (Å, º) top
Br1—C41.892 (4)C2—H20.9300
S1—O21.417 (4)Br3—C81.916 (5)
S1—O31.422 (4)C3—C41.390 (6)
S1—N11.627 (4)C3—H30.9300
S1—C81.814 (5)C4—C51.356 (7)
O1—C71.204 (5)C5—C61.398 (6)
N1—C11.421 (5)C5—H50.9300
N1—C91.469 (6)C6—C71.473 (6)
C1—C21.384 (6)C7—C81.542 (6)
C1—C61.406 (5)C9—H9C0.9600
Br2—C81.923 (4)C9—H9B0.9600
C2—C31.362 (6)C9—H9A0.9600
O2—S1—O3119.9 (2)C4—C5—C6120.9 (4)
O2—S1—N1112.1 (2)C4—C5—H5119.6
O3—S1—N1108.2 (2)C6—C5—H5119.6
O2—S1—C8104.1 (2)C5—C6—C1118.9 (4)
O3—S1—C8111.2 (2)C5—C6—C7116.6 (4)
N1—S1—C899.4 (2)C1—C6—C7124.5 (4)
C1—N1—C9121.2 (4)O1—C7—C6123.7 (4)
C1—N1—S1118.3 (3)O1—C7—C8118.9 (4)
C9—N1—S1120.0 (3)C6—C7—C8117.4 (4)
C2—C1—C6119.2 (4)C7—C8—S1107.7 (3)
C2—C1—N1120.3 (4)C7—C8—Br3111.7 (3)
C6—C1—N1120.6 (4)S1—C8—Br3107.7 (2)
C3—C2—C1120.7 (4)C7—C8—Br2106.6 (3)
C3—C2—H2119.6S1—C8—Br2110.9 (2)
C1—C2—H2119.6Br3—C8—Br2112.2 (2)
C2—C3—C4120.5 (4)N1—C9—H9C109.5
C2—C3—H3119.8N1—C9—H9B109.5
C4—C3—H3119.8H9C—C9—H9B109.5
C5—C4—C3119.9 (4)N1—C9—H9A109.5
C5—C4—Br1120.1 (4)H9C—C9—H9A109.5
C3—C4—Br1120.0 (4)H9B—C9—H9A109.5
O2—S1—N1—C154.7 (4)C2—C1—C6—C7176.2 (5)
O3—S1—N1—C1170.9 (4)N1—C1—C6—C73.0 (7)
C8—S1—N1—C154.8 (4)C5—C6—C7—O16.2 (8)
O2—S1—N1—C9117.5 (5)C1—C6—C7—O1175.1 (5)
O3—S1—N1—C916.9 (5)C5—C6—C7—C8171.7 (4)
C8—S1—N1—C9133.0 (5)C1—C6—C7—C87.1 (7)
C9—N1—C1—C218.4 (7)O1—C7—C8—S1142.5 (5)
S1—N1—C1—C2153.6 (4)C6—C7—C8—S139.5 (5)
C9—N1—C1—C6160.7 (5)O1—C7—C8—Br324.5 (6)
S1—N1—C1—C627.2 (6)C6—C7—C8—Br3157.6 (3)
C6—C1—C2—C31.8 (8)O1—C7—C8—Br298.3 (5)
N1—C1—C2—C3179.1 (5)C6—C7—C8—Br279.6 (4)
C1—C2—C3—C40.0 (8)O2—S1—C8—C757.1 (4)
C2—C3—C4—C51.1 (8)O3—S1—C8—C7172.5 (3)
C2—C3—C4—Br1179.0 (4)N1—S1—C8—C758.7 (3)
C3—C4—C5—C60.3 (8)O2—S1—C8—Br363.5 (3)
Br1—C4—C5—C6179.8 (4)O3—S1—C8—Br366.9 (3)
C4—C5—C6—C11.6 (7)N1—S1—C8—Br3179.3 (2)
C4—C5—C6—C7177.3 (4)O2—S1—C8—Br2173.4 (3)
C2—C1—C6—C52.6 (7)O3—S1—C8—Br256.2 (3)
N1—C1—C6—C5178.3 (4)N1—S1—C8—Br257.6 (3)

Experimental details

Crystal data
Chemical formulaC9H6Br3NO3S
Mr447.94
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)14.922 (1), 12.1310 (8), 7.0811 (4)
V3)1281.81 (14)
Z4
Radiation typeMo Kα
µ (mm1)9.60
Crystal size (mm)0.28 × 0.21 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.096, 0.144
No. of measured, independent and
observed [I > 2σ(I)] reflections
7900, 2941, 2221
Rint0.033
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.071, 0.99
No. of reflections2941
No. of parameters156
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.55
Absolute structureFlack (1983), 1242 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

References

First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009a). Acta Cryst. E65, o430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Haider, Z. (2009b). Acta Cryst. E65, o1413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds