metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dipotassium tetra­aqua­bis­­[3,5-bis­­(di­cyano­methyl­ene)cyclo­pentane-1,2,4-trionato(1−)-κN]cobaltate(II)

aNúcleo de Espectroscopia e Estrutura Molecular (NEEM), Department of Chemistry, Federal University of Juiz de Fora – Minas Gerais, 36036-900, Brazil, and bInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, PO Box 1410 50-950, Poland
*Correspondence e-mail: renata.diniz@ufjf.edu.br

(Received 17 November 2010; accepted 22 November 2010; online 27 November 2010)

The title structure, K2[Co(C11N4O3)2(H2O)4], is isotypic with K2[Fe(C11N4O3)2(H2O)4]. The CoII atom is in a distorted octa­hedral CoN2O4 geometry, forming a dianionic mononuclear entity. Each dianionic unit is associated with two potassium cations and inter­acts with adjacent units through O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For the structure and applications of the croconate violet dianion [3,5-bis-(dicyano­methyl­ene)cyclo­pentane-1,2,4-trionate], see: Fatiadi (1978[Fatiadi, A. J. (1978). J. Am. Chem. Soc. 100, 2586-2587.]); Dumestre et al. (1998[Dumestre, F., Soula, B., Galibert, A. M., Fabre, P. L., Bernardinelli, G., Donnadieu, B. & Castan, P. (1998). J. Chem. Soc. Dalton Trans. pp. 4131-4137.]); Teles et al. (2006[Teles, W. M., Farani, R. A., Maia, D. M., Speziali, N. L., Yoshida, M. I., De Oliveira, L. F. C. & Machado, F. C. (2006). J. Mol. Struct. 783, 52-60.]); De Abreu et al. (2009[De Abreu, H. A., Junior, A. L. S., Leitão, A. A., De Sá, L. R. V., Ribeiro, M. C. C., Diniz, R. & De Oliveira, L. F. C. (2009). J. Phys. Chem. A, 113, 6446-6452.]); Faria et al. (2010[Faria, L. F. O., Junior, A. L. S., Diniz, R., Yoshida, M. I., Edwards, H. G. M. & De Oliveira, L. F. C. (2010). Inorg. Chim. Acta, 363, 49-56.]); Garcia et al. (2010[Garcia, H. C., De Oliveira, L. F. C. & Ribeiro, M. C. C. (2010). J. Raman Spectrosc. 41, 524-528.]). For the synthesis and applications of pseudo-oxocarbons, see: West & Niu (1963[West, R. & Niu, H. Y. (1963). J. Am. Chem. Soc. 85, 2589-2590.]), Fatiadi (1980[Fatiadi, A. J. (1980). J. Res. Natl Bur. Stand. 87, 257-260.]); Galibert et al. (2001[Galibert, A. M., Soula, B., Donnadieu, B. & Fabre, P. L. (2001). Inorg. Chim. Acta, 313, 160-164.]); De Oliveira et al. (2009[De Oliveira, V. E., Diniz, R. & De Oliveira, L. F. C. (2009). Quim. Nova, 32, 1917-925.]). For the isotypic compound, K2[Fe(C11N4O3)2(H2O)4], see: Soula et al. (2003[Soula, B., Galibert, A. M., Donnadieu, B. & Fabre, P. L. (2003). Dalton Trans. pp. 2449-2456.]).

[Scheme 1]

Experimental

Crystal data
  • K2[Co(C11N4O3)2(H2O)4]

  • Mr = 681.49

  • Monoclinic, P 2/n

  • a = 9.4060 (19) Å

  • b = 7.0110 (14) Å

  • c = 19.493 (4) Å

  • β = 92.58 (3)°

  • V = 1284.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.16 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: analytical (SHELXTL; heldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.765, Tmax = 0.843

  • 15657 measured reflections

  • 3181 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.095

  • S = 0.91

  • 3181 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.97 1.86 2.785 (3) 159
O1—H2⋯N2ii 0.96 1.92 2.880 (3) 177
O4—H3⋯N4iii 0.97 2.23 2.779 (3) 115
O4—H4⋯O2iv 0.97 1.73 2.681 (3) 167
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x, -y, -z+1.

KM-4-CCD Software (Kuma, 2004[Kuma (2004). KM-4 CCD Software. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM-4-CCD Software; data reduction: KM-4-CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pseudo-oxocarbons are derived of oxocarbons which are cyclic planar species of general formula (CnOn)2- where n varies from 3 to 6 (West & Niu, 1963). In the pseudo-oxocarbons one or more oxygen atoms are replaced by other atoms or groups (Fatiadi, 1978). This class of compounds has received great attention due to various possible coordination modes (De Oliveira et al., 2009). Specially, the dianion Croconate Violet (CV) [3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate], which is displayed in Scheme I, plays the important role from the structural and spectroscopic viewpoints due to extensive π delocalization and electrical conductivity typical of semiconductor materials (Teles et al., 2006).

The structure related in this report is isostructural to previously described by Soula et al. (2003) but this time the central metal ion is cobalt (II) instead of iron (II) (Scheme II). Crystal structure of K2[Co(CV)2(H2O)4] is depicted in Figure 1. The metallic ion is surrounded octahedrically by four oxygen atoms from the water molecules and two nitrogen atoms from two different CV units forming a dianionic mononuclear discrete entity which is neutralized by two potassium cations that act as counter ions. Each CV is coordinated in monodentate way to the metal site. The cobalt atom sits in a special position on twofold axes. As commonly observed for cobalt (II) complexes, for the compound under study there is a distortion of octahedral geometry evidenced by two Co—O1 distances (2.1348 (18) Å) longer than Co—O4 and Co—N3 (2.075 (18) Å and 2.088 (2) Å, respectively). For the free nitrogen atoms (N1, N2 and N4) is observed that the CN triple bond lengths vary from 1.131 (3) to 1.137 (3) Å. For the coordinated nitrogen (N3) this distance is 1.153 (3) Å. The ring C—C and C—O bond lengths vary to 1.441 (3) to 1.476 (3) Å and 1.227 (3) to 1.246 (3) Å, respectively, confirming the π electron delocalization over the pseudo-oxocarbon ring (Teles et al., 2006).

Besides the interactions with potassium ions the compound has intermolecular hydrogen interactions in which the oxygen atom of water molecule (O1) interact with atoms of oxygen (O2) and nitrogen (N2) of adjacent CV. Moreover, moderate hydrogen bonds occur between O4 (of coordinated water) and N4 and O2 (of Croconate Violet). Hydrogen bonds contribute to the crystal packing extending the chain along the crystallographic directions a and b (Fig.2). Centroid-centroid distances are around 3.9 (2) and 4.0 (2) Å (Fig.3) and the calculated interplanar distances are around 3.3 (6) Å.

Related literature top

For the structure and applications of the

Croconate Violet dianion [3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate], see: Fatiadi (1978); Dumestre et al. (1998); Teles et al. (2006); De Abreu et al. (2009); Faria et al. (2010); Garcia et al. (2010). For the synthesis and applications of pseudo-oxocarbons, see: West & Niu (1963), Fatiadi (1980); Galibert et al. (2001); De Oliveira et al. (2009). For the isotypic compound, K2[Fe(C11N4O3)2(H2O)4], see: Soula et al. (2003).

Experimental top

The pseudo-oxocarbon Croconate Violet was obtained according to method described in literature (Teles et al., 2006). The original intention was to obtain a bimetallic compound. In this sense we proceeded as follow: 0.70 g (2.5 mmol) of potassium salt of Croconate Violet (K2CV 2.5H2O) was dissolved in 32 ml of a 1:1/(acetonitrile:water) at room temperature. This solution was added to 25 ml of aqueous solution of CoCl2.6H2O (0.60 g, 2.5 mmol). On this mixture was added, slowly, 15 ml of aqueous solution containing FeSO4.7H2O (0.70 g, 2.5 mmol). Good crystals suitable to X ray diffraction were obtained after one month and characterized by X ray diffraction as K2[Fe(CV)2(H2O)4]. The solution was filtered and set aside for crystallization by slow evaporation of the solvents. Two week later violet single crystals with metallic luster, suitable to X ray diffraction, were obtained and characterized as K2[Co(CV)2(H2O)4]. Elemental analysis calculated for C22O10N8H8K2Co: C (38.77); H (1.18); N (16.44). Found: C (37.21); H (1.23); N (15.16).

FT—IR analysis: 1468 cm-1 (νCC + νCO), 1520 cm-1 (νCO + νCC(CN)2), 1605 cm-1 (νassCO), 1682 cm-1 (νCO), 2214 cm-1 (νCN), 2246 cm-1 (coordinatedνCN), 3368 cm-1 (νOH).

Raman spectroscopy (room temperature, 632.8 nm) corroborate with FT—IR analyses and permits attribute bands characteristics of CV coordinated by only one nitrogen atom: 1498 cm-1 (νCC + νCO), 1583 cm-1 (νCO + νCC(CN)2), 1604 cm-1 (νassCO), 1686 cm-1 (νCO), 2220 cm-1 (νCN), 2242 cm-1 (coordinatedνCN).

Refinement top

H atoms were located from electron density maps, fixed in these positions and assigned the same isotropic displacement parameters for all H atoms.

Structure description top

The pseudo-oxocarbons are derived of oxocarbons which are cyclic planar species of general formula (CnOn)2- where n varies from 3 to 6 (West & Niu, 1963). In the pseudo-oxocarbons one or more oxygen atoms are replaced by other atoms or groups (Fatiadi, 1978). This class of compounds has received great attention due to various possible coordination modes (De Oliveira et al., 2009). Specially, the dianion Croconate Violet (CV) [3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate], which is displayed in Scheme I, plays the important role from the structural and spectroscopic viewpoints due to extensive π delocalization and electrical conductivity typical of semiconductor materials (Teles et al., 2006).

The structure related in this report is isostructural to previously described by Soula et al. (2003) but this time the central metal ion is cobalt (II) instead of iron (II) (Scheme II). Crystal structure of K2[Co(CV)2(H2O)4] is depicted in Figure 1. The metallic ion is surrounded octahedrically by four oxygen atoms from the water molecules and two nitrogen atoms from two different CV units forming a dianionic mononuclear discrete entity which is neutralized by two potassium cations that act as counter ions. Each CV is coordinated in monodentate way to the metal site. The cobalt atom sits in a special position on twofold axes. As commonly observed for cobalt (II) complexes, for the compound under study there is a distortion of octahedral geometry evidenced by two Co—O1 distances (2.1348 (18) Å) longer than Co—O4 and Co—N3 (2.075 (18) Å and 2.088 (2) Å, respectively). For the free nitrogen atoms (N1, N2 and N4) is observed that the CN triple bond lengths vary from 1.131 (3) to 1.137 (3) Å. For the coordinated nitrogen (N3) this distance is 1.153 (3) Å. The ring C—C and C—O bond lengths vary to 1.441 (3) to 1.476 (3) Å and 1.227 (3) to 1.246 (3) Å, respectively, confirming the π electron delocalization over the pseudo-oxocarbon ring (Teles et al., 2006).

Besides the interactions with potassium ions the compound has intermolecular hydrogen interactions in which the oxygen atom of water molecule (O1) interact with atoms of oxygen (O2) and nitrogen (N2) of adjacent CV. Moreover, moderate hydrogen bonds occur between O4 (of coordinated water) and N4 and O2 (of Croconate Violet). Hydrogen bonds contribute to the crystal packing extending the chain along the crystallographic directions a and b (Fig.2). Centroid-centroid distances are around 3.9 (2) and 4.0 (2) Å (Fig.3) and the calculated interplanar distances are around 3.3 (6) Å.

For the structure and applications of the

Croconate Violet dianion [3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate], see: Fatiadi (1978); Dumestre et al. (1998); Teles et al. (2006); De Abreu et al. (2009); Faria et al. (2010); Garcia et al. (2010). For the synthesis and applications of pseudo-oxocarbons, see: West & Niu (1963), Fatiadi (1980); Galibert et al. (2001); De Oliveira et al. (2009). For the isotypic compound, K2[Fe(C11N4O3)2(H2O)4], see: Soula et al. (2003).

Computing details top

Data collection: KM-4-CCD Software (Kuma, 2004); cell refinement: KM-4-CCD Software (Kuma, 2004); data reduction: KM-4-CCD Software (Kuma, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of K2[Co(CV)2(H2O)4] showing 50% displacement ellipsoids. Symmetry code: i -x + 1/2, y, -z + 1/2.
[Figure 2] Fig. 2. View of the contribution of hydrogen bonds for stacking along of ab plane.
[Figure 3] Fig. 3. View of the crystal packing of K2[Co(CV)2(H2O)4] along of ab plane, evidencing centroid-centroid distances between adjacent sheets. Hydrogen and potassium atoms were omitted for clarity.
Dipotassium tetraaquabis[3,5-bis(dicyanomethylene)cyclopentane-1,2,4-trionato(1-)- κN]cobaltate(II) top
Crystal data top
K2[Co(C11N4O3)2(H2O)4]F(000) = 683.80
Mr = 681.49Dx = 1.762 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 1839 reflections
a = 9.4060 (19) Åθ = 2.9–29.0°
b = 7.0110 (14) ŵ = 1.07 mm1
c = 19.493 (4) ÅT = 293 K
β = 92.58 (3)°Prism, violet
V = 1284.2 (5) Å30.26 × 0.24 × 0.16 mm
Z = 2
Data collection top
Kuma KM-4-CCD
diffractometer
3181 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
CCD scansθmax = 29.0°, θmin = 2.9°
Absorption correction: analytical
(SHELXTL; Sheldrick, 2008)
h = 1212
Tmin = 0.765, Tmax = 0.843k = 69
15657 measured reflectionsl = 2626
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.095Δρmax = 0.20 e Å3
S = 0.91Δρmin = 0.18 e Å3
3181 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008)
195 parametersAbsolute structure: no
0 restraints
Crystal data top
K2[Co(C11N4O3)2(H2O)4]V = 1284.2 (5) Å3
Mr = 681.49Z = 2
Monoclinic, P2/nMo Kα radiation
a = 9.4060 (19) ŵ = 1.07 mm1
b = 7.0110 (14) ÅT = 293 K
c = 19.493 (4) Å0.26 × 0.24 × 0.16 mm
β = 92.58 (3)°
Data collection top
Kuma KM-4-CCD
diffractometer
3181 independent reflections
Absorption correction: analytical
(SHELXTL; Sheldrick, 2008)
1839 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.843Rint = 0.037
15657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 0.91Δρmax = 0.20 e Å3
3181 reflectionsΔρmin = 0.18 e Å3
195 parametersAbsolute structure: no
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25000.17828 (7)0.25000.02924 (16)
K10.42443 (6)0.23207 (9)0.44538 (3)0.03741 (19)
C10.0167 (3)0.3045 (3)0.56951 (13)0.0236 (6)
C20.1309 (3)0.2706 (3)0.58237 (13)0.0252 (6)
O20.18964 (19)0.3004 (2)0.63736 (9)0.0364 (5)
C30.2022 (3)0.1925 (3)0.51963 (13)0.0249 (6)
O30.32681 (18)0.1369 (3)0.51461 (9)0.0354 (5)
C40.0990 (2)0.1952 (3)0.46673 (13)0.0228 (6)
C50.0376 (3)0.2594 (3)0.49667 (13)0.0244 (6)
O50.14928 (18)0.2729 (3)0.46684 (9)0.0342 (5)
C60.1215 (3)0.3657 (3)0.61569 (13)0.0273 (6)
C70.1203 (2)0.1460 (3)0.39800 (13)0.0250 (6)
C80.2638 (3)0.4102 (4)0.59492 (13)0.0298 (6)
N10.3752 (2)0.4503 (4)0.57986 (12)0.0433 (6)
C90.0935 (3)0.3955 (4)0.68581 (15)0.0341 (7)
N20.0713 (3)0.4206 (4)0.74186 (14)0.0553 (7)
C100.0119 (3)0.1587 (4)0.35161 (13)0.0265 (6)
N30.0736 (2)0.1691 (3)0.31124 (11)0.0352 (6)
C110.2557 (3)0.0854 (4)0.36967 (14)0.0313 (6)
N40.3609 (3)0.0374 (4)0.34506 (13)0.0539 (7)
O10.34625 (18)0.3966 (3)0.31272 (9)0.0346 (5)
H10.27630.49390.32100.052*
H20.42330.45330.28910.052*
O40.35063 (17)0.0188 (3)0.31486 (10)0.0409 (5)
H30.43590.06900.29540.061*
H40.28770.12300.32550.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0229 (3)0.0403 (3)0.0250 (3)0.0000.0053 (2)0.000
K10.0232 (3)0.0488 (4)0.0404 (4)0.0034 (3)0.0033 (3)0.0022 (3)
C10.0221 (12)0.0186 (13)0.0302 (14)0.0025 (11)0.0045 (11)0.0011 (10)
C20.0236 (13)0.0237 (14)0.0291 (14)0.0030 (11)0.0097 (11)0.0011 (11)
O20.0331 (10)0.0412 (12)0.0361 (11)0.0011 (9)0.0153 (9)0.0018 (9)
C30.0184 (12)0.0253 (14)0.0313 (14)0.0067 (12)0.0051 (11)0.0013 (11)
O30.0200 (9)0.0480 (12)0.0386 (11)0.0059 (9)0.0048 (8)0.0034 (8)
C40.0200 (12)0.0178 (13)0.0308 (14)0.0026 (11)0.0028 (11)0.0010 (10)
C50.0226 (13)0.0205 (13)0.0305 (14)0.0021 (11)0.0043 (11)0.0014 (11)
O50.0191 (9)0.0507 (13)0.0336 (10)0.0026 (9)0.0091 (8)0.0030 (8)
C60.0269 (14)0.0255 (15)0.0297 (15)0.0003 (11)0.0046 (12)0.0007 (11)
C70.0171 (12)0.0294 (15)0.0287 (14)0.0008 (11)0.0031 (11)0.0011 (11)
C80.0314 (15)0.0283 (15)0.0295 (15)0.0027 (12)0.0019 (12)0.0019 (13)
N10.0320 (14)0.0540 (16)0.0443 (15)0.0039 (13)0.0045 (12)0.0128 (12)
C90.0271 (15)0.0432 (17)0.0320 (16)0.0033 (14)0.0013 (12)0.0026 (13)
N20.0454 (16)0.084 (2)0.0370 (16)0.0075 (15)0.0020 (13)0.0111 (15)
C100.0229 (13)0.0291 (15)0.0273 (14)0.0014 (12)0.0004 (11)0.0007 (11)
N30.0287 (13)0.0471 (15)0.0300 (13)0.0039 (11)0.0030 (11)0.0023 (11)
C110.0238 (14)0.0362 (16)0.0341 (15)0.0003 (13)0.0040 (12)0.0004 (13)
N40.0330 (14)0.070 (2)0.0584 (18)0.0073 (15)0.0049 (13)0.0078 (14)
O10.0308 (10)0.0376 (11)0.0363 (11)0.0030 (9)0.0102 (8)0.0030 (8)
O40.0234 (10)0.0456 (12)0.0541 (13)0.0165 (10)0.0065 (9)0.0017 (9)
Geometric parameters (Å, º) top
Co1—O42.0725 (18)C3—C41.448 (3)
Co1—O42.0725 (18)O3—K1iv2.731 (2)
Co1—N32.088 (2)O3—K1ii2.8647 (19)
Co1—N32.088 (2)C4—C71.389 (3)
Co1—O12.1348 (18)C4—C51.458 (3)
Co1—O12.1348 (18)C5—O51.227 (3)
K1—O52.6557 (18)C6—C91.419 (4)
K1—O3i2.731 (2)C6—C81.449 (3)
K1—O3ii2.865 (2)C7—C101.396 (3)
K1—O12.896 (2)C7—C111.429 (3)
K1—N1iii2.972 (2)C8—N11.137 (3)
K1—N13.088 (2)N1—K1iii2.972 (2)
K1—O43.145 (2)C9—N21.135 (3)
K1—N4i3.181 (3)C10—N31.153 (3)
C1—C61.374 (4)C11—N41.131 (3)
C1—C21.441 (3)N4—K1iv3.181 (3)
C1—C51.476 (3)O1—H10.9666
C2—O21.246 (3)O1—H20.9616
C2—C31.474 (4)O4—H30.9683
C3—O31.235 (3)O4—H40.9689
O1···O42.913 (3)O4···O12.913 (3)
O1···N33.019 (3)O4···N3v2.906 (3)
O1···O1v2.976 (3)O4···O2ii2.681 (3)
O1···N3v3.019 (3)O5···N13.240 (3)
O1···O2vi2.785 (3)O5···N33.169 (3)
O1···N2vii2.880 (3)N1···O53.240 (3)
O2···O4ii2.681 (3)N2···O23.230 (3)
O2···O32.903 (3)N2···O1viii2.880 (3)
O2···N23.230 (3)N3···O53.169 (3)
O2···O1vi2.785 (3)N3···O13.019 (3)
O3···O22.903 (3)N3···O42.918 (3)
O4···O4v3.090 (3)N3···O4v2.906 (3)
O4···N4i2.779 (3)N3···O1v3.019 (3)
O4···N32.918 (3)N4···O4iv2.779 (3)
O4—Co1—O496.39 (11)O4—K1—K1iii154.16 (4)
O4—Co1—N389.06 (8)N4—K1i—K1iii35.60 (3)
N3—Co1—N3176.46 (13)K1—K1ix—K1iii37.61 (3)
O4—Co1—O187.62 (8)C6—C1—C2127.3 (2)
N3—Co1—O191.27 (8)C6—C1—C5125.1 (2)
O4—Co1—O187.62 (8)C2—C1—C5107.6 (2)
N3—Co1—O191.27 (8)O2—C2—C1126.2 (2)
O1—Co1—O188.39 (10)O2—C2—C3125.0 (2)
O5—K1—O3i140.17 (6)C1—C2—C3108.8 (2)
O5—K1—O3ii74.21 (5)O3—C3—C4127.7 (2)
O3—K1i—O3ii11.69 (3)O3—C3—C2125.3 (2)
O5—K1—O183.55 (6)C4—C3—C2106.9 (2)
O3—K1i—O120.96 (3)C3—O3—K1iv138.66 (16)
O3—K1ii—O138.27 (5)C3—O3—K1ii125.34 (16)
O5—K1—N1iii125.09 (7)K1—O3iv—K1ii21.60 (3)
O3—K1i—N1iii20.56 (4)C7—C4—C3127.7 (2)
O3—K1ii—N1iii39.77 (5)C7—C4—C5123.3 (2)
O1—K1—N1iii72.02 (6)C3—C4—C5109.0 (2)
O5—K1—N168.19 (6)O5—C5—C4126.3 (2)
O3—K1i—N114.67 (3)O5—C5—C1126.4 (2)
O3—K1ii—N141.41 (5)C4—C5—C1107.4 (2)
O1—K1—N1121.26 (6)C5—O5—K1158.07 (17)
N1—K1iii—N183.66 (7)C1—C6—C9121.2 (2)
O5—K1—O490.38 (6)C1—C6—C8121.9 (2)
O3—K1i—O420.22 (3)C9—C6—C8116.8 (2)
O3—K1ii—O455.19 (5)C4—C7—C10122.1 (2)
O1—K1—O457.48 (5)C4—C7—C11122.3 (2)
N1—K1iii—O452.18 (6)C10—C7—C11115.6 (2)
N1—K1—O4158.10 (6)N1—C8—C6177.8 (3)
O5—K1—N4i142.49 (7)C8—N1—K1iii145.8 (2)
O3—K1i—N4i21.06 (4)C8—N1—K1105.78 (19)
O3—K1ii—N4i56.13 (5)K1—N1iii—K196.34 (7)
O1—K1—N4i76.39 (6)N2—C9—C6179.5 (3)
N1—K1iii—N4i66.21 (6)N3—C10—C7177.3 (3)
N1—K1—N4i149.08 (7)C10—N3—Co1171.5 (2)
O4—K1—N4i52.11 (6)N4—C11—C7177.6 (3)
O5—K1—K1ix108.71 (5)C11—N4—K1iv100.3 (2)
O3—K1i—K1ix21.37 (3)Co1—O1—K1108.05 (7)
O3—K1ii—K1ix70.56 (5)Co1—O1—H1109.1
O1—K1—K1ix147.83 (5)K1—O1—H1106.2
N1—K1iii—K1ix41.49 (6)Co1—O1—H2109.4
N1—K1—K1ix90.81 (5)K1—O1—H2115.1
O4—K1—K1ix92.01 (4)H1—O1—H2108.8
N4—K1i—K1ix26.62 (3)Co1—O4—K1101.47 (7)
O5—K1—K1iii97.14 (5)Co1—O4—H3111.6
O3—K1i—K1iii28.27 (3)K1—O4—H3111.3
O3—K1ii—K1iii36.25 (5)Co1—O4—H4111.5
O1—K1—K1iii98.72 (4)K1—O4—H4111.3
N1—K1iii—K1iii42.81 (5)H3—O4—H4109.5
N1—K1—K1iii40.85 (5)
O4—Co1—O1—K120.82 (8)N1—K1—O3ii—C3ii86.9 (2)
N3—Co1—O1—K168.19 (8)K1iv—O3—C3—C464.1 (4)
O1v—Co1—O1—K1159.42 (8)K1iv—O3—C3—C2115.6 (3)
N3v—Co1—O1—K1109.35 (8)K1ii—O3—C3—C282.7 (3)
O5—K1—O1—Co178.47 (8)K1ii—O3—C3—C497.6 (3)
N1—K1—O1—Co1138.07 (7)K1—O5—C5—C147.5 (6)
O3i—K1—O1—Co1109.16 (10)K1—O5—C5—C4132.2 (4)
N1iii—K1—O1—Co1151.36 (9)C2—C1—C5—C41.0 (2)
O3ii—K1—O1—Co111.68 (10)C5—C1—C2—O2176.9 (2)
O1—K1—O5—C5174.6 (5)C2—C1—C6—C8174.6 (2)
N1—K1—O5—C558.0 (5)C6—C1—C5—O51.3 (4)
O3i—K1—O5—C513.7 (5)C6—C1—C5—C4178.5 (2)
N1iii—K1—O5—C5122.7 (5)C5—C1—C6—C9176.4 (2)
O3x—K1—O5—C547.9 (5)C2—C1—C5—O5179.3 (2)
O1—K1—N1—C889.2 (2)C2—C1—C6—C92.9 (4)
O1—K1—N1—K1iii64.49 (8)C5—C1—C6—C86.1 (4)
O5—K1—N1—C821.78 (19)C6—C1—C2—C3175.8 (2)
O5—K1—N1—K1iii131.87 (8)C6—C1—C2—O23.7 (4)
O3xi—K1—N1—C8131.4 (2)C5—C1—C2—C33.7 (2)
O3i—K1—N1—K1iii74.97 (7)C1—C2—C3—O3175.3 (2)
N1—K1—N1—C8153.7 (2)C1—C2—C3—C44.9 (2)
N1xii—K1—N1—K1xii0.02 (11)O2—C2—C3—O34.2 (4)
O3ii—K1—N1—C847.2 (2)O2—C2—C3—C4175.6 (2)
O3ii—K1—N1—K1iii159.17 (6)O3—C3—C4—C74.0 (4)
O1—K1—O3i—C3i32.0 (3)O3—C3—C4—C5175.9 (2)
O5—K1—O3i—C3i136.1 (2)C2—C3—C4—C54.3 (2)
N1—K1—O3i—C3i95.3 (3)C2—C3—C4—C7175.8 (2)
O1—K1—N1iii—K1iii125.80 (7)C3—C4—C5—O5177.6 (2)
O1—K1—N1iii—C8iii103.7 (4)C7—C4—C5—C1178.0 (2)
O5—K1—N1iii—K1iii57.67 (9)C3—C4—C7—C10178.6 (2)
O5—K1—N1iii—C8iii171.8 (3)C3—C4—C7—C110.8 (4)
N1—K1—N1xii—K1xii0.00 (7)C5—C4—C7—C101.5 (3)
N1—K1—N1iii—C8iii130.6 (4)C5—C4—C7—C11179.3 (2)
O1—K1—O3ii—C3ii49.0 (2)C3—C4—C5—C12.1 (2)
O5—K1—O3ii—C3ii22.69 (19)C7—C4—C5—O52.3 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1/2, y, z+1/2; (vi) x, y+1, z+1; (vii) x+1/2, y+1, z1/2; (viii) x1/2, y+1, z+1/2; (ix) x+1, y, z+1; (x) x+1, y1, z+1; (xi) x+1, y1, z1; (xii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2vi0.971.862.785 (3)159
O1—H2···N2vii0.961.922.880 (3)177
O4—H3···N4i0.972.232.779 (3)115
O4—H4···O2ii0.971.732.681 (3)167
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (vi) x, y+1, z+1; (vii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaK2[Co(C11N4O3)2(H2O)4]
Mr681.49
Crystal system, space groupMonoclinic, P2/n
Temperature (K)293
a, b, c (Å)9.4060 (19), 7.0110 (14), 19.493 (4)
β (°) 92.58 (3)
V3)1284.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.26 × 0.24 × 0.16
Data collection
DiffractometerKuma KM-4-CCD
Absorption correctionAnalytical
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.765, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
15657, 3181, 1839
Rint0.037
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 0.91
No. of reflections3181
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18
Absolute structureNo

Computer programs: KM-4-CCD Software (Kuma, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.971.862.785 (3)159
O1—H2···N2ii0.961.922.880 (3)177
O4—H3···N4iii0.972.232.779 (3)115
O4—H4···O2iv0.971.732.681 (3)167
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1, z1/2; (iii) x+1, y, z; (iv) x, y, z+1.
 

Acknowledgements

The authors thank the Brazilian agency FAPEMIG for financial support.

References

First citationDe Abreu, H. A., Junior, A. L. S., Leitão, A. A., De Sá, L. R. V., Ribeiro, M. C. C., Diniz, R. & De Oliveira, L. F. C. (2009). J. Phys. Chem. A, 113, 6446–6452.  Web of Science PubMed CAS Google Scholar
First citationDe Oliveira, V. E., Diniz, R. & De Oliveira, L. F. C. (2009). Quim. Nova, 32, 1917-925.  CAS Google Scholar
First citationDumestre, F., Soula, B., Galibert, A. M., Fabre, P. L., Bernardinelli, G., Donnadieu, B. & Castan, P. (1998). J. Chem. Soc. Dalton Trans. pp. 4131–4137.  Web of Science CSD CrossRef Google Scholar
First citationFaria, L. F. O., Junior, A. L. S., Diniz, R., Yoshida, M. I., Edwards, H. G. M. & De Oliveira, L. F. C. (2010). Inorg. Chim. Acta, 363, 49–56.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFatiadi, A. J. (1978). J. Am. Chem. Soc. 100, 2586–2587.  CrossRef CAS Web of Science Google Scholar
First citationFatiadi, A. J. (1980). J. Res. Natl Bur. Stand. 87, 257–260.  Google Scholar
First citationGalibert, A. M., Soula, B., Donnadieu, B. & Fabre, P. L. (2001). Inorg. Chim. Acta, 313, 160–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarcia, H. C., De Oliveira, L. F. C. & Ribeiro, M. C. C. (2010). J. Raman Spectrosc. 41, 524–528.  Web of Science CrossRef CAS Google Scholar
First citationKuma (2004). KM-4 CCD Software. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoula, B., Galibert, A. M., Donnadieu, B. & Fabre, P. L. (2003). Dalton Trans. pp. 2449–2456.  Web of Science CSD CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeles, W. M., Farani, R. A., Maia, D. M., Speziali, N. L., Yoshida, M. I., De Oliveira, L. F. C. & Machado, F. C. (2006). J. Mol. Struct. 783, 52–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationWest, R. & Niu, H. Y. (1963). J. Am. Chem. Soc. 85, 2589–2590.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds