metal-organic compounds
Dipotassium tetraaquabis[3,5-bis(dicyanomethylene)cyclopentane-1,2,4-trionato(1−)-κN]cobaltate(II)
aNúcleo de Espectroscopia e Estrutura Molecular (NEEM), Department of Chemistry, Federal University of Juiz de Fora – Minas Gerais, 36036-900, Brazil, and bInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, PO Box 1410 50-950, Poland
*Correspondence e-mail: renata.diniz@ufjf.edu.br
The title structure, K2[Co(C11N4O3)2(H2O)4], is isotypic with K2[Fe(C11N4O3)2(H2O)4]. The CoII atom is in a distorted octahedral CoN2O4 geometry, forming a dianionic mononuclear entity. Each dianionic unit is associated with two potassium cations and interacts with adjacent units through O—H⋯N and O—H⋯O hydrogen bonds.
Related literature
For the structure and applications of the croconate violet dianion [3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate], see: Fatiadi (1978); Dumestre et al. (1998); Teles et al. (2006); De Abreu et al. (2009); Faria et al. (2010); Garcia et al. (2010). For the synthesis and applications of pseudo-oxocarbons, see: West & Niu (1963), Fatiadi (1980); Galibert et al. (2001); De Oliveira et al. (2009). For the isotypic compound, K2[Fe(C11N4O3)2(H2O)4], see: Soula et al. (2003).
Experimental
Crystal data
|
Refinement
|
KM-4-CCD Software (Kuma, 2004); cell KM-4-CCD Software; data reduction: KM-4-CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810048646/bt5409sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810048646/bt5409Isup2.hkl
The pseudo-oxocarbon Croconate Violet was obtained according to method described in literature (Teles et al., 2006). The original intention was to obtain a bimetallic compound. In this sense we proceeded as follow: 0.70 g (2.5 mmol) of potassium salt of Croconate Violet (K2CV 2.5H2O) was dissolved in 32 ml of a 1:1/(acetonitrile:water) at room temperature. This solution was added to 25 ml of aqueous solution of CoCl2.6H2O (0.60 g, 2.5 mmol). On this mixture was added, slowly, 15 ml of aqueous solution containing FeSO4.7H2O (0.70 g, 2.5 mmol). Good crystals suitable to X ray diffraction were obtained after one month and characterized by X ray diffraction as K2[Fe(CV)2(H2O)4]. The solution was filtered and set aside for crystallization by slow evaporation of the solvents. Two week later violet single crystals with metallic luster, suitable to X ray diffraction, were obtained and characterized as K2[Co(CV)2(H2O)4]. Elemental analysis calculated for C22O10N8H8K2Co: C (38.77); H (1.18); N (16.44). Found: C (37.21); H (1.23); N (15.16).
FT—IR analysis: 1468 cm-1 (νCC + νCO), 1520 cm-1 (νCO + νCC(CN)2), 1605 cm-1 (νassCO), 1682 cm-1 (νCO), 2214 cm-1 (νCN), 2246 cm-1 (coordinatedνCN), 3368 cm-1 (νOH).
Raman spectroscopy (room temperature, 632.8 nm) corroborate with FT—IR analyses and permits attribute bands characteristics of CV coordinated by only one nitrogen atom: 1498 cm-1 (νCC + νCO), 1583 cm-1 (νCO + νCC(CN)2), 1604 cm-1 (νassCO), 1686 cm-1 (νCO), 2220 cm-1 (νCN), 2242 cm-1 (coordinatedνCN).
H atoms were located from electron density maps, fixed in these positions and assigned the same isotropic displacement parameters for all H atoms.
The pseudo-oxocarbons are derived of oxocarbons which are cyclic planar species of general formula (CnOn)2- where n varies from 3 to 6 (West & Niu, 1963). In the pseudo-oxocarbons one or more oxygen atoms are replaced by other atoms or groups (Fatiadi, 1978). This class of compounds has received great attention due to various possible coordination modes (De Oliveira et al., 2009). Specially, the dianion Croconate Violet (CV) [3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate], which is displayed in Scheme I, plays the important role from the structural and spectroscopic viewpoints due to extensive π delocalization and electrical conductivity typical of semiconductor materials (Teles et al., 2006).
The structure related in this report is isostructural to previously described by Soula et al. (2003) but this time the central metal ion is cobalt (II) instead of iron (II) (Scheme II). π electron delocalization over the pseudo-oxocarbon ring (Teles et al., 2006).
of K2[Co(CV)2(H2O)4] is depicted in Figure 1. The metallic ion is surrounded octahedrically by four oxygen atoms from the water molecules and two nitrogen atoms from two different CV units forming a dianionic mononuclear discrete entity which is neutralized by two potassium cations that act as counter ions. Each CV is coordinated in monodentate way to the metal site. The cobalt atom sits in a special position on twofold axes. As commonly observed for cobalt (II) complexes, for the compound under study there is a distortion of octahedral geometry evidenced by two Co—O1 distances (2.1348 (18) Å) longer than Co—O4 and Co—N3 (2.075 (18) Å and 2.088 (2) Å, respectively). For the free nitrogen atoms (N1, N2 and N4) is observed that the CN triple bond lengths vary from 1.131 (3) to 1.137 (3) Å. For the coordinated nitrogen (N3) this distance is 1.153 (3) Å. The ring C—C and C—O bond lengths vary to 1.441 (3) to 1.476 (3) Å and 1.227 (3) to 1.246 (3) Å, respectively, confirming theBesides the interactions with potassium ions the compound has intermolecular hydrogen interactions in which the oxygen atom of water molecule (O1) interact with atoms of oxygen (O2) and nitrogen (N2) of adjacent CV. Moreover, moderate hydrogen bonds occur between O4 (of coordinated water) and N4 and O2 (of Croconate Violet). Hydrogen bonds contribute to the crystal packing extending the chain along the crystallographic directions a and b (Fig.2). Centroid-centroid distances are around 3.9 (2) and 4.0 (2) Å (Fig.3) and the calculated interplanar distances are around 3.3 (6) Å.
For the structure and applications of the
Croconate Violet dianion [3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate], see: Fatiadi (1978); Dumestre et al. (1998); Teles et al. (2006); De Abreu et al. (2009); Faria et al. (2010); Garcia et al. (2010). For the synthesis and applications of pseudo-oxocarbons, see: West & Niu (1963), Fatiadi (1980); Galibert et al. (2001); De Oliveira et al. (2009). For the isotypic compound, K2[Fe(C11N4O3)2(H2O)4], see: Soula et al. (2003).
Data collection: KM-4-CCD Software (Kuma, 2004); cell
KM-4-CCD Software (Kuma, 2004); data reduction: KM-4-CCD Software (Kuma, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).K2[Co(C11N4O3)2(H2O)4] | F(000) = 683.80 |
Mr = 681.49 | Dx = 1.762 Mg m−3 |
Monoclinic, P2/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yac | Cell parameters from 1839 reflections |
a = 9.4060 (19) Å | θ = 2.9–29.0° |
b = 7.0110 (14) Å | µ = 1.07 mm−1 |
c = 19.493 (4) Å | T = 293 K |
β = 92.58 (3)° | Prism, violet |
V = 1284.2 (5) Å3 | 0.26 × 0.24 × 0.16 mm |
Z = 2 |
Kuma KM-4-CCD diffractometer | 3181 independent reflections |
Radiation source: fine-focus sealed tube | 1839 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
CCD scans | θmax = 29.0°, θmin = 2.9° |
Absorption correction: analytical (SHELXTL; Sheldrick, 2008) | h = −12→12 |
Tmin = 0.765, Tmax = 0.843 | k = −6→9 |
15657 measured reflections | l = −26→26 |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0521P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.033 | (Δ/σ)max < 0.001 |
wR(F2) = 0.095 | Δρmax = 0.20 e Å−3 |
S = 0.91 | Δρmin = −0.18 e Å−3 |
3181 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008) |
195 parameters | Absolute structure: no |
0 restraints |
K2[Co(C11N4O3)2(H2O)4] | V = 1284.2 (5) Å3 |
Mr = 681.49 | Z = 2 |
Monoclinic, P2/n | Mo Kα radiation |
a = 9.4060 (19) Å | µ = 1.07 mm−1 |
b = 7.0110 (14) Å | T = 293 K |
c = 19.493 (4) Å | 0.26 × 0.24 × 0.16 mm |
β = 92.58 (3)° |
Kuma KM-4-CCD diffractometer | 3181 independent reflections |
Absorption correction: analytical (SHELXTL; Sheldrick, 2008) | 1839 reflections with I > 2σ(I) |
Tmin = 0.765, Tmax = 0.843 | Rint = 0.037 |
15657 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.20 e Å−3 |
3181 reflections | Δρmin = −0.18 e Å−3 |
195 parameters | Absolute structure: no |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.2500 | 0.17828 (7) | 0.2500 | 0.02924 (16) | |
K1 | 0.42443 (6) | 0.23207 (9) | 0.44538 (3) | 0.03741 (19) | |
C1 | 0.0167 (3) | 0.3045 (3) | 0.56951 (13) | 0.0236 (6) | |
C2 | −0.1309 (3) | 0.2706 (3) | 0.58237 (13) | 0.0252 (6) | |
O2 | −0.18964 (19) | 0.3004 (2) | 0.63736 (9) | 0.0364 (5) | |
C3 | −0.2022 (3) | 0.1925 (3) | 0.51963 (13) | 0.0249 (6) | |
O3 | −0.32681 (18) | 0.1369 (3) | 0.51461 (9) | 0.0354 (5) | |
C4 | −0.0990 (2) | 0.1952 (3) | 0.46673 (13) | 0.0228 (6) | |
C5 | 0.0376 (3) | 0.2594 (3) | 0.49667 (13) | 0.0244 (6) | |
O5 | 0.14928 (18) | 0.2729 (3) | 0.46684 (9) | 0.0342 (5) | |
C6 | 0.1215 (3) | 0.3657 (3) | 0.61569 (13) | 0.0273 (6) | |
C7 | −0.1203 (2) | 0.1460 (3) | 0.39800 (13) | 0.0250 (6) | |
C8 | 0.2638 (3) | 0.4102 (4) | 0.59492 (13) | 0.0298 (6) | |
N1 | 0.3752 (2) | 0.4503 (4) | 0.57986 (12) | 0.0433 (6) | |
C9 | 0.0935 (3) | 0.3955 (4) | 0.68581 (15) | 0.0341 (7) | |
N2 | 0.0713 (3) | 0.4206 (4) | 0.74186 (14) | 0.0553 (7) | |
C10 | −0.0119 (3) | 0.1587 (4) | 0.35161 (13) | 0.0265 (6) | |
N3 | 0.0736 (2) | 0.1691 (3) | 0.31124 (11) | 0.0352 (6) | |
C11 | −0.2557 (3) | 0.0854 (4) | 0.36967 (14) | 0.0313 (6) | |
N4 | −0.3609 (3) | 0.0374 (4) | 0.34506 (13) | 0.0539 (7) | |
O1 | 0.34625 (18) | 0.3966 (3) | 0.31272 (9) | 0.0346 (5) | |
H1 | 0.2763 | 0.4939 | 0.3210 | 0.052* | |
H2 | 0.4233 | 0.4533 | 0.2891 | 0.052* | |
O4 | 0.35063 (17) | −0.0188 (3) | 0.31486 (10) | 0.0409 (5) | |
H3 | 0.4359 | −0.0690 | 0.2954 | 0.061* | |
H4 | 0.2877 | −0.1230 | 0.3255 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0229 (3) | 0.0403 (3) | 0.0250 (3) | 0.000 | 0.0053 (2) | 0.000 |
K1 | 0.0232 (3) | 0.0488 (4) | 0.0404 (4) | 0.0034 (3) | 0.0033 (3) | −0.0022 (3) |
C1 | 0.0221 (12) | 0.0186 (13) | 0.0302 (14) | 0.0025 (11) | 0.0045 (11) | 0.0011 (10) |
C2 | 0.0236 (13) | 0.0237 (14) | 0.0291 (14) | 0.0030 (11) | 0.0097 (11) | 0.0011 (11) |
O2 | 0.0331 (10) | 0.0412 (12) | 0.0361 (11) | −0.0011 (9) | 0.0153 (9) | −0.0018 (9) |
C3 | 0.0184 (12) | 0.0253 (14) | 0.0313 (14) | 0.0067 (12) | 0.0051 (11) | 0.0013 (11) |
O3 | 0.0200 (9) | 0.0480 (12) | 0.0386 (11) | 0.0059 (9) | 0.0048 (8) | −0.0034 (8) |
C4 | 0.0200 (12) | 0.0178 (13) | 0.0308 (14) | 0.0026 (11) | 0.0028 (11) | 0.0010 (10) |
C5 | 0.0226 (13) | 0.0205 (13) | 0.0305 (14) | 0.0021 (11) | 0.0043 (11) | 0.0014 (11) |
O5 | 0.0191 (9) | 0.0507 (13) | 0.0336 (10) | −0.0026 (9) | 0.0091 (8) | −0.0030 (8) |
C6 | 0.0269 (14) | 0.0255 (15) | 0.0297 (15) | −0.0003 (11) | 0.0046 (12) | 0.0007 (11) |
C7 | 0.0171 (12) | 0.0294 (15) | 0.0287 (14) | 0.0008 (11) | 0.0031 (11) | 0.0011 (11) |
C8 | 0.0314 (15) | 0.0283 (15) | 0.0295 (15) | −0.0027 (12) | −0.0019 (12) | −0.0019 (13) |
N1 | 0.0320 (14) | 0.0540 (16) | 0.0443 (15) | −0.0039 (13) | 0.0045 (12) | −0.0128 (12) |
C9 | 0.0271 (15) | 0.0432 (17) | 0.0320 (16) | −0.0033 (14) | 0.0013 (12) | 0.0026 (13) |
N2 | 0.0454 (16) | 0.084 (2) | 0.0370 (16) | −0.0075 (15) | 0.0020 (13) | 0.0111 (15) |
C10 | 0.0229 (13) | 0.0291 (15) | 0.0273 (14) | −0.0014 (12) | −0.0004 (11) | −0.0007 (11) |
N3 | 0.0287 (13) | 0.0471 (15) | 0.0300 (13) | −0.0039 (11) | 0.0030 (11) | −0.0023 (11) |
C11 | 0.0238 (14) | 0.0362 (16) | 0.0341 (15) | −0.0003 (13) | 0.0040 (12) | −0.0004 (13) |
N4 | 0.0330 (14) | 0.070 (2) | 0.0584 (18) | −0.0073 (15) | −0.0049 (13) | −0.0078 (14) |
O1 | 0.0308 (10) | 0.0376 (11) | 0.0363 (11) | −0.0030 (9) | 0.0102 (8) | −0.0030 (8) |
O4 | 0.0234 (10) | 0.0456 (12) | 0.0541 (13) | 0.0165 (10) | 0.0065 (9) | −0.0017 (9) |
Co1—O4 | 2.0725 (18) | C3—C4 | 1.448 (3) |
Co1—O4 | 2.0725 (18) | O3—K1iv | 2.731 (2) |
Co1—N3 | 2.088 (2) | O3—K1ii | 2.8647 (19) |
Co1—N3 | 2.088 (2) | C4—C7 | 1.389 (3) |
Co1—O1 | 2.1348 (18) | C4—C5 | 1.458 (3) |
Co1—O1 | 2.1348 (18) | C5—O5 | 1.227 (3) |
K1—O5 | 2.6557 (18) | C6—C9 | 1.419 (4) |
K1—O3i | 2.731 (2) | C6—C8 | 1.449 (3) |
K1—O3ii | 2.865 (2) | C7—C10 | 1.396 (3) |
K1—O1 | 2.896 (2) | C7—C11 | 1.429 (3) |
K1—N1iii | 2.972 (2) | C8—N1 | 1.137 (3) |
K1—N1 | 3.088 (2) | N1—K1iii | 2.972 (2) |
K1—O4 | 3.145 (2) | C9—N2 | 1.135 (3) |
K1—N4i | 3.181 (3) | C10—N3 | 1.153 (3) |
C1—C6 | 1.374 (4) | C11—N4 | 1.131 (3) |
C1—C2 | 1.441 (3) | N4—K1iv | 3.181 (3) |
C1—C5 | 1.476 (3) | O1—H1 | 0.9666 |
C2—O2 | 1.246 (3) | O1—H2 | 0.9616 |
C2—C3 | 1.474 (4) | O4—H3 | 0.9683 |
C3—O3 | 1.235 (3) | O4—H4 | 0.9689 |
O1···O4 | 2.913 (3) | O4···O1 | 2.913 (3) |
O1···N3 | 3.019 (3) | O4···N3v | 2.906 (3) |
O1···O1v | 2.976 (3) | O4···O2ii | 2.681 (3) |
O1···N3v | 3.019 (3) | O5···N1 | 3.240 (3) |
O1···O2vi | 2.785 (3) | O5···N3 | 3.169 (3) |
O1···N2vii | 2.880 (3) | N1···O5 | 3.240 (3) |
O2···O4ii | 2.681 (3) | N2···O2 | 3.230 (3) |
O2···O3 | 2.903 (3) | N2···O1viii | 2.880 (3) |
O2···N2 | 3.230 (3) | N3···O5 | 3.169 (3) |
O2···O1vi | 2.785 (3) | N3···O1 | 3.019 (3) |
O3···O2 | 2.903 (3) | N3···O4 | 2.918 (3) |
O4···O4v | 3.090 (3) | N3···O4v | 2.906 (3) |
O4···N4i | 2.779 (3) | N3···O1v | 3.019 (3) |
O4···N3 | 2.918 (3) | N4···O4iv | 2.779 (3) |
O4—Co1—O4 | 96.39 (11) | O4—K1—K1iii | 154.16 (4) |
O4—Co1—N3 | 89.06 (8) | N4—K1i—K1iii | 35.60 (3) |
N3—Co1—N3 | 176.46 (13) | K1—K1ix—K1iii | 37.61 (3) |
O4—Co1—O1 | 87.62 (8) | C6—C1—C2 | 127.3 (2) |
N3—Co1—O1 | 91.27 (8) | C6—C1—C5 | 125.1 (2) |
O4—Co1—O1 | 87.62 (8) | C2—C1—C5 | 107.6 (2) |
N3—Co1—O1 | 91.27 (8) | O2—C2—C1 | 126.2 (2) |
O1—Co1—O1 | 88.39 (10) | O2—C2—C3 | 125.0 (2) |
O5—K1—O3i | 140.17 (6) | C1—C2—C3 | 108.8 (2) |
O5—K1—O3ii | 74.21 (5) | O3—C3—C4 | 127.7 (2) |
O3—K1i—O3ii | 11.69 (3) | O3—C3—C2 | 125.3 (2) |
O5—K1—O1 | 83.55 (6) | C4—C3—C2 | 106.9 (2) |
O3—K1i—O1 | 20.96 (3) | C3—O3—K1iv | 138.66 (16) |
O3—K1ii—O1 | 38.27 (5) | C3—O3—K1ii | 125.34 (16) |
O5—K1—N1iii | 125.09 (7) | K1—O3iv—K1ii | 21.60 (3) |
O3—K1i—N1iii | 20.56 (4) | C7—C4—C3 | 127.7 (2) |
O3—K1ii—N1iii | 39.77 (5) | C7—C4—C5 | 123.3 (2) |
O1—K1—N1iii | 72.02 (6) | C3—C4—C5 | 109.0 (2) |
O5—K1—N1 | 68.19 (6) | O5—C5—C4 | 126.3 (2) |
O3—K1i—N1 | 14.67 (3) | O5—C5—C1 | 126.4 (2) |
O3—K1ii—N1 | 41.41 (5) | C4—C5—C1 | 107.4 (2) |
O1—K1—N1 | 121.26 (6) | C5—O5—K1 | 158.07 (17) |
N1—K1iii—N1 | 83.66 (7) | C1—C6—C9 | 121.2 (2) |
O5—K1—O4 | 90.38 (6) | C1—C6—C8 | 121.9 (2) |
O3—K1i—O4 | 20.22 (3) | C9—C6—C8 | 116.8 (2) |
O3—K1ii—O4 | 55.19 (5) | C4—C7—C10 | 122.1 (2) |
O1—K1—O4 | 57.48 (5) | C4—C7—C11 | 122.3 (2) |
N1—K1iii—O4 | 52.18 (6) | C10—C7—C11 | 115.6 (2) |
N1—K1—O4 | 158.10 (6) | N1—C8—C6 | 177.8 (3) |
O5—K1—N4i | 142.49 (7) | C8—N1—K1iii | 145.8 (2) |
O3—K1i—N4i | 21.06 (4) | C8—N1—K1 | 105.78 (19) |
O3—K1ii—N4i | 56.13 (5) | K1—N1iii—K1 | 96.34 (7) |
O1—K1—N4i | 76.39 (6) | N2—C9—C6 | 179.5 (3) |
N1—K1iii—N4i | 66.21 (6) | N3—C10—C7 | 177.3 (3) |
N1—K1—N4i | 149.08 (7) | C10—N3—Co1 | 171.5 (2) |
O4—K1—N4i | 52.11 (6) | N4—C11—C7 | 177.6 (3) |
O5—K1—K1ix | 108.71 (5) | C11—N4—K1iv | 100.3 (2) |
O3—K1i—K1ix | 21.37 (3) | Co1—O1—K1 | 108.05 (7) |
O3—K1ii—K1ix | 70.56 (5) | Co1—O1—H1 | 109.1 |
O1—K1—K1ix | 147.83 (5) | K1—O1—H1 | 106.2 |
N1—K1iii—K1ix | 41.49 (6) | Co1—O1—H2 | 109.4 |
N1—K1—K1ix | 90.81 (5) | K1—O1—H2 | 115.1 |
O4—K1—K1ix | 92.01 (4) | H1—O1—H2 | 108.8 |
N4—K1i—K1ix | 26.62 (3) | Co1—O4—K1 | 101.47 (7) |
O5—K1—K1iii | 97.14 (5) | Co1—O4—H3 | 111.6 |
O3—K1i—K1iii | 28.27 (3) | K1—O4—H3 | 111.3 |
O3—K1ii—K1iii | 36.25 (5) | Co1—O4—H4 | 111.5 |
O1—K1—K1iii | 98.72 (4) | K1—O4—H4 | 111.3 |
N1—K1iii—K1iii | 42.81 (5) | H3—O4—H4 | 109.5 |
N1—K1—K1iii | 40.85 (5) | ||
O4—Co1—O1—K1 | −20.82 (8) | N1—K1—O3ii—C3ii | 86.9 (2) |
N3—Co1—O1—K1 | 68.19 (8) | K1iv—O3—C3—C4 | −64.1 (4) |
O1v—Co1—O1—K1 | 159.42 (8) | K1iv—O3—C3—C2 | 115.6 (3) |
N3v—Co1—O1—K1 | −109.35 (8) | K1ii—O3—C3—C2 | −82.7 (3) |
O5—K1—O1—Co1 | −78.47 (8) | K1ii—O3—C3—C4 | 97.6 (3) |
N1—K1—O1—Co1 | −138.07 (7) | K1—O5—C5—C1 | 47.5 (6) |
O3i—K1—O1—Co1 | 109.16 (10) | K1—O5—C5—C4 | −132.2 (4) |
N1iii—K1—O1—Co1 | 151.36 (9) | C2—C1—C5—C4 | −1.0 (2) |
O3ii—K1—O1—Co1 | −11.68 (10) | C5—C1—C2—O2 | −176.9 (2) |
O1—K1—O5—C5 | 174.6 (5) | C2—C1—C6—C8 | −174.6 (2) |
N1—K1—O5—C5 | −58.0 (5) | C6—C1—C5—O5 | −1.3 (4) |
O3i—K1—O5—C5 | −13.7 (5) | C6—C1—C5—C4 | 178.5 (2) |
N1iii—K1—O5—C5 | −122.7 (5) | C5—C1—C6—C9 | −176.4 (2) |
O3x—K1—O5—C5 | 47.9 (5) | C2—C1—C5—O5 | 179.3 (2) |
O1—K1—N1—C8 | 89.2 (2) | C2—C1—C6—C9 | 2.9 (4) |
O1—K1—N1—K1iii | −64.49 (8) | C5—C1—C6—C8 | 6.1 (4) |
O5—K1—N1—C8 | 21.78 (19) | C6—C1—C2—C3 | −175.8 (2) |
O5—K1—N1—K1iii | −131.87 (8) | C6—C1—C2—O2 | 3.7 (4) |
O3xi—K1—N1—C8 | −131.4 (2) | C5—C1—C2—C3 | 3.7 (2) |
O3i—K1—N1—K1iii | 74.97 (7) | C1—C2—C3—O3 | 175.3 (2) |
N1—K1—N1—C8 | 153.7 (2) | C1—C2—C3—C4 | −4.9 (2) |
N1xii—K1—N1—K1xii | 0.02 (11) | O2—C2—C3—O3 | −4.2 (4) |
O3ii—K1—N1—C8 | −47.2 (2) | O2—C2—C3—C4 | 175.6 (2) |
O3ii—K1—N1—K1iii | 159.17 (6) | O3—C3—C4—C7 | 4.0 (4) |
O1—K1—O3i—C3i | 32.0 (3) | O3—C3—C4—C5 | −175.9 (2) |
O5—K1—O3i—C3i | −136.1 (2) | C2—C3—C4—C5 | 4.3 (2) |
N1—K1—O3i—C3i | −95.3 (3) | C2—C3—C4—C7 | −175.8 (2) |
O1—K1—N1iii—K1iii | 125.80 (7) | C3—C4—C5—O5 | 177.6 (2) |
O1—K1—N1iii—C8iii | −103.7 (4) | C7—C4—C5—C1 | 178.0 (2) |
O5—K1—N1iii—K1iii | 57.67 (9) | C3—C4—C7—C10 | 178.6 (2) |
O5—K1—N1iii—C8iii | −171.8 (3) | C3—C4—C7—C11 | 0.8 (4) |
N1—K1—N1xii—K1xii | 0.00 (7) | C5—C4—C7—C10 | −1.5 (3) |
N1—K1—N1iii—C8iii | 130.6 (4) | C5—C4—C7—C11 | −179.3 (2) |
O1—K1—O3ii—C3ii | −49.0 (2) | C3—C4—C5—C1 | −2.1 (2) |
O5—K1—O3ii—C3ii | 22.69 (19) | C7—C4—C5—O5 | −2.3 (4) |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) −x+1/2, y, −z+1/2; (vi) −x, −y+1, −z+1; (vii) x+1/2, −y+1, z−1/2; (viii) x−1/2, −y+1, z+1/2; (ix) −x+1, −y, −z+1; (x) −x+1, −y−1, −z+1; (xi) x+1, y−1, z−1; (xii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2vi | 0.97 | 1.86 | 2.785 (3) | 159 |
O1—H2···N2vii | 0.96 | 1.92 | 2.880 (3) | 177 |
O4—H3···N4i | 0.97 | 2.23 | 2.779 (3) | 115 |
O4—H4···O2ii | 0.97 | 1.73 | 2.681 (3) | 167 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y, −z+1; (vi) −x, −y+1, −z+1; (vii) x+1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | K2[Co(C11N4O3)2(H2O)4] |
Mr | 681.49 |
Crystal system, space group | Monoclinic, P2/n |
Temperature (K) | 293 |
a, b, c (Å) | 9.4060 (19), 7.0110 (14), 19.493 (4) |
β (°) | 92.58 (3) |
V (Å3) | 1284.2 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.07 |
Crystal size (mm) | 0.26 × 0.24 × 0.16 |
Data collection | |
Diffractometer | Kuma KM-4-CCD |
Absorption correction | Analytical (SHELXTL; Sheldrick, 2008) |
Tmin, Tmax | 0.765, 0.843 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15657, 3181, 1839 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.095, 0.91 |
No. of reflections | 3181 |
No. of parameters | 195 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.18 |
Absolute structure | No |
Computer programs: KM-4-CCD Software (Kuma, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.97 | 1.86 | 2.785 (3) | 159 |
O1—H2···N2ii | 0.96 | 1.92 | 2.880 (3) | 177 |
O4—H3···N4iii | 0.97 | 2.23 | 2.779 (3) | 115 |
O4—H4···O2iv | 0.97 | 1.73 | 2.681 (3) | 167 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1/2, −y+1, z−1/2; (iii) x+1, y, z; (iv) −x, −y, −z+1. |
Acknowledgements
The authors thank the Brazilian agency FAPEMIG for financial support.
References
De Abreu, H. A., Junior, A. L. S., Leitão, A. A., De Sá, L. R. V., Ribeiro, M. C. C., Diniz, R. & De Oliveira, L. F. C. (2009). J. Phys. Chem. A, 113, 6446–6452. Web of Science PubMed CAS Google Scholar
De Oliveira, V. E., Diniz, R. & De Oliveira, L. F. C. (2009). Quim. Nova, 32, 1917-925. CAS Google Scholar
Dumestre, F., Soula, B., Galibert, A. M., Fabre, P. L., Bernardinelli, G., Donnadieu, B. & Castan, P. (1998). J. Chem. Soc. Dalton Trans. pp. 4131–4137. Web of Science CSD CrossRef Google Scholar
Faria, L. F. O., Junior, A. L. S., Diniz, R., Yoshida, M. I., Edwards, H. G. M. & De Oliveira, L. F. C. (2010). Inorg. Chim. Acta, 363, 49–56. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fatiadi, A. J. (1978). J. Am. Chem. Soc. 100, 2586–2587. CrossRef CAS Web of Science Google Scholar
Fatiadi, A. J. (1980). J. Res. Natl Bur. Stand. 87, 257–260. Google Scholar
Galibert, A. M., Soula, B., Donnadieu, B. & Fabre, P. L. (2001). Inorg. Chim. Acta, 313, 160–164. Web of Science CSD CrossRef CAS Google Scholar
Garcia, H. C., De Oliveira, L. F. C. & Ribeiro, M. C. C. (2010). J. Raman Spectrosc. 41, 524–528. Web of Science CrossRef CAS Google Scholar
Kuma (2004). KM-4 CCD Software. Kuma Diffraction, Wrocław, Poland. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soula, B., Galibert, A. M., Donnadieu, B. & Fabre, P. L. (2003). Dalton Trans. pp. 2449–2456. Web of Science CSD CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teles, W. M., Farani, R. A., Maia, D. M., Speziali, N. L., Yoshida, M. I., De Oliveira, L. F. C. & Machado, F. C. (2006). J. Mol. Struct. 783, 52–60. Web of Science CSD CrossRef CAS Google Scholar
West, R. & Niu, H. Y. (1963). J. Am. Chem. Soc. 85, 2589–2590. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The pseudo-oxocarbons are derived of oxocarbons which are cyclic planar species of general formula (CnOn)2- where n varies from 3 to 6 (West & Niu, 1963). In the pseudo-oxocarbons one or more oxygen atoms are replaced by other atoms or groups (Fatiadi, 1978). This class of compounds has received great attention due to various possible coordination modes (De Oliveira et al., 2009). Specially, the dianion Croconate Violet (CV) [3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate], which is displayed in Scheme I, plays the important role from the structural and spectroscopic viewpoints due to extensive π delocalization and electrical conductivity typical of semiconductor materials (Teles et al., 2006).
The structure related in this report is isostructural to previously described by Soula et al. (2003) but this time the central metal ion is cobalt (II) instead of iron (II) (Scheme II). Crystal structure of K2[Co(CV)2(H2O)4] is depicted in Figure 1. The metallic ion is surrounded octahedrically by four oxygen atoms from the water molecules and two nitrogen atoms from two different CV units forming a dianionic mononuclear discrete entity which is neutralized by two potassium cations that act as counter ions. Each CV is coordinated in monodentate way to the metal site. The cobalt atom sits in a special position on twofold axes. As commonly observed for cobalt (II) complexes, for the compound under study there is a distortion of octahedral geometry evidenced by two Co—O1 distances (2.1348 (18) Å) longer than Co—O4 and Co—N3 (2.075 (18) Å and 2.088 (2) Å, respectively). For the free nitrogen atoms (N1, N2 and N4) is observed that the CN triple bond lengths vary from 1.131 (3) to 1.137 (3) Å. For the coordinated nitrogen (N3) this distance is 1.153 (3) Å. The ring C—C and C—O bond lengths vary to 1.441 (3) to 1.476 (3) Å and 1.227 (3) to 1.246 (3) Å, respectively, confirming the π electron delocalization over the pseudo-oxocarbon ring (Teles et al., 2006).
Besides the interactions with potassium ions the compound has intermolecular hydrogen interactions in which the oxygen atom of water molecule (O1) interact with atoms of oxygen (O2) and nitrogen (N2) of adjacent CV. Moreover, moderate hydrogen bonds occur between O4 (of coordinated water) and N4 and O2 (of Croconate Violet). Hydrogen bonds contribute to the crystal packing extending the chain along the crystallographic directions a and b (Fig.2). Centroid-centroid distances are around 3.9 (2) and 4.0 (2) Å (Fig.3) and the calculated interplanar distances are around 3.3 (6) Å.