organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­pyridin-2-yl)-N-meth­­oxy­methyl-4-methyl­benzene­sulfonamide

aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, bUniversity Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany, and cc-a-i-r biosciences GmbH, Paul-Ehrlich-Strasse 15, 72076 Tübingen, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 18 November 2010; accepted 19 November 2010; online 27 November 2010)

In the crystal structure of the title compound, C14H15ClN2O3S, each mol­ecule is connected via inter­molecular C—H⋯O hydrogen bonds to three further mol­ecules, generating a three-dimensional network. The 4-methyl­phenyl­sulfonyl ring forms a dihedral angle of 40.7 (2)° with the 4-chloro­pyridine ring.

Related literature

For the biological activity of 2-alkyl­amino­pyridinyl or 2-acyl­amino­pyridinyl imidazole derivatives as p38α MAPK inhibitors, see: Laufer et al. (2008[Laufer, S. A., Hauser, D. R. J., Domeyer, D. M., Kinkel, K. & Liedtke, A. J. (2008). J. Med. Chem. 51, 4122-4149.], 2010[Laufer, S., Hauser, D., Stegmiller, T., Bracht, C., Ruff, K., Schattel, V., Albrecht, W. & Koch, P. (2010). Bioorg. Med. Chem. Lett. 20, 6671-6675.]); Ziegler et al. (2009[Ziegler, K., Hauser, D. R. J., Unger, A., Albrecht, W. & Laufer, S. A. (2009). ChemMedChem, 4, 1939-1948.]). For general background to protecting groups, see: Kocieński (2005[Kocieński, P. J. (2005). Protecting Groups, 3rd ed. Stuttgart: Georg Thieme Verlag.]). For the preparation of the N-protected 4-chloro­pyridine, see: Berliner & Belecki (2005[Berliner, M. A. & Belecki, K. (2005). J. Org. Chem. 70, 9618-9621.]); Sciotti et al. (2005[Sciotti, R. J., Starr, J. T., Richardson, C., Rewcastle, G. W., Palmer, B. D., Sutherland, H. S., Spicer, J. A. & Chen, H. (2005). PCT Int. Appl. WO 2005089763, 100 pp.]); Shi & Wang (2002[Shi, M. & Wang, C.-J. (2002). Tetrahedron Asymmetry, 13, 2161-2166.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15ClN2O3S

  • Mr = 326.79

  • Orthorhombic, A b a 2

  • a = 15.1651 (10) Å

  • b = 22.7953 (13) Å

  • c = 8.9132 (6) Å

  • V = 3081.2 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.57 mm−1

  • T = 193 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.736, Tmax = 0.999

  • 2950 measured reflections

  • 2742 independent reflections

  • 2659 reflections with I > 2σ(I)

  • Rint = 0.080

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.158

  • S = 1.11

  • 2742 reflections

  • 192 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1176 Friedel pairs

  • Flack parameter: 0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O9i 0.98 2.59 3.512 (6) 157
C16—H16⋯O13ii 0.95 2.56 3.485 (4) 165
C18—H18⋯O10iii 0.95 2.50 3.098 (5) 121
C19—H19⋯O10iii 0.95 2.48 3.112 (5) 124
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) -x+1, -y+1, z; (iii) x, y, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In recent years, compounds with the 2-aminopyridine moiety exhibited interesting biological activities like the 2-alkylaminopyridinyl or 2-acylaminopyridinyl imidazole derivatives as p38α mitogen-activated protein kinase (p38α MAPK) inhibitors. The N-protected 4-chloropyridine is an important precursor to block the nucleophilic and basic properties of the amino-group in the C2 position of the pyridine ring. The analysis of the crystal structure shows that the both aromatic C19—H– and C18—H-groups of the 4-chloropyridine ring of one molecule interact with the oxygen-atom O10 of the sulfonyl group of another molecule by the building of a bidentate intermolecular hydrogen bond C—H···O, whereas the O10···H19 distance is 2.48 Å. The length of the second hydrogen bond O10···H18 is 2.50 Å. Furthermore, the aromatic C16—H group of the 4-chloropyridine ring forms an intermolecular C16—H16···O13 hydrogen bond (2.56 Å) to the oxygen atom O13 of the methoxymethyl moiety of a third molecule. An additional hydrogen bond was observed between the methyl-group C7—H3 of the 4-methylphenylsulfonylring and the oxygen-atom O9 of the sulfonyl group of a further molecule, whereas the O9_a···H7C distance is 2.59 Å. The 4-methylphenylsulfonyl ring forms a dihedral angle of 40.7 (2)° to the 4-chloropyridine ring.

Related literature top

For the biological activity of 2-alkylaminopyridinyl or 2-acylaminopyridinyl imidazole derivatives as p38α MAPK inhibitors, see: Laufer et al. (2010), Ziegler et al. (2009); Laufer et al. (2008). For general background to protecting groups, see: Kocieński (2005). For the preparation of the N-protected 4-chloropyridine, see: Berliner et al. (2005), Sciotti et al. (2005); Shi et al. (2002).

Experimental top

Synthesis of chloromethyl methyl ether as a solution of toluene: To a solution of dimethoxymethane (44.3 ml, 0.50 mol, 1 equiv) and Zn(OAc)2 (9.2 mg, 0.01%) in toluene (133 ml) was added acetyl chloride (35.5 ml, 0.50 mol, 1 equiv). During the next 15 min, the reaction mixture warmed slowly at T = 318 K, and then cooled to ambient temperature over 3 h. The progress was again monitored until NMR analysis indicated complete conversion. The solution of MOMCl in toluene prepared using this stoichiometry is approximately 2.1 M.

Synthesis of N-(4-chloropyridin-2-yl)-4-methylbenzenesulfonamide: 2-amino- 4-chloropyridine (20.1 g, 156 mmol. 1 equiv) and 4-toluenesulfonyl chloride (32.4 g, 168 mmol, 1.1 equiv) were dissolved in dry pyridine (70 ml) and heated at T = 353 K for 5 h. After cooling to room temperature, water was added and the compound N-(4-chloropyridin-2-yl)-4-methylbenzenesulfonamide dropped down as a beige solid with high analytical quality, which was filtered off and washed with water (30.6 g, 70.8%).

Synthesis of N-(4-chloropyridin-2-yl)- N-(methoxymethyl)- 4-methylbenzenesulfon- amide: Under a nitrogen atmosphere, N-(4-chloropyridin-2-yl)- 4-methylbenzene- sulfonamide (20.0 g, 71 mmol, 1 equiv) was added to a suspension of NaH (4.2 g, 104 mmol, 1.5 equiv) in anhydrous THF (200 ml) with stirring. The resulting reaction mixture was stirred for 20 min, and then the solution of methoxymethyl chloride in toluene (52.1 ml, 1.5 equiv) was slowly added. The mixture was stirred for 3 h and then an aqueous saturated solution of NH4Cl was added. After separation, the aqueous layer was extracted with EtOAc, dried over Na2SO4 and evaporated. After treatment with hexane, the compound N-(4-chloropyridin-2-yl)- N-(methoxymethyl)-4- methylbenzene sulfonamide was obtained as the main product of the reaction (15.8 g, 69.7%) and dropped down as a pale yellow solid, whereas the compound N-(4-chloropyridin-2-yl)-N-tosylacetamide was isolated from the filtrate as the byproduct (15.4%). Suitable crystals of the compound N-(4-chloropyridin-2-yl)-N– (methoxymethyl)-4-methylbenzenesulfonamide for X-ray were obtained by slow evaporation at T = 298 K of a solution of EtOAc.

Refinement top

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). They were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The absolute structure was determined on the basis of 1176 Friedel pairs.

Structure description top

In recent years, compounds with the 2-aminopyridine moiety exhibited interesting biological activities like the 2-alkylaminopyridinyl or 2-acylaminopyridinyl imidazole derivatives as p38α mitogen-activated protein kinase (p38α MAPK) inhibitors. The N-protected 4-chloropyridine is an important precursor to block the nucleophilic and basic properties of the amino-group in the C2 position of the pyridine ring. The analysis of the crystal structure shows that the both aromatic C19—H– and C18—H-groups of the 4-chloropyridine ring of one molecule interact with the oxygen-atom O10 of the sulfonyl group of another molecule by the building of a bidentate intermolecular hydrogen bond C—H···O, whereas the O10···H19 distance is 2.48 Å. The length of the second hydrogen bond O10···H18 is 2.50 Å. Furthermore, the aromatic C16—H group of the 4-chloropyridine ring forms an intermolecular C16—H16···O13 hydrogen bond (2.56 Å) to the oxygen atom O13 of the methoxymethyl moiety of a third molecule. An additional hydrogen bond was observed between the methyl-group C7—H3 of the 4-methylphenylsulfonylring and the oxygen-atom O9 of the sulfonyl group of a further molecule, whereas the O9_a···H7C distance is 2.59 Å. The 4-methylphenylsulfonyl ring forms a dihedral angle of 40.7 (2)° to the 4-chloropyridine ring.

For the biological activity of 2-alkylaminopyridinyl or 2-acylaminopyridinyl imidazole derivatives as p38α MAPK inhibitors, see: Laufer et al. (2010), Ziegler et al. (2009); Laufer et al. (2008). For general background to protecting groups, see: Kocieński (2005). For the preparation of the N-protected 4-chloropyridine, see: Berliner et al. (2005), Sciotti et al. (2005); Shi et al. (2002).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
N-(4-Chloropyridin-2-yl)-N-methoxymethyl- 4-methylbenzenesulfonamide top
Crystal data top
C14H15ClN2O3SF(000) = 1360
Mr = 326.79Dx = 1.409 Mg m3
Orthorhombic, Aba2Cu Kα radiation, λ = 1.54178 Å
Hall symbol: A 2 -2acCell parameters from 25 reflections
a = 15.1651 (10) Åθ = 65–69°
b = 22.7953 (13) ŵ = 3.57 mm1
c = 8.9132 (6) ÅT = 193 K
V = 3081.2 (3) Å3Block, colourless
Z = 80.30 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2659 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.080
Graphite monochromatorθmax = 70.0°, θmin = 3.9°
ω/2θ scansh = 1818
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 2727
Tmin = 0.736, Tmax = 0.999l = 1010
2950 measured reflections3 standard reflections every 60 min
2742 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.1234P)2 + 0.8389P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2742 reflectionsΔρmax = 0.66 e Å3
192 parametersΔρmin = 0.53 e Å3
1 restraintAbsolute structure: Flack (1983), 1176 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
C14H15ClN2O3SV = 3081.2 (3) Å3
Mr = 326.79Z = 8
Orthorhombic, Aba2Cu Kα radiation
a = 15.1651 (10) ŵ = 3.57 mm1
b = 22.7953 (13) ÅT = 193 K
c = 8.9132 (6) Å0.30 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2659 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
Rint = 0.080
Tmin = 0.736, Tmax = 0.9993 standard reflections every 60 min
2950 measured reflections intensity decay: 2%
2742 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.158Δρmax = 0.66 e Å3
S = 1.11Δρmin = 0.53 e Å3
2742 reflectionsAbsolute structure: Flack (1983), 1176 Friedel pairs
192 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64226 (5)0.45727 (4)0.66220 (13)0.0400 (3)
C10.3696 (2)0.29193 (14)0.2257 (4)0.0283 (7)
C20.4078 (2)0.25319 (17)0.3272 (5)0.0367 (8)
H20.46710.25850.35910.044*
C30.3586 (3)0.20715 (17)0.3805 (5)0.0386 (9)
H30.38540.17940.44570.046*
C40.2699 (2)0.20019 (15)0.3411 (5)0.0350 (8)
C50.2336 (2)0.23969 (15)0.2376 (5)0.0379 (8)
H50.17390.23510.20750.045*
C60.2828 (2)0.28515 (14)0.1785 (5)0.0336 (8)
H60.25780.31120.10710.040*
C70.2156 (3)0.15130 (19)0.4026 (6)0.0501 (11)
H7A0.21870.15170.51240.075*
H7B0.23820.11380.36500.075*
H7C0.15420.15620.37090.075*
S80.42918 (6)0.35362 (4)0.16453 (10)0.0329 (3)
O90.52102 (18)0.34292 (13)0.1894 (4)0.0468 (8)
O100.3980 (2)0.37013 (14)0.0185 (3)0.0487 (8)
N110.40200 (19)0.40858 (12)0.2779 (3)0.0267 (6)
C120.3183 (2)0.43980 (16)0.2508 (4)0.0331 (8)
H12A0.29070.42440.15820.040*
H12B0.27740.43210.33520.040*
O130.33051 (19)0.49934 (12)0.2365 (4)0.0437 (7)
C140.3640 (3)0.5145 (2)0.0901 (7)0.0544 (12)
H14B0.32110.50280.01340.082*
H14A0.41980.49400.07270.082*
H14C0.37360.55690.08470.082*
C150.4331 (2)0.40624 (14)0.4291 (4)0.0246 (7)
C160.5156 (2)0.42870 (12)0.4611 (4)0.0243 (6)
H160.55250.44420.38470.029*
C170.5417 (2)0.42749 (14)0.6091 (4)0.0290 (7)
C180.4872 (3)0.40358 (17)0.7178 (4)0.0344 (8)
H180.50440.40210.82020.041*
C190.4068 (2)0.38197 (16)0.6710 (5)0.0350 (8)
H190.36910.36510.74450.042*
N200.3782 (2)0.38313 (13)0.5288 (4)0.0316 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0311 (4)0.0470 (5)0.0418 (5)0.0051 (3)0.0052 (4)0.0089 (4)
C10.0281 (16)0.0298 (15)0.0271 (17)0.0020 (12)0.0027 (14)0.0038 (13)
C20.0302 (16)0.0454 (19)0.0343 (18)0.0061 (14)0.0061 (17)0.0020 (16)
C30.043 (2)0.0359 (18)0.037 (2)0.0076 (15)0.0078 (16)0.0010 (16)
C40.0405 (19)0.0314 (16)0.0332 (19)0.0040 (14)0.0020 (18)0.0023 (14)
C50.0307 (18)0.0373 (17)0.046 (2)0.0041 (14)0.0032 (18)0.0027 (17)
C60.0341 (16)0.0329 (15)0.0337 (19)0.0008 (12)0.0088 (17)0.0037 (15)
C70.062 (3)0.043 (2)0.045 (3)0.0116 (19)0.001 (2)0.0057 (18)
S80.0347 (4)0.0401 (4)0.0238 (4)0.0081 (3)0.0091 (4)0.0037 (4)
O90.0299 (12)0.0588 (16)0.052 (2)0.0067 (12)0.0168 (12)0.0185 (14)
O100.067 (2)0.0595 (17)0.0194 (13)0.0161 (16)0.0044 (14)0.0030 (12)
N110.0291 (13)0.0324 (13)0.0188 (13)0.0033 (10)0.0015 (11)0.0028 (11)
C120.0265 (16)0.0472 (19)0.0255 (17)0.0007 (14)0.0053 (16)0.0013 (15)
O130.0439 (15)0.0426 (14)0.0445 (16)0.0048 (12)0.0128 (15)0.0027 (13)
C140.050 (3)0.043 (2)0.070 (3)0.0053 (17)0.002 (2)0.018 (2)
C150.0253 (15)0.0247 (15)0.0239 (16)0.0003 (11)0.0014 (13)0.0018 (12)
C160.0252 (14)0.0250 (14)0.0226 (15)0.0002 (11)0.0027 (13)0.0016 (13)
C170.0258 (14)0.0288 (14)0.0326 (18)0.0019 (13)0.0004 (15)0.0028 (13)
C180.0368 (19)0.047 (2)0.0200 (15)0.0022 (15)0.0022 (15)0.0020 (15)
C190.0340 (17)0.0465 (18)0.0245 (17)0.0017 (14)0.0047 (18)0.0043 (17)
N200.0295 (13)0.0381 (14)0.0273 (16)0.0027 (12)0.0009 (13)0.0052 (13)
Geometric parameters (Å, º) top
Cl1—C171.736 (4)N11—C151.429 (4)
C1—C61.391 (5)N11—C121.475 (4)
C1—C21.391 (5)C12—O131.376 (5)
C1—S81.758 (3)C12—H12A0.9900
C2—C31.372 (6)C12—H12B0.9900
C2—H20.9500O13—C141.442 (6)
C3—C41.400 (5)C14—H14B0.9800
C3—H30.9500C14—H14A0.9800
C4—C51.402 (6)C14—H14C0.9800
C4—C71.490 (5)C15—N201.327 (5)
C5—C61.381 (5)C15—C161.381 (4)
C5—H50.9500C16—C171.378 (5)
C6—H60.9500C16—H160.9500
C7—H7A0.9800C17—C181.385 (5)
C7—H7B0.9800C18—C191.380 (5)
C7—H7C0.9800C18—H180.9500
S8—O91.431 (3)C19—N201.340 (5)
S8—O101.435 (3)C19—H190.9500
S8—N111.662 (3)
C6—C1—C2121.4 (3)C15—N11—S8117.6 (2)
C6—C1—S8118.8 (3)C12—N11—S8118.5 (2)
C2—C1—S8119.7 (3)O13—C12—N11112.0 (3)
C3—C2—C1119.0 (3)O13—C12—H12A109.2
C3—C2—H2120.5N11—C12—H12A109.2
C1—C2—H2120.5O13—C12—H12B109.2
C2—C3—C4121.5 (4)N11—C12—H12B109.2
C2—C3—H3119.3H12A—C12—H12B107.9
C4—C3—H3119.3C12—O13—C14111.6 (3)
C3—C4—C5118.1 (3)O13—C14—H14B109.5
C3—C4—C7121.6 (4)O13—C14—H14A109.5
C5—C4—C7120.3 (4)H14B—C14—H14A109.5
C6—C5—C4121.4 (3)O13—C14—H14C109.5
C6—C5—H5119.3H14B—C14—H14C109.5
C4—C5—H5119.3H14A—C14—H14C109.5
C5—C6—C1118.7 (3)N20—C15—C16125.3 (3)
C5—C6—H6120.7N20—C15—N11116.1 (3)
C1—C6—H6120.7C16—C15—N11118.7 (3)
C4—C7—H7A109.5C17—C16—C15116.8 (3)
C4—C7—H7B109.5C17—C16—H16121.6
H7A—C7—H7B109.5C15—C16—H16121.6
C4—C7—H7C109.5C16—C17—C18120.4 (3)
H7A—C7—H7C109.5C16—C17—Cl1120.4 (3)
H7B—C7—H7C109.5C18—C17—Cl1119.2 (3)
O9—S8—O10120.4 (2)C19—C18—C17117.1 (3)
O9—S8—N11106.00 (16)C19—C18—H18121.4
O10—S8—N11105.79 (18)C17—C18—H18121.4
O9—S8—C1108.41 (18)N20—C19—C18124.4 (3)
O10—S8—C1108.76 (18)N20—C19—H19117.8
N11—S8—C1106.68 (15)C18—C19—H19117.8
C15—N11—C12117.2 (3)C15—N20—C19116.0 (3)
C6—C1—C2—C30.5 (6)O10—S8—N11—C1235.5 (3)
S8—C1—C2—C3176.2 (3)C1—S8—N11—C1280.2 (3)
C1—C2—C3—C43.4 (6)C15—N11—C12—O1383.7 (4)
C2—C3—C4—C53.9 (6)S8—N11—C12—O13125.7 (3)
C2—C3—C4—C7178.1 (4)N11—C12—O13—C1478.1 (4)
C3—C4—C5—C61.6 (6)C12—N11—C15—N2056.6 (4)
C7—C4—C5—C6179.7 (4)S8—N11—C15—N2094.3 (3)
C4—C5—C6—C11.1 (6)C12—N11—C15—C16122.1 (3)
C2—C1—C6—C51.7 (6)S8—N11—C15—C1686.9 (3)
S8—C1—C6—C5174.1 (3)N20—C15—C16—C170.9 (5)
C6—C1—S8—O9163.5 (3)N11—C15—C16—C17177.7 (3)
C2—C1—S8—O920.7 (4)C15—C16—C17—C181.2 (5)
C6—C1—S8—O1030.9 (3)C15—C16—C17—Cl1177.5 (2)
C2—C1—S8—O10153.3 (3)C16—C17—C18—C190.5 (5)
C6—C1—S8—N1182.8 (3)Cl1—C17—C18—C19178.2 (3)
C2—C1—S8—N1193.0 (3)C17—C18—C19—N200.6 (6)
O9—S8—N11—C1545.1 (3)C16—C15—N20—C190.1 (5)
O10—S8—N11—C15174.0 (3)N11—C15—N20—C19178.8 (3)
C1—S8—N11—C1570.3 (3)C18—C19—N20—C150.9 (6)
O9—S8—N11—C12164.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O9i0.982.593.512 (6)157
C16—H16···O13ii0.952.563.485 (4)165
C18—H18···O10iii0.952.503.098 (5)121
C19—H19···O10iii0.952.483.112 (5)124
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y+1, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H15ClN2O3S
Mr326.79
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)193
a, b, c (Å)15.1651 (10), 22.7953 (13), 8.9132 (6)
V3)3081.2 (3)
Z8
Radiation typeCu Kα
µ (mm1)3.57
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.736, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
2950, 2742, 2659
Rint0.080
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.158, 1.11
No. of reflections2742
No. of parameters192
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.53
Absolute structureFlack (1983), 1176 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O9i0.982.593.512 (6)157
C16—H16···O13ii0.952.563.485 (4)165
C18—H18···O10iii0.952.503.098 (5)121
C19—H19···O10iii0.952.483.112 (5)124
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y+1, z; (iii) x, y, z+1.
 

Acknowledgements

The authors would like to thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany and Fonds der Chemischen Industrie, Germany for their generous support of this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerliner, M. A. & Belecki, K. (2005). J. Org. Chem. 70, 9618–9621.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKocieński, P. J. (2005). Protecting Groups, 3rd ed. Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationLaufer, S. A., Hauser, D. R. J., Domeyer, D. M., Kinkel, K. & Liedtke, A. J. (2008). J. Med. Chem. 51, 4122–4149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaufer, S., Hauser, D., Stegmiller, T., Bracht, C., Ruff, K., Schattel, V., Albrecht, W. & Koch, P. (2010). Bioorg. Med. Chem. Lett. 20, 6671–6675.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSciotti, R. J., Starr, J. T., Richardson, C., Rewcastle, G. W., Palmer, B. D., Sutherland, H. S., Spicer, J. A. & Chen, H. (2005). PCT Int. Appl. WO 2005089763, 100 pp.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, M. & Wang, C.-J. (2002). Tetrahedron Asymmetry, 13, 2161–2166.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZiegler, K., Hauser, D. R. J., Unger, A., Albrecht, W. & Laufer, S. A. (2009). ChemMedChem, 4, 1939–1948.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds